Skip to content
2000
image of Research Hotspots and Trends of Artificial Intelligence in Drug Discovery: A Review and Bibliometric Analysis

Abstract

The drug discovery process is highly intricate and complex. Driven by unprecedented advances in AI technology, the application of artificial intelligence in drug discovery (AIDD) is showing significant growth, and AIDD has the potential to fundamentally change and revolutionize traditional drug development models in the foreseeable future. We selected 7061 literature studies on artificial intelligence used in drug discovery from the Web of Science Core Collection database from 2000 to 2024, and adopted bibliometric tools, such as Citespace, VOSviewer, and RStudio, to select nodes for knowledge graph generation and visualization analysis by using country, institution, author, and keywords. The results showed that from 2017 to 2024, the literature on the use of artificial intelligence for drug discovery exploded, with the United States having the largest number of papers, and China's number of papers growing rapidly and surpassing the United States in the last two years. Molecular docking, virtual screening, algorithm optimization, interpretable AIDD, protein language modeling, drug targets, and protein interaction prediction were found to be the research hotspots in this field in recent years. AI has been widely used in the field of drug research and development. Based on the quantitative analysis of the literature on the use of artificial intelligence in drug discovery, this paper has revealed the current research status in this field, clarified the current research hotspots and future research trends, and provided certain references for researchers to plan future research directions.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575400393251007093333
2026-01-22
2026-01-29
Loading full text...

Full text loading...

References

  1. Vijayan R.S.K. Kihlberg J. Cross J.B. Poongavanam V. Enhancing preclinical drug discovery with artificial intelligence. Drug Discov. Today 2022 27 4 967 984 10.1016/j.drudis.2021.11.023 34838731
    [Google Scholar]
  2. Kumar N. Acharya V. Advances in machine intelligence‐driven virtual screening approaches for big‐data. Med. Res. Rev. 2024 44 3 939 974 10.1002/med.21995 38129992
    [Google Scholar]
  3. Pasrija P. Jha P. Upadhyaya P. Khan M.S. Chopra M. Machine learning and artificial intelligence: A paradigm shift in big data-driven drug design and discovery. Curr. Top. Med. Chem. 2022 22 20 1692 1727 10.2174/1568026622666220701091339 35786336
    [Google Scholar]
  4. Wang Z. Wu Y. Wu Z. Zhu R. Yang Y. Wu F. Application of advanced artificial intelligence technology in new drug discovery. Huaxue Jinzhan 2023 35 10 1505
    [Google Scholar]
  5. Batool M. Ahmad B. Choi S. A structure-based drug discovery paradigm. Int. J. Mol. Sci. 2019 20 11 2783 10.3390/ijms20112783 31174387
    [Google Scholar]
  6. Jumper J. Evans R. Pritzel A. Green T. Figurnov M. Ronneberger O. Tunyasuvunakool K. Bates R. Žídek A. Potapenko A. Bridgland A. Meyer C. Kohl S.A.A. Ballard A.J. Cowie A. Romera-Paredes B. Nikolov S. Jain R. Adler J. Back T. Petersen S. Reiman D. Clancy E. Zielinski M. Steinegger M. Pacholska M. Berghammer T. Bodenstein S. Silver D. Vinyals O. Senior A.W. Kavukcuoglu K. Kohli P. Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature 2021 596 7873 583 589 10.1038/s41586‑021‑03819‑2 34265844
    [Google Scholar]
  7. Qureshi R. Irfan M. Gondal T.M. Khan S. Wu J. Hadi M.U. Heymach J. Le X. Yan H. Alam T. AI in drug discovery and its clinical relevance. Heliyon 2023 9 7 e17575 10.1016/j.heliyon.2023.e17575 37396052
    [Google Scholar]
  8. Chen C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006 57 3 359 377 10.1002/asi.20317
    [Google Scholar]
  9. van Eck N.J. Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010 84 2 523 538 10.1007/s11192‑009‑0146‑3 20585380
    [Google Scholar]
  10. Ihaka R. Gentleman R. A language for data analysis and graphics. J. Comput. Graph. Stat. 1996 5 3 299 314 10.1080/10618600.1996.10474713
    [Google Scholar]
  11. Page M.J. McKenzie J.E. Bossuyt P.M. Boutron I. Hoffmann T.C. Mulrow C.D. Shamseer L. Tetzlaff J.M. Akl E.A. Brennan S.E. Chou R. Glanville J. Grimshaw J.M. Hróbjartsson A. Lalu M.M. Li T. Loder E.W. Mayo-Wilson E. McDonald S. McGuinness L.A. Stewart L.A. Thomas J. Tricco A.C. Welch V.A. Whiting P. Moher D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021 88 105906 10.1016/j.ijsu.2021.105906 33789826
    [Google Scholar]
  12. Yeung A.W.K. Comparison between scopus, web of science, pubmed and publishers for mislabelled review papers. Curr. Sci. 2019 116 11 1909 1914 10.18520/cs/v116/i11/1909‑1914
    [Google Scholar]
  13. Mingers J. Leydesdorff L. A review of theory and practice in scientometrics. Eur. J. Oper. Res. 2015 246 1 1 19 10.1016/j.ejor.2015.04.002
    [Google Scholar]
  14. Agu P.C. Obulose C.N. Piquing artificial intelligence towards drug discovery: Tools, techniques, and applications. Drug Dev. Res. 2024 85 2 e22159 10.1002/ddr.22159 38375772
    [Google Scholar]
  15. Nerín-Fonz F. Cournia Z. Machine learning approaches in predicting allosteric sites. Curr. Opin. Struct. Biol. 2024 85 Apr 102774 10.1016/j.sbi.2024.102774 38354652
    [Google Scholar]
  16. Liu Y. Zhang X. Liu Y. Su Y. Zeng X. Yen G.G. Evolutionary multi-objective optimization in searching for various antimicrobial peptides (Feature). IEEE Comput. Intell. Mag. 2023 18 2 31 45 10.1109/MCI.2023.3245731
    [Google Scholar]
  17. Andress C. Kappel K. Villena M.E. Cuperlovic-Culf M. DAPTEV: Deep aptamer evolutionary modelling for COVID-19 drug design. PLOS Comput. Biol. 2023 19 7 e1010774 10.1371/journal.pcbi.1010774 37406007
    [Google Scholar]
  18. Li Y. Wang Z. You Z.H. Li L.P. Hu X. Predicting protein-protein interactions via random ferns with evolutionary matrix representation. Comput. Math. Methods Med. 2022 2022 7191684 1 11 10.1155/2022/7191684 35242211
    [Google Scholar]
  19. Liu S. Li X. Design and implementation of intelligent drug controlled release system based on support vector machine algorithm. 2023 3rd Asia-Pacific Conference on Communications Technology and Computer Science (ACCTCS) Shenyang, China 2023 5 8 10.1109/ACCTCS58815.2023.00137
    [Google Scholar]
  20. Rodríguez-Pérez R. Bajorath J. Evolution of support vector machine and regression modeling in chemoinformatics and drug discovery. J. Comput. Aided Mol. Des. 2022 36 5 355 362 10.1007/s10822‑022‑00442‑9 35304657
    [Google Scholar]
  21. Darma M.D. Faisal M.R. Budiman I. Herteno R. Utami J.P. Abapihi B. In silico prediction of indonesian herbs compounds as covid-19 supportive therapy using support vector machine. 2021 4th International Conference of Computer and Informatics Engineering (IC2IE) Depok, Indonesia 2021 10.1109/IC2IE53219.2021.9649383
    [Google Scholar]
  22. Zhang R. Li J. Lu J. Hu R. Yuan Y. Zhao Z. Using deep learning for compound selectivity prediction. Curr. Computeraided Drug Des. 2016 12 1 5 14 10.2174/1573409912666160219113250 26892071
    [Google Scholar]
  23. Gawehn E. Hiss J.A. Schneider G. Deep learning in drug discovery. Mol. Inform. 2016 35 1 3 14 10.1002/minf.201501008 27491648
    [Google Scholar]
  24. Aliper A. Plis S. Artemov A. Ulloa A. Mamoshina P. Zhavoronkov A. Deep Learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol. Pharm. 2016 13 7 2524 2530 10.1021/acs.molpharmaceut.6b00248 27200455
    [Google Scholar]
  25. Roy K. AI and ML for small molecule drug discovery in the big data era II. Mol. Divers. 2024 28 4 1847 1848 10.1007/s11030‑024‑10983‑w 39283569
    [Google Scholar]
  26. Tong A.B. Burch J.D. McKay D. Bustamante C. Crackower M.A. Wu H. Could AlphaFold revolutionize chemical therapeutics? Nat. Struct. Mol. Biol. 2021 28 10 771 772 10.1038/s41594‑021‑00670‑x 34561631
    [Google Scholar]
  27. Robinson M.C. Glen R.C. Lee A.A. Validating the validation: Reanalyzing a large-scale comparison of deep learning and machine learning models for bioactivity prediction. J. Comput. Aided Mol. Des. 2020 34 7 717 730 10.1007/s10822‑019‑00274‑0 31960253
    [Google Scholar]
  28. Stecula A. Hussain M.S. Viola R.E. Discovery of novel inhibitors of a critical brain enzyme using a homology model and a deep convolutional neural network. J. Med. Chem. 2020 63 16 8867 8875 10.1021/acs.jmedchem.0c00473 32787146
    [Google Scholar]
  29. Rathi P.C. Ludlow R.F. Verdonk M.L. Practical high-quality electrostatic potential surfaces for drug discovery using a graph-convolutional deep neural network. J. Med. Chem. 2020 63 16 8778 8790 10.1021/acs.jmedchem.9b01129 31553186
    [Google Scholar]
  30. Kwon Y. Shin W.H. Ko J. Lee J. AK-Score: Accurate protein-ligand binding affinity prediction using an ensemble of 3d-convolutional neural networks. Int. J. Mol. Sci. 2020 21 22 8424 10.3390/ijms21228424 33182567
    [Google Scholar]
  31. Hu F. Hu Y. Zhang J. Wang D. Yin P. Structure enhanced protein-drug interaction prediction using transformer and graph embedding. 2020 IEEE International Conference on Bioinformatics and Biomedicine Seoul, Korea (South) 2020 1010 1014 10.1109/BIBM49941.2020.9313456
    [Google Scholar]
  32. Yang Y. Zheng S. Su S. Zhao C. Xu J. Chen H. SyntaLinker: Automatic fragment linking with deep conditional transformer neural networks. Chem. Sci. (Camb.) 2020 11 31 8312 8322 10.1039/D0SC03126G 34123096
    [Google Scholar]
  33. Morris P. St Clair R. Hahn W.E. Barenholtz E. Predicting binding from screening assays with transformer network embeddings. J. Chem. Inf. Model. 2020 60 9 4191 4199 10.1021/acs.jcim.9b01212 32568539
    [Google Scholar]
  34. Tetko I.V. Kovalishyn V.V. Livingstone D.J. Volume learning algorithm artificial neural networks for 3D QSAR studies. J. Med. Chem. 2001 44 15 2411 2420 10.1021/jm010858e 11448223
    [Google Scholar]
  35. Lee S. Yang J. Oh K.W. Prediction of molecular bioactivity for drug design using a decision tree algorithm. Discovery Science DS 2003 Lecture Notes in Computer Science, vol 2843 Springer,Berlin, Heidelberg 10.1007/978‑3‑540‑39644‑4_32
    [Google Scholar]
  36. Lameijer E.W. Kok J.N. Bäck T. IJzerman A.P. The molecule evoluator. An interactive evolutionary algorithm for the design of drug-like molecules. J. Chem. Inf. Model. 2006 46 2 545 552 10.1021/ci050369d 16562982
    [Google Scholar]
  37. Obrezanova O. Segall M.D. Gaussian processes for classification: QSAR modeling of ADMET and target activity. J. Chem. Inf. Model. 2010 50 6 1053 1061 10.1021/ci900406x 20433177
    [Google Scholar]
  38. Hu Y. Unwalla R. Denny R.A. Bikker J. Di L. Humblet C. Development of QSAR models for microsomal stability: identification of good and bad structural features for rat, human and mouse microsomal stability. J. Comput. Aided Mol. Des. 2010 24 1 23 35 10.1007/s10822‑009‑9309‑9 19937264
    [Google Scholar]
  39. Singla R.K. Bhat G. V. QSAR model for predicting the fungicidal action of 1,2,4-triazole derivatives against Candida albicans. J. Enzyme Inhib. Med. Chem. 2010 25 5 696 701 10.3109/14756360903524296 20429780
    [Google Scholar]
  40. Sreepadmanabh M. Sahu A.K. Chande A. COVID-19: Advances in diagnostic tools, treatment strategies, and vaccine development. J. Biosci. 2020 45 1 148 10.1007/s12038‑020‑00114‑6 33410425
    [Google Scholar]
  41. Zhou Y. Wang F. Tang J. Nussinov R. Cheng F. Artificial intelligence in COVID-19 drug repurposing. Lancet Digit. Health 2020 2 12 e667 e676 10.1016/S2589‑7500(20)30192‑8 32984792
    [Google Scholar]
  42. Acharya A. Agarwal R. Baker M.B. Baudry J. Bhowmik D. Boehm S. Byler K.G. Chen S.Y. Coates L. Cooper C.J. Demerdash O. Daidone I. Eblen J.D. Ellingson S. Forli S. Glaser J. Gumbart J.C. Gunnels J. Hernandez O. Irle S. Kneller D.W. Kovalevsky A. Larkin J. Lawrence T.J. LeGrand S. Liu S.H. Mitchell J.C. Park G. Parks J.M. Pavlova A. Petridis L. Poole D. Pouchard L. Ramanathan A. Rogers D.M. Santos-Martins D. Scheinberg A. Sedova A. Shen Y. Smith J.C. Smith M.D. Soto C. Tsaris A. Thavappiragasam M. Tillack A.F. Vermaas J.V. Vuong V.Q. Yin J. Yoo S. Zahran M. Zanetti-Polzi L. Supercomputer-based ensemble docking drug discovery pipeline with application to Covid-19. J. Chem. Inf. Model. 2020 60 12 5832 5852 10.1021/acs.jcim.0c01010 33326239
    [Google Scholar]
  43. Gupta A. Zhou H.X. Profiling SARS-CoV-2 main protease (MPRO) Binding to repurposed drugs using molecular dynamics simulations in classical and neural network-trained force fields. ACS Comb. Sci. 2020 22 12 826 832 10.1021/acscombsci.0c00140 33119257
    [Google Scholar]
  44. Di Paola L. Hadi-Alijanvand H. Song X. Hu G. Giuliani A. The discovery of a putative allosteric site in the SARS-CoV-2 spike protein using an integrated structural/dynamic approach. J. Proteome Res. 2020 19 11 4576 4586 10.1021/acs.jproteome.0c00273 32551648
    [Google Scholar]
  45. Taguchi Y. Turki T. A new advanced in silico drug discovery method for novel coronavirus (SARS-CoV-2) with tensor decomposition-based unsupervised feature extraction. PLoS One 2020 15 9 e0238907 10.1371/journal.pone.0238907 32915876
    [Google Scholar]
  46. Banerjee I. Yamauchi Y. Helenius A. Horvath P. High-content analysis of sequential events during the early phase of influenza A virus infection. PLoS One 2013 8 7 e68450 10.1371/journal.pone.0068450 23874633
    [Google Scholar]
  47. Sanker S. Cirio M.C. Vollmer L.L. Goldberg N.D. McDermott L.A. Hukriede N.A. Vogt A. Development of high-content assays for kidney progenitor cell expansion in transgenic zebrafish. SLAS Discov. 2013 18 10 1193 1202 10.1177/1087057113495296 23832868
    [Google Scholar]
  48. Kaufmann M. Schuffenhauer A. Fruh I. Klein J. Thiemeyer A. Rigo P. Gomez-Mancilla B. Heidinger-Millot V. Bouwmeester T. Schopfer U. Mueller M. Fodor B.D. Cobos-Correa A. High-throughput screening using IPSC-derived neuronal progenitors to identify compounds counteracting epigenetic gene silencing in fragile X Syndrome. SLAS Discov. 2015 20 9 1101 1111 10.1177/1087057115588287 26024946
    [Google Scholar]
  49. Krentzel D. Shorte S.L. Zimmer C. Deep learning in image-based phenotypic drug discovery. Trends Cell Biol. 2023 33 7 538 554 10.1016/j.tcb.2022.11.011 36623998
    [Google Scholar]
  50. Staker J. Marshall K. Abel R. McQuaw C.M. Molecular structure extraction from documents using deep learning. J. Chem. Inf. Model. 2019 59 3 1017 1029 10.1021/acs.jcim.8b00669 30758950
    [Google Scholar]
  51. Aggarwal S. Juneja S. Rashid J. Gupta D. Gupta S. Kim J. Protein subcellular localization prediction by concatenation of convolutional blocks for deep features extraction from microscopic images. IEEE Access 2023 11 1057 1073 10.1109/ACCESS.2022.3232564
    [Google Scholar]
  52. Singh S. Carpenter A.E. Genovesio A. Increasing the content of high-content screening: An overview. SLAS Discov. 2014 19 5 640 650 10.1177/1087057114528537 24710339
    [Google Scholar]
  53. Elena V. Anastasiya S. Image analysis methods in high-content screening for phenotypic drug discovery. 2017 International Multi-Conference on Engineering, Computer and Information Sciences. Novosibirsk, Russia SIBIRCON 2017 575 575 10.1109/SIBIRCON.2017.8109957
    [Google Scholar]
  54. Lin S. Schorpp K. Rothenaigner I. Hadian K. Image-based high-content screening in drug discovery. Drug Discov. Today 2020 25 8 1348 1361 10.1016/j.drudis.2020.06.001 32561299
    [Google Scholar]
  55. Vogt A. Cholewinski A. Shen X. Nelson S.G. Lazo J.S. Tsang M. Hukriede N.A. Automated image‐based phenotypic analysis in zebrafish embryos. Dev. Dyn. 2009 238 3 656 663 10.1002/dvdy.21892 19235725
    [Google Scholar]
  56. Shariff A. Kangas J. Coelho L.P. Quinn S. Murphy R.F. Automated image analysis for high-content screening and analysis. SLAS Discov. 2010 15 7 726 734 10.1177/1087057110370894 20488979
    [Google Scholar]
  57. Yu S. Kalinin A.A. Paraskevopoulou M.D. Maruggi M. Cheng J. Tang J. Icke I. Luo Y. Wei Q. Scheibe D. Hunter J. Singh S. Nguyen D. Carpenter A.E. Horman S.R. Integrating inflammatory biomarker analysis and artificial-intelligence-enabled image-based profiling to identify drug targets for intestinal fibrosis. Cell Chem. Biol. 2023 30 9 1169 1182.e8 10.1016/j.chembiol.2023.06.014 37437569
    [Google Scholar]
  58. Entzeroth M. Flotow H. Condron P. Overview of high-throughput screening. Curr. Protoc. Pharmacol. 2009 Unit 9.4 10.1002/0471141755.ph0904s44 22294406
    [Google Scholar]
  59. Zhao Y. Yuan C. Shi Y. Liu X. Luo L. Zhang L. Pešić M. Yao H. Li L. Drug screening approaches for small-molecule compounds in cancer-targeted therapy. J. Drug Target. 2025 33 3 368 383 10.1080/1061186X.2024.2427185 39575843
    [Google Scholar]
  60. Shanmugasundaram K. Rigby A. Exploring novel target space: A need to partner high throughput docking and ligand-based similarity searches? Comb. Chem. High Throughput Screen. 2009 12 10 984 999 10.2174/138620709789824709 20025564
    [Google Scholar]
  61. Lavecchia A. Giovanni C. Virtual screening strategies in drug discovery: A critical review. Curr. Med. Chem. 2013 20 23 2839 2860 10.2174/09298673113209990001 23651302
    [Google Scholar]
  62. Chen B. Harrison R.F. Hert J. Mpanhanga C. Willett P. Wilton D.J. Ligand-based virtual screening using binary kernel discrimination. Mol. Simul. 2005 31 8 597 604 10.1080/08927020500134177
    [Google Scholar]
  63. Tripathi N. Goshisht M.K. Sahu S.K. Arora C. Applications of artificial intelligence to drug design and discovery in the big data era: A comprehensive review. Mol. Divers. 2021 25 3 1643 1664 10.1007/s11030‑021‑10237‑z 34110579
    [Google Scholar]
  64. Qian N. Sejnowski T.J. Predicting the secondary structure of globular proteins using neural network models. J. Mol. Biol. 1988 202 4 865 884 10.1016/0022‑2836(88)90564‑5 3172241
    [Google Scholar]
  65. Wang S. Peng J. Ma J. Xu J. Protein Secondary structure prediction using deep convolutional neural fields. Sci. Rep. 2016 6 1 18962 10.1038/srep18962 26752681
    [Google Scholar]
  66. Geethu S. Vimina E.R. Protein secondary structure prediction using cascaded feature learning model. Appl. Soft Comput. 2023 Jun 140
    [Google Scholar]
  67. Mohamed Mufassirin M.M. Newton M.A.H. Rahman J. Sattar A. Multi-S3P: Protein secondary structure prediction with specialized multi-network and self-attention-based deep learning model. IEEE Access 2023 11 57083 57096 10.1109/ACCESS.2023.3282702
    [Google Scholar]
  68. Xu M. Pang J. Ye Y. Zhang Z. Integrating traditional machine learning and deep learning for precision screening of anticancer peptides: A novel approach for efficient drug discovery. ACS Omega 2024 9 14 16820 16831 10.1021/acsomega.4c01374 38617603
    [Google Scholar]
  69. Chatterjee A. Walters R. Shafi Z. Ahmed O.S. Sebek M. Gysi D. Yu R. Eliassi-Rad T. Barabási A.L. Menichetti G. Improving the generalizability of protein-ligand binding predictions with AI-Bind. Nat. Commun. 2023 14 1 1989 10.1038/s41467‑023‑37572‑z 37031187
    [Google Scholar]
  70. Bae H. Nam H. GraphATT-DTA: Attention-based novel representation of interaction to predict drug-target binding affinity. Biomedicines 2022 11 1 67 10.3390/biomedicines11010067 36672575
    [Google Scholar]
  71. Tropsha A. Isayev O. Varnek A. Schneider G. Cherkasov A. Integrating QSAR modelling and deep learning in drug discovery: The emergence of deep QSAR. Nat. Rev. Drug Discov. 2024 23 2 141 155 10.1038/s41573‑023‑00832‑0 38066301
    [Google Scholar]
  72. Zou J. Zhao L. Shi S. Generation of focused drug molecule library using recurrent neural network. J. Mol. Model. 2023 29 12 361 10.1007/s00894‑023‑05772‑5 37932607
    [Google Scholar]
  73. Zhang C. Cheng F. Li W. Liu G. Lee P.W. Tang Y. In silico prediction of drug induced liver toxicity using substructure pattern recognition method. Mol. Inform. 2016 35 3-4 136 144 10.1002/minf.201500055 27491923
    [Google Scholar]
  74. Vemula D. Jayasurya P. Sushmitha V. Kumar Y.N. Bhandari V. CADD, AI and ML in drug discovery: A comprehensive review. Eur. J. Pharm. Sci. 2023 181 106324 10.1016/j.ejps.2022.106324 36347444
    [Google Scholar]
  75. Mullowney M.W. Duncan K.R. Elsayed S.S. Garg N. van der Hooft J.J.J. Martin N.I. Meijer D. Terlouw B.R. Biermann F. Blin K. Durairaj J. Gorostiola González M. Helfrich E.J.N. Huber F. Leopold-Messer S. Rajan K. de Rond T. van Santen J.A. Sorokina M. Balunas M.J. Beniddir M.A. van Bergeijk D.A. Carroll L.M. Clark C.M. Clevert D.A. Dejong C.A. Du C. Ferrinho S. Grisoni F. Hofstetter A. Jespers W. Kalinina O.V. Kautsar S.A. Kim H. Leao T.F. Masschelein J. Rees E.R. Reher R. Reker D. Schwaller P. Segler M. Skinnider M.A. Walker A.S. Willighagen E.L. Zdrazil B. Ziemert N. Goss R.J.M. Guyomard P. Volkamer A. Gerwick W.H. Kim H.U. Müller R. van Wezel G.P. van Westen G.J.P. Hirsch A.K.H. Linington R.G. Robinson S.L. Medema M.H. Artificial intelligence for natural product drug discovery. Nat. Rev. Drug Discov. 2023 22 11 895 916 10.1038/s41573‑023‑00774‑7 37697042
    [Google Scholar]
  76. Jiménez-Luna J. Grisoni F. Schneider G. Drug discovery with explainable artificial intelligence. Nat. Mach. Intell. 2020 2 10 573 584 10.1038/s42256‑020‑00236‑4
    [Google Scholar]
  77. Dong W. Yang Q. Wang J. Xu L. Li X. Luo G. Gao X. Multi-modality attribute learning-based method for drug–protein interaction prediction based on deep neural network. Brief. Bioinform. 2023 24 3 bbad161 10.1093/bib/bbad161 37114624
    [Google Scholar]
  78. Ren Z.H. You Z.H. Zou Q. Yu C.Q. Ma Y.F. Guan Y.J. You H.R. Wang X.F. Pan J. DeepMPF: deep learning framework for predicting drug–target interactions based on multi-modal representation with meta-path semantic analysis. J. Transl. Med. 2023 21 1 48 10.1186/s12967‑023‑03876‑3 36698208
    [Google Scholar]
  79. Wu T. Tang Y. Sun Q. Xiong L. Molecular joint representation learning via multi-modal information of SMILES and graphs. IEEE/ACM Trans. Comput. Biol. Bioinform. 2023 20 5 3044 3055 10.1109/TCBB.2023.3253862 37028366
    [Google Scholar]
  80. Zheng Z. Wang H. Tan Y. Liang C. Sun Y. EMPPNet: Enhancing molecular property prediction via cross-modal information flow and hierarchical attention. Expert Syst. Appl. 2023 234 121016 10.1016/j.eswa.2023.121016
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575400393251007093333
Loading
/content/journals/mrmc/10.2174/0113895575400393251007093333
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test