Skip to content
2000
image of Coumarin-based Strategies for Breast Cancer: A Multifaceted Perspective

Abstract

Breast cancer remains the most prevalent cancer among women worldwide, with increasing toxicity and resistance to current therapies posing a serious challenge to healthcare systems. The urgent demand for more effective and safer treatments has highlighted coumarin, a naturally occurring compound with a unique ring structure, due to its promising potential in combating breast cancer. Over the past three decades, numerous synthetic coumarin derivatives have been developed to enhance therapeutic efficacy. This review provides a comprehensive analysis of 18 reported coumarin-based compounds, focusing on their design strategies, mechanisms of action, and structure-activity relationships (SAR). Molecular docking studies targeting key enzymes, including tyrosine kinases, topoisomerases, and serine/threonine kinases, were examined to evaluate binding affinities and interaction patterns. Substitutions at the 3- and 6-positions of the coumarin scaffold were found to impact target binding significantly. Critical interactions, including hydrogen bonding, van der Waals forces, and hydrophobic contacts, were correlated with experimental anticancer activities, offering valuable insights into ligand-protein complex stabilization. Overall, the analysis underscores the potential of coumarin derivatives as promising leads for the rational design of novel anticancer agents with improved efficacy and selectivity.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575394059250813074806
2025-08-27
2025-09-22
Loading full text...

Full text loading...

References

  1. Takla F.N. Bayoumi W.A. El-Messery S.M. Nasr M.N.A. Developing multitarget coumarin based anti-breast cancer agents: Synthesis and molecular modeling study. Sci. Rep. 2023 13 1 13370 10.1038/s41598‑023‑40232‑3 37591917
    [Google Scholar]
  2. Rashid H.U. Research advances on anticancer activities of matrine and its derivatives: An updated overview. Eur. J. Med. Chem. 2019 161 205 238 10.1016/j.ejmech.2018.10.037 30359819
    [Google Scholar]
  3. Gao F. Zhang X. Wang T. Xiao J. Quinolone hybrids and their anti-cancer activities: An overview. Eur. J. Med. Chem. 2019 165 59 79 10.1016/j.ejmech.2019.01.017 30660827
    [Google Scholar]
  4. Siddiqui A.A. Burden of cancer in the Arab world. Handbook of Healthcare in the Arab World. Cham Springer 2021 495 519 10.1007/978‑3‑030‑36811‑1_182
    [Google Scholar]
  5. Cancer control: knowledge into action World Health Organization 2008 Available from:https://www.who.int/publications/i/item/9789241547406
    [Google Scholar]
  6. Mermer A. Volkan Bulbul M. Mervenur Kalender S. Keskin I. Tuzun B. Emre Eyupoglu O. Benzotriazole-oxadiazole hybrid Compounds: Synthesis, anticancer Activity, molecular docking and ADME profiling studies. J. Mol. Liq. 2022 359 119264 10.1016/j.molliq.2022.119264
    [Google Scholar]
  7. Islam M.S. Wang C. Zheng J. Paudyal N. Zhu Y. Sun H. The potential role of tubeimosides in cancer prevention and treatment. Eur. J. Med. Chem. 2019 162 109 121 10.1016/j.ejmech.2018.11.001 30439592
    [Google Scholar]
  8. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  9. Piñeros M. Mery L. Soerjomataram I. Bray F. Steliarova-Foucher E. Scaling up the surveillance of childhood cancer: A global roadmap. J. Natl. Cancer Inst. 2021 113 1 9 15 10.1093/jnci/djaa069 32433739
    [Google Scholar]
  10. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  11. Gupta D. Guliani E. Bajaj K. Coumarin—synthetic methodologies, pharmacology, and application as natural fluorophore. Top. Curr. Chem. 2024 382 2 16 10.1007/s41061‑024‑00462‑z 38722386
    [Google Scholar]
  12. Poole S.K. Poole C.F. Thin-layer chromatographic method for the determination of the principal polar aromatic flavour compounds of the cinnamons of commerce. Analyst 1994 119 1 113 120 10.1039/an9941900113
    [Google Scholar]
  13. Luo K. Sun J. Chan J.Y.W. Yang L. Wu S. Fung K.P. Liu F. Anticancer effects of imperatorin isolated from Angelica dahurica: Induction of apoptosis in HepG2 cells through both death-receptor- and mitochondria-mediated pathways. Chemotherapy 2011 57 6 449 459 10.1159/000331641 22189406
    [Google Scholar]
  14. Bourgaud F. Hehn A. Larbat R. Doerper S. Gontier E. Kellner S. Matern U. Biosynthesis of coumarins in plants: A major pathway still to be unravelled for cytochrome P450 enzymes. Phytochem. Rev. 2006 5 2-3 293 308 10.1007/s11101‑006‑9040‑2
    [Google Scholar]
  15. Patil A.D. Freyer A.J. Eggleston D.S. Haltiwanger R.C. Bean M.F. Taylor P.B. Caranfa M.J. Breen A.L. Bartus H.R. Johnson R.K. The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn. J. Med. Chem. 1993 36 26 4131 4138 10.1021/jm00078a001 7506311
    [Google Scholar]
  16. Hodák K. Jakesová V. Dadák V. On the antibiotic effects of natural coumarins. VI. The relation of structure to the antibacterial effects of some natural coumarins and the neutralization of such effects. Cesk. Farm. 1967 16 2 86 91 6044315
    [Google Scholar]
  17. Astha A. Rao U.S.M. Ashawat M.S. Arora R. Zhen L.W. A review on design of coumarin hybrids in the treatment of breast cancer. Res. J. Pharm. Technol 2024 17 10 4934 4940 10.52711/0974‑360X.2024.00759
    [Google Scholar]
  18. Chen S. Cho M. Karlsberg K. Zhou D. Yuan Y.C. Biochemical and biological characterization of a novel anti-aromatase coumarin derivative. J. Biol. Chem. 2004 279 46 48071 48078 10.1074/jbc.M406847200 15358790
    [Google Scholar]
  19. Musa M. Cooperwood J. Khan M.O. A review of coumarin derivatives in pharmacotherapy of breast cancer. Curr. Med. Chem. 2008 15 26 2664 2679 10.2174/092986708786242877 18991629
    [Google Scholar]
  20. Moyer J.D. Barbacci E.G. Iwata K.K. Arnold L. Boman B. Cunningham A. DiOrio C. Doty J. Morin M.J. Moyer M.P. Neveu M. Pollack V.A. Pustilnik L.R. Reynolds M.M. Sloan D. Theleman A. Miller P. Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res. 1997 57 21 4838 4848 9354447
    [Google Scholar]
  21. Bhatia R. Rawal R.K. Coumarin hybrids: Promising scaffolds in the treatment of breast cancer. Mini Rev. Med. Chem. 2019 19 17 1443 1458 10.2174/1389557519666190308122509 30854961
    [Google Scholar]
  22. Koley M. Han J. Soloshonok V.A. Mojumder S. Javahershenas R. Makarem A. Latest developments in coumarin-based anticancer agents: Mechanism of action and structure–activity relationship studies. RSC Med. Chem. 2024 15 1 10 54 10.1039/D3MD00511A 38283214
    [Google Scholar]
  23. Shahbaz M. Perween A. Momal U. Imran M. Ul Hassan M.H. Naeem H. Mujtaba A. Hussain M. Alsagaby S.A. Al Abdulmonem W. Abdelgawad M.A. El-Ghorab A.H. Selim S. Mostafa E.M. Al Jbawi E. Recent perspectives on anticancer potential of coumarin against different human malignancies: An updated review. Food Sci. Nutr. 2025 13 1 4696 10.1002/fsn3.4696 39803273
    [Google Scholar]
  24. Singh A. Singh K. Kaur K. Singh A. Sharma A. Kaur K. Kaur J. Kaur G. Kaur U. Kaur H. Singh P. Bedi P.M.S. Coumarin as an elite scaffold in anti-breast cancer drug development: Design strategies, mechanistic insights, and structure–activity relationships. Biomedicines 2024 12 6 1192 10.3390/biomedicines12061192 38927399
    [Google Scholar]
  25. Wu Y. Xu J. Liu Y. Zeng Y. Wu G. A review on anti-tumor mechanisms of coumarins. Front. Oncol. 2020 10 592853 10.3389/fonc.2020.592853 33344242
    [Google Scholar]
  26. Annunziata F. Pinna C. Dallavalle S. Tamborini L. Pinto A. An overview of coumarin as a versatile and readily accessible scaffold with broad-ranging biological activities. Int. J. Mol. Sci. 2020 21 13 4618 10.3390/ijms21134618 32610556
    [Google Scholar]
  27. Fotopoulos I. Hadjipavlou-Litina D. Hybrids of coumarin derivatives as potent and multifunctional bioactive agents: A review. Med. Chem. 2020 16 3 272 306 10.2174/1573406415666190416121448 31038071
    [Google Scholar]
  28. Kaur M. Coumarin: A promising scaffold for anticancer agents. Anticancer. Agents Med. Chem. 2015 15 8 1032 1048 10.2174/1871520615666150101125503 25553437
    [Google Scholar]
  29. Berman H.M. Westbrook J. Feng Z. Gilliland G. Bhat T.N. Weissig H. Shindyalov I.N. Bourne P.E. The protein data bank. Nucleic Acids Res. 2000 28 1 235 242 10.1093/nar/28.1.235 10592235
    [Google Scholar]
  30. Sashidhara Koneni V. Coumarin-chalcones as anticancer agents. US Patent 8815940B2 2014
    [Google Scholar]
  31. Hsieh H-P. Coumarin compounds and their use for treating cancer. US Patent 8058427B2 2011
    [Google Scholar]
  32. Sun J.I.E. Application of 3-aryl coumarin compound, anti-cancer sensitization composition and anti-cancer composition. CN Patent 113797195B 2021
    [Google Scholar]
  33. Nan F. Dicoumarol compound, as well as preparation method and application thereof. CN Patent 102558049B 2015
    [Google Scholar]
  34. Chen Y. Guo Y. Chen X. Coumarin derivative containing 7-substituent and 8-substituent, preparation method and uses thereof. CN Patent 109111419A 2019
    [Google Scholar]
  35. Ruan, Banfeng Stilbene-like Coumarin Derivatives and Their Preparation Methods and Applications. CN Patent 104892556B 2017
    [Google Scholar]
  36. Iikura H. Coumarin derivative having antitumor activity. US Patent 7897792B2 2011
    [Google Scholar]
  37. Della Valle F. Romeo A. Coumarin derivatives, pharmaceutical compositions containing the same, and the use thereof in the treatment of cancer. US Patent 4737517A 1988
    [Google Scholar]
  38. Di Lucrezia R. Coumarin derivatives, processes for their preparation and uses thereof for the treatment of cancer. US Patent 20200291011A1 2020
    [Google Scholar]
  39. Ji H. Coumarin acrolein derivative, preparation method thereof and application of coumarin acrolein derivative in preparation of antitumor drugs. CN Patent 116375672A 2023
    [Google Scholar]
  40. Carrico-Moniz D. Coumarin derivatives for cancer therapy. US Patent 9403791B1 2016
    [Google Scholar]
  41. Li G. Deng D. Monoterpene coumarin derivative nano preparation as well as preparation method and application thereof. CN Patent 117653603A 2024
    [Google Scholar]
  42. Pan Y. Application of coumarin-dithiocarbamate derivative in preparation of antitumor drugs. CN Patent 112426420A 2021
    [Google Scholar]
  43. Ma J. Coumarin type derivative and application thereof. CN Patent 109232498A 2019
    [Google Scholar]
  44. Xiang H.U.A. 4-arylamine-coumarin derivative and preparing method and medical application thereof. CN Patent 105801543A 2016
    [Google Scholar]
  45. Bryan M.C. Burdick D.J. Chan B.K. Chen Y. Clausen S. Dotson J. Eigenbrot C. Elliott R. Hanan E.J. Heald R. Jackson P. La H. Lainchbury M. Malek S. Mann S.E. Purkey H.E. Schaefer G. Schmidt S. Seward E. Sideris S. Wang S. Yen I. Yu C. Heffron T.P. Pyridones as highly selective, noncovalent inhibitors of T790M double mutants of EGFR. ACS Med. Chem. Lett. 2016 7 1 100 104 10.1021/acsmedchemlett.5b00428 26819674
    [Google Scholar]
  46. Eriksson M. Uhlin U. Ramaswamy S. Ekberg M. Regnström K. Sjöberg B.M. Eklund H. Binding of allosteric effectors to ribonucleotide reductase protein R1: Reduction of active-site cysteines promotes substrate binding. Structure 1997 5 8 1077 1092 10.1016/S0969‑2126(97)00259‑1 9309223
    [Google Scholar]
  47. Bramson H.N. Corona J. Davis S.T. Dickerson S.H. Edelstein M. Frye S.V. Gampe R.T. Harris P.A. Hassell A. Holmes W.D. Hunter R.N. Lackey K.E. Lovejoy B. Luzzio M.J. Montana V. Rocque W.J. Rusnak D. Shewchuk L. Veal J.M. Walker D.H. Kuyper L.F. Oxindole-based inhibitors of cyclin-dependent kinase 2 (CDK2): Design, synthesis, enzymatic activities, and X-ray crystallographic analysis. J. Med. Chem. 2001 44 25 4339 4358 10.1021/jm010117d 11728181
    [Google Scholar]
  48. Caradoc-Davies T.T. Cutfield S.M. Lamont I.L. Cutfield J.F. Crystal structures of Escherichia coli uridine phosphorylase in two native and three complexed forms reveal basis of substrate specificity, induced conformational changes and influence of potassium. J. Mol. Biol. 2004 337 2 337 354 10.1016/j.jmb.2004.01.039 15003451
    [Google Scholar]
  49. Lee D. Long S.A. Adams J.L. Chan G. Vaidya K.S. Francis T.A. Kikly K. Winkler J.D. Sung C.M. Debouck C. Richardson S. Levy M.A. DeWolf W.E. Keller P.M. Tomaszek T. Head M.S. Ryan M.D. Haltiwanger R.C. Liang P.H. Janson C.A. McDevitt P.J. Johanson K. Concha N.O. Chan W. Abdel-Meguid S.S. Badger A.M. Lark M.W. Nadeau D.P. Suva L.J. Gowen M. Nuttall M.E. Potent and selective nonpeptide inhibitors of caspases 3 and 7 inhibit apoptosis and maintain cell functionality. J. Biol. Chem. 2000 275 21 16007 16014 10.1074/jbc.275.21.16007 10821855
    [Google Scholar]
  50. Shiau A.K. Barstad D. Loria P.M. Cheng L. Kushner P.J. Agard D.A. Greene G.L. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 1998 95 7 927 937 10.1016/S0092‑8674(00)81717‑1 9875847
    [Google Scholar]
  51. Sabini E. Ort S. Monnerjahn C. Konrad M. Lavie A. Structure of human dCK suggests strategies to improve anticancer and antiviral therapy. Nat. Struct. Mol. Biol. 2003 10 7 513 519 10.1038/nsb942 12808445
    [Google Scholar]
  52. Yoshida T. Oki H. Doi M. Fukuda S. Yuzuriha T. Tabata R. Ishimoto K. Kawahara K. Ohkubo T. Miyachi H. Doi T. Tachibana K. Structural basis for PPARα activation by 1H-pyrazolo-[3,4-b]pyridine Derivatives. Sci. Rep. 2020 10 1 7623 10.1038/s41598‑020‑64527‑x 32376995
    [Google Scholar]
  53. Ishikawa T. Seto M. Banno H. Kawakita Y. Oorui M. Taniguchi T. Ohta Y. Tamura T. Nakayama A. Miki H. Kamiguchi H. Tanaka T. Habuka N. Sogabe S. Yano J. Aertgeerts K. Kamiyama K. Design and synthesis of novel human epidermal growth factor receptor 2 (HER2)/epidermal growth factor receptor (EGFR) dual inhibitors bearing a pyrrolo[3,2-d]pyrimidine scaffold. J. Med. Chem. 2011 54 23 8030 8050 10.1021/jm2008634 22003817
    [Google Scholar]
  54. Sippel K.H. Robbins A.H. Domsic J. Genis C. Agbandje-McKenna M. McKenna R. High-resolution structure of human carbonic anhydrase II complexed with acetazolamide reveals insights into inhibitor drug design. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2009 65 10 992 995 10.1107/S1744309109036665 19851004
    [Google Scholar]
  55. Dudutienė V. Zubrienė A. Smirnov A. Gylytė J. Timm D. Manakova E. Gražulis S. Matulis D. 4-Substituted-2,3,5,6-tetrafluorobenzenesulfonamides as inhibitors of carbonic anhydrases I, II, VII, XII, and XIII. Bioorg. Med. Chem. 2013 21 7 2093 2106 10.1016/j.bmc.2013.01.008 23394791
    [Google Scholar]
  56. Norman M.H. Liu L. Lee M. Xi N. Fellows I. D’Angelo N.D. Dominguez C. Rex K. Bellon S.F. Kim T.S. Dussault I. Structure-based design of novel class II c-Met inhibitors: 1. Identification of pyrazolone-based derivatives. J. Med. Chem. 2012 55 5 1858 1867 10.1021/jm201330u 22320343
    [Google Scholar]
  57. Wu C.C. Li T.K. Farh L. Lin L.Y. Lin T.S. Yu Y.J. Yen T.J. Chiang C.W. Chan N.L. Structural basis of type II topoisomerase inhibition by the anticancer drug etoposide. Science 2011 333 6041 459 462 10.1126/science.1204117 21778401
    [Google Scholar]
  58. Eswaramoorthy S. Kumaran D. Swaminathan S. Crystallographic evidence for doxorubicin binding to the receptor-binding site in Clostridium botulinum neurotoxin B. Acta Crystallogr. D Biol. Crystallogr. 2001 57 11 1743 1746 10.1107/S0907444901013531 11679763
    [Google Scholar]
  59. Pidugu L.S.M. Mbimba J.C.E. Ahmad M. Pozharski E. Sausville E.A. Emadi A. Toth E.A. A direct interaction between NQO1 and a chemotherapeutic dimeric naphthoquinone. BMC Struct. Biol. 2016 16 1 1 10 10.1186/s12900‑016‑0052‑x 26822308
    [Google Scholar]
  60. Underwood K.W. Parris K.D. Federico E. Mosyak L. Czerwinski R.M. Shane T. Taylor M. Svenson K. Liu Y. Hsiao C.L. Wolfrom S. Maguire M. Malakian K. Telliez J.B. Lin L.L. Kriz R.W. Seehra J. Somers W.S. Stahl M.L. Catalytically active MAP KAP kinase 2 structures in complex with staurosporine and ADP reveal differences with the autoinhibited enzyme. Structure 2003 11 6 627 636 10.1016/S0969‑2126(03)00092‑3 12791252
    [Google Scholar]
  61. Vaarla K. Karnewar S. Panuganti D. Peddi S.R. Vedula R.R. Manga V. Kotamraju S. 3‐(2‐(5‐Amino‐3‐aryl‐1 H ‐pyrazol‐1‐yl) thiazol‐4‐yl)‐2 H ‐chromen‐2‐ones as potential anticancer agents: Synthesis, anticancer activity evaluation and molecular docking studies. ChemistrySelect 2019 4 14 4324 4330 10.1002/slct.201900077
    [Google Scholar]
  62. Paul K. Bindal S. Luxami V. Synthesis of new conjugated coumarin–benzimidazole hybrids and their anticancer activity. Bioorg. Med. Chem. Lett. 2013 23 12 3667 3672 10.1016/j.bmcl.2012.12.071 23642480
    [Google Scholar]
  63. Morsy S.A. Farahat A.A. Nasr M.N.A. Tantawy A.S. Synthesis, molecular modeling and anticancer activity of new coumarin containing compounds. Saudi Pharm. J. 2017 25 6 873 883 10.1016/j.jsps.2017.02.003 28951673
    [Google Scholar]
  64. Pavić K. Beus M. Poje G. Uzelac L. Kralj M. Rajić Z. Synthesis and biological evaluation of harmirins, novel harmine–coumarin hybrids as potential anticancer agents. Molecules 2021 26 21 6490 10.3390/molecules26216490 34770906
    [Google Scholar]
  65. Rawat A. Vijaya Bhaskar Reddy A. Recent advances on anticancer activity of coumarin derivatives. Eur. J. Med. Chem. Rep. 2022 5 100038 10.1016/j.ejmcr.2022.100038
    [Google Scholar]
  66. Fayed E.A. Sabour R. Harras M.F. Mehany A.B.M. Design, synthesis, biological evaluation and molecular modeling of new coumarin derivatives as potent anticancer agents. Med. Chem. Res. 2019 28 8 1284 1297 10.1007/s00044‑019‑02373‑x
    [Google Scholar]
  67. Musa M.A. Khan M.F. Cooperwood J.S. Synthesis and antiproliferative activity of coumarin-estrogen conjugates against breast cancer cell lines. Lett. Drug Des. Discov. 2009 6 2 133 138 10.2174/157018009787582624 20556210
    [Google Scholar]
  68. Liu M.M. Chen X.Y. Huang Y.Q. Feng P. Guo Y.L. Yang G. Chen Y. Hybrids of phenylsulfonylfuroxan and coumarin as potent antitumor agents. J. Med. Chem. 2014 57 22 9343 9356 10.1021/jm500613m 25350923
    [Google Scholar]
  69. Xiao C.F. Tao L.Y. Sun H.Y. Wei W. Chen Y. Fu L.W. Zou Y. Design, synthesis and antitumor activity of a series of novel coumarin–stilbenes hybrids, the 3-arylcoumarins. Chin. Chem. Lett. 2010 21 11 1295 1298 10.1016/j.cclet.2010.04.034
    [Google Scholar]
  70. Sashidhara K.V. Avula S.R. Sharma K. Palnati G.R. Bathula S.R. Discovery of coumarin–monastrol hybrid as potential antibreast tumor-specific agent. Eur. J. Med. Chem. 2013 60 120 127 10.1016/j.ejmech.2012.11.044 23287057
    [Google Scholar]
  71. Rubab L. Afroz S. Ahmad S. Hussain S. Nawaz I. Irfan A. Batool F. Kotwica-Mojzych K. Mojzych M. An update on synthesis of coumarin sulfonamides as enzyme inhibitors and anticancer agents. Molecules 2022 27 5 1604 10.3390/molecules27051604 35268704
    [Google Scholar]
  72. Fuentes-Aguilar A. Merino-Montiel P. Montiel-Smith S. Meza-Reyes S. Vega-Báez J.L. Puerta A. Fernandes M.X. Padrón J.M. Petreni A. Nocentini A. Supuran C.T. López Ó. Fernández-Bolaños J.G. 2-Aminobenzoxazole-appended coumarins as potent and selective inhibitors of tumour-associated carbonic anhydrases. J. Enzyme Inhib. Med. Chem. 2022 37 1 168 177 10.1080/14756366.2021.1998026 34894971
    [Google Scholar]
  73. Zhao H. Reddy Kusuma B. Blagg B.S.J. Synthesis and evaluation of noviose replacements on novobiocin that manifest antiproliferative activity. ACS Med. Chem. Lett. 2010 1 7 311 315 10.1021/ml100070r 21904660
    [Google Scholar]
  74. Fan Y.L. Huang Z.P. Liu M. Isatin–coumarin hybrids tethered via diethylene glycol: Design, synthesis, and their in vitro antitumor activities. J. Heterocycl. Chem. 2018 55 12 2722 2726 10.1002/jhet.3329
    [Google Scholar]
  75. Patel K.B. Mukherjee S. Bhatt H. Rajani D. Ahmad I. Patel H. Kumari P. Synthesis, docking, and biological investigations of new coumarin-piperazine hybrids as potential antibacterial and anticancer agents. J. Mol. Struct. 2023 1276 134755 10.1016/j.molstruc.2022.134755
    [Google Scholar]
  76. Zwergel C. Czepukojc B. Evain-Bana E. Xu Z. Stazi G. Mori M. Patsilinakos A. Mai A. Botta B. Ragno R. Bagrel D. Kirsch G. Meiser P. Jacob C. Montenarh M. Valente S. Novel coumarin- and quinolinone-based polycycles as cell division cycle 25-A and -C phosphatases inhibitors induce proliferation arrest and apoptosis in cancer cells. Eur. J. Med. Chem. 2017 134 316 333 10.1016/j.ejmech.2017.04.012 28431339
    [Google Scholar]
  77. Ahmed E.Y. Abdel Latif N.A. El-Mansy M.F. Elserwy W.S. Abdelhafez O.M. VEGFR-2 inhibiting effect and molecular modeling of newly synthesized coumarin derivatives as anti-breast cancer agents. Bioorg. Med. Chem. 2020 28 5 115328 10.1016/j.bmc.2020.115328 31992477
    [Google Scholar]
  78. Morris G.M. Huey R. Lindstrom W. Sanner M.F. Belew R.K. Goodsell D.S. Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009 30 16 2785 2791 10.1002/jcc.21256 19399780
    [Google Scholar]
  79. Lill M.A. Danielson M.L. Computer-aided drug design platform using PyMOL. J. Comput. Aided Mol. Des. 2011 25 1 13 19 10.1007/s10822‑010‑9395‑8 21053052
    [Google Scholar]
  80. Durgapal S.D. Soni R. Umar S. Suresh B. Soman S.S. Anticancer activity and DNA binding studies of novel 3,7‐Disubstituted benzopyrones. ChemistrySelect 2017 2 1 147 153 10.1002/slct.201601361
    [Google Scholar]
  81. Gramni L. Vukea N. Chakraborty A. Samson W.J. Dingle L.M.K. Xulu B. de la Mare J-A. Edkins A.L. Booysen I.N. Anticancer evaluation of ruthenium(III) complexes with N-donor ligands tethered to coumarin or uracil moieties. Inorg. Chim. Acta 2019 492 98 107 10.1016/j.ica.2019.04.018
    [Google Scholar]
  82. Wang Z.C. Qin Y.J. Wang P.F. Yang Y.A. Wen Q. Zhang X. Qiu H.Y. Duan Y.T. Wang Y.T. Sang Y.L. Zhu H.L. Sulfonamides containing coumarin moieties selectively and potently inhibit carbonic anhydrases II and IX: Design, synthesis, inhibitory activity and 3D-QSAR analysis. Eur. J. Med. Chem. 2013 66 1 11 10.1016/j.ejmech.2013.04.035 23777898
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575394059250813074806
Loading
/content/journals/mrmc/10.2174/0113895575394059250813074806
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test