Skip to content
2000
Volume 25, Issue 18
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Breast cancer remains the most prevalent cancer among women worldwide, with increasing toxicity and resistance to current therapies posing a serious challenge to healthcare systems. The urgent demand for more effective and safer treatments has highlighted coumarin, a naturally occurring compound with a unique ring structure, due to its promising potential in combating breast cancer. Over the past three decades, numerous synthetic coumarin derivatives have been developed to enhance therapeutic efficacy. This review provides a comprehensive analysis of 18 reported coumarin-based compounds, focusing on their design strategies, mechanisms of action, and structure-activity relationships (SAR). Molecular docking studies targeting key enzymes, including tyrosine kinases, topoisomerases, and serine/threonine kinases, were examined to evaluate binding affinities and interaction patterns. Substitutions at the 3- and 6-positions of the coumarin scaffold were found to impact target binding significantly. Critical interactions, including hydrogen bonding, van der Waals forces, and hydrophobic contacts, were correlated with experimental anticancer activities, offering valuable insights into ligand-protein complex stabilization. Overall, the analysis underscores the potential of coumarin derivatives as promising leads for the rational design of novel anticancer agents with improved efficacy and selectivity.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575394059250813074806
2025-08-27
2026-01-01
Loading full text...

Full text loading...

References

  1. TaklaF.N. BayoumiW.A. El-MesseryS.M. NasrM.N.A. Developing multitarget coumarin based anti-breast cancer agents: Synthesis and molecular modeling study.Sci. Rep.20231311337010.1038/s41598‑023‑40232‑3 37591917
    [Google Scholar]
  2. RashidH.U. Research advances on anticancer activities of matrine and its derivatives: An updated overview.Eur. J. Med. Chem.201916120523810.1016/j.ejmech.2018.10.037 30359819
    [Google Scholar]
  3. GaoF. ZhangX. WangT. XiaoJ. Quinolone hybrids and their anti-cancer activities: An overview.Eur. J. Med. Chem.2019165597910.1016/j.ejmech.2019.01.017 30660827
    [Google Scholar]
  4. SiddiquiA.A. Burden of cancer in the Arab world.Handbook of Healthcare in the Arab World.ChamSpringer202149551910.1007/978‑3‑030‑36811‑1_182
    [Google Scholar]
  5. Cancer control: knowledge into action; World Health Organization.2008Available from: https://www.who.int/publications/i/item/9789241547406
  6. MermerA. Volkan BulbulM. Mervenur KalenderS. KeskinI. TuzunB. Emre EyupogluO. Benzotriazole-oxadiazole hybrid Compounds: Synthesis, anticancer Activity, molecular docking and ADME profiling studies.J. Mol. Liq.202235911926410.1016/j.molliq.2022.119264
    [Google Scholar]
  7. IslamM.S. WangC. ZhengJ. PaudyalN. ZhuY. SunH. The potential role of tubeimosides in cancer prevention and treatment.Eur. J. Med. Chem.201916210912110.1016/j.ejmech.2018.11.001 30439592
    [Google Scholar]
  8. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  9. PiñerosM. MeryL. SoerjomataramI. BrayF. Steliarova-FoucherE. Scaling up the surveillance of childhood cancer: A global roadmap.J. Natl. Cancer Inst.2021113191510.1093/jnci/djaa069 32433739
    [Google Scholar]
  10. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.21834 38572751
    [Google Scholar]
  11. GuptaD. GulianiE. BajajK. Coumarin—synthetic methodologies, pharmacology, and application as natural fluorophore.Top. Curr. Chem.202438221610.1007/s41061‑024‑00462‑z 38722386
    [Google Scholar]
  12. PooleS.K. PooleC.F. Thin-layer chromatographic method for the determination of the principal polar aromatic flavour compounds of the cinnamons of commerce.Analyst1994119111312010.1039/an9941900113
    [Google Scholar]
  13. LuoK. SunJ. ChanJ.Y.W. YangL. WuS. FungK.P. LiuF. Anticancer effects of imperatorin isolated from Angelica dahurica: Induction of apoptosis in HepG2 cells through both death-receptor- and mitochondria-mediated pathways.Chemotherapy201157644945910.1159/000331641 22189406
    [Google Scholar]
  14. BourgaudF. HehnA. LarbatR. DoerperS. GontierE. KellnerS. MaternU. Biosynthesis of coumarins in plants: A major pathway still to be unravelled for cytochrome P450 enzymes.Phytochem. Rev.200652-329330810.1007/s11101‑006‑9040‑2
    [Google Scholar]
  15. PatilA.D. FreyerA.J. EgglestonD.S. HaltiwangerR.C. BeanM.F. TaylorP.B. CaranfaM.J. BreenA.L. BartusH.R. JohnsonR.K. The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn.J. Med. Chem.199336264131413810.1021/jm00078a001 7506311
    [Google Scholar]
  16. HodákK. JakesováV. DadákV. On the antibiotic effects of natural coumarins. VI. The relation of structure to the antibacterial effects of some natural coumarins and the neutralization of such effects.Cesk. Farm.19671628691 6044315
    [Google Scholar]
  17. AsthaA. RaoU.S.M. AshawatM.S. AroraR. ZhenL.W. A review on design of coumarin hybrids in the treatment of breast cancer.Res. J. Pharm. Technol.202417104934494010.52711/0974‑360X.2024.00759
    [Google Scholar]
  18. ChenS. ChoM. KarlsbergK. ZhouD. YuanY.C. Biochemical and biological characterization of a novel anti-aromatase coumarin derivative.J. Biol. Chem.200427946480714807810.1074/jbc.M406847200 15358790
    [Google Scholar]
  19. MusaM. CooperwoodJ. KhanM.O. A review of coumarin derivatives in pharmacotherapy of breast cancer.Curr. Med. Chem.200815262664267910.2174/092986708786242877 18991629
    [Google Scholar]
  20. MoyerJ.D. BarbacciE.G. IwataK.K. ArnoldL. BomanB. CunninghamA. DiOrioC. DotyJ. MorinM.J. MoyerM.P. NeveuM. PollackV.A. PustilnikL.R. ReynoldsM.M. SloanD. ThelemanA. MillerP. Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase.Cancer Res.1997572148384848 9354447
    [Google Scholar]
  21. BhatiaR. RawalR.K. Coumarin hybrids: Promising scaffolds in the treatment of breast cancer.Mini Rev. Med. Chem.201919171443145810.2174/1389557519666190308122509 30854961
    [Google Scholar]
  22. KoleyM. HanJ. SoloshonokV.A. MojumderS. JavahershenasR. MakaremA. Latest developments in coumarin-based anticancer agents: Mechanism of action and structure–activity relationship studies.RSC Med. Chem.2024151105410.1039/D3MD00511A 38283214
    [Google Scholar]
  23. ShahbazM. PerweenA. MomalU. ImranM. Ul HassanM.H. NaeemH. MujtabaA. HussainM. AlsagabyS.A. Al AbdulmonemW. AbdelgawadM.A. El-GhorabA.H. SelimS. MostafaE.M. Al JbawiE. Recent perspectives on anticancer potential of coumarin against different human malignancies: An updated review.Food Sci. Nutr.2025131469610.1002/fsn3.4696 39803273
    [Google Scholar]
  24. SinghA. SinghK. KaurK. SinghA. SharmaA. KaurK. KaurJ. KaurG. KaurU. KaurH. SinghP. BediP.M.S. Coumarin as an elite scaffold in anti-breast cancer drug development: Design strategies, mechanistic insights, and structure–activity relationships.Biomedicines2024126119210.3390/biomedicines12061192 38927399
    [Google Scholar]
  25. WuY. XuJ. LiuY. ZengY. WuG. A review on anti-tumor mechanisms of coumarins.Front. Oncol.20201059285310.3389/fonc.2020.592853 33344242
    [Google Scholar]
  26. AnnunziataF. PinnaC. DallavalleS. TamboriniL. PintoA. An overview of coumarin as a versatile and readily accessible scaffold with broad-ranging biological activities.Int. J. Mol. Sci.20202113461810.3390/ijms21134618 32610556
    [Google Scholar]
  27. FotopoulosI. Hadjipavlou-LitinaD. Hybrids of coumarin derivatives as potent and multifunctional bioactive agents: A review.Med. Chem.202016327230610.2174/1573406415666190416121448 31038071
    [Google Scholar]
  28. KaurM. Coumarin: A promising scaffold for anticancer agents.Anticancer. Agents Med. Chem.20151581032104810.2174/1871520615666150101125503 25553437
    [Google Scholar]
  29. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The protein data bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.235 10592235
    [Google Scholar]
  30. Sashidhara KoneniV. Coumarin-chalcones as anticancer agents.US Patent 8815940B22014
  31. HsiehH-P. Coumarin compounds and their use for treating cancer.US Patent 8058427B22011
  32. SunJ.I.E. Application of 3-aryl coumarin compound, anti-cancer sensitization composition and anti-cancer composition. CN Patent 113797195B2021
  33. NanF. Dicoumarol compound, as well as preparation method and application thereof.CN Patent 102558049B2015
  34. ChenY. GuoY. ChenX. Coumarin derivative containing 7- substituent and 8-substituent, preparation method and uses thereof.CN Patent 109111419A2019
  35. RuanBanfengStilbene-like Coumarin Derivatives and Their Preparation Methods and Applications. CN Patent 104892556B2017
  36. IikuraH. Coumarin derivative having antitumor activity.US Patent 7897792B22011
  37. Della ValleF. RomeoA. Coumarin derivatives, pharmaceutical compositions containing the same, and the use thereof in the treatment of cancer.US Patent 4737517A1988
  38. Di LucreziaR. Coumarin derivatives, processes for their preparation and uses thereof for the treatment of cancer.US Patent 20200291011A12020
  39. JiH. Coumarin acrolein derivative, preparation method thereof and application of coumarin acrolein derivative in preparation of antitumor drugs.CN Patent 116375672A2023
  40. Carrico-MonizD. Coumarin derivatives for cancer therapy. US Patent 9403791B12016
  41. LiG. DengD. Monoterpene coumarin derivative nano preparation as well as preparation method and application thereof.CN Patent 117653603A2024
  42. PanY. Application of coumarin-dithiocarbamate derivative in preparation of antitumor drugs.CN Patent 112426420A2021
  43. MaJ. Coumarin type derivative and application thereof.CN Patent 109232498A2019
  44. XiangH.U.A. 4-arylamine-coumarin derivative and preparing method and medical application thereof.CN Patent 105801543A2016
  45. BryanM.C. BurdickD.J. ChanB.K. ChenY. ClausenS. DotsonJ. EigenbrotC. ElliottR. HananE.J. HealdR. JacksonP. LaH. LainchburyM. MalekS. MannS.E. PurkeyH.E. SchaeferG. SchmidtS. SewardE. SiderisS. WangS. YenI. YuC. HeffronT.P. Pyridones as highly selective, noncovalent inhibitors of T790M double mutants of EGFR.ACS Med. Chem. Lett.20167110010410.1021/acsmedchemlett.5b00428 26819674
    [Google Scholar]
  46. ErikssonM. UhlinU. RamaswamyS. EkbergM. RegnströmK. SjöbergB.M. EklundH. Binding of allosteric effectors to ribonucleotide reductase protein R1: Reduction of active-site cysteines promotes substrate binding.Structure1997581077109210.1016/S0969‑2126(97)00259‑1 9309223
    [Google Scholar]
  47. BramsonH.N. CoronaJ. DavisS.T. DickersonS.H. EdelsteinM. FryeS.V. GampeR.T. HarrisP.A. HassellA. HolmesW.D. HunterR.N. LackeyK.E. LovejoyB. LuzzioM.J. MontanaV. RocqueW.J. RusnakD. ShewchukL. VealJ.M. WalkerD.H. KuyperL.F. Oxindole-based inhibitors of cyclin-dependent kinase 2 (CDK2): Design, synthesis, enzymatic activities, and X-ray crystallographic analysis.J. Med. Chem.200144254339435810.1021/jm010117d 11728181
    [Google Scholar]
  48. Caradoc-DaviesT.T. CutfieldS.M. LamontI.L. CutfieldJ.F. Crystal structures of Escherichia coli uridine phosphorylase in two native and three complexed forms reveal basis of substrate specificity, induced conformational changes and influence of potassium.J. Mol. Biol.2004337233735410.1016/j.jmb.2004.01.039 15003451
    [Google Scholar]
  49. LeeD. LongS.A. AdamsJ.L. ChanG. VaidyaK.S. FrancisT.A. KiklyK. WinklerJ.D. SungC.M. DebouckC. RichardsonS. LevyM.A. DeWolfW.E. KellerP.M. TomaszekT. HeadM.S. RyanM.D. HaltiwangerR.C. LiangP.H. JansonC.A. McDevittP.J. JohansonK. ConchaN.O. ChanW. Abdel-MeguidS.S. BadgerA.M. LarkM.W. NadeauD.P. SuvaL.J. GowenM. NuttallM.E. Potent and selective nonpeptide inhibitors of caspases 3 and 7 inhibit apoptosis and maintain cell functionality.J. Biol. Chem.200027521160071601410.1074/jbc.275.21.16007 10821855
    [Google Scholar]
  50. ShiauA.K. BarstadD. LoriaP.M. ChengL. KushnerP.J. AgardD.A. GreeneG.L. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen.Cell199895792793710.1016/S0092‑8674(00)81717‑1 9875847
    [Google Scholar]
  51. SabiniE. OrtS. MonnerjahnC. KonradM. LavieA. Structure of human dCK suggests strategies to improve anticancer and antiviral therapy.Nat. Struct. Mol. Biol.200310751351910.1038/nsb942 12808445
    [Google Scholar]
  52. YoshidaT. OkiH. DoiM. FukudaS. YuzurihaT. TabataR. IshimotoK. KawaharaK. OhkuboT. MiyachiH. DoiT. TachibanaK. Structural basis for PPARα activation by 1H-pyrazolo-[3,4-b]pyridine Derivatives.Sci. Rep.2020101762310.1038/s41598‑020‑64527‑x 32376995
    [Google Scholar]
  53. IshikawaT. SetoM. BannoH. KawakitaY. OoruiM. TaniguchiT. OhtaY. TamuraT. NakayamaA. MikiH. KamiguchiH. TanakaT. HabukaN. SogabeS. YanoJ. AertgeertsK. KamiyamaK. Design and synthesis of novel human epidermal growth factor receptor 2 (HER2)/epidermal growth factor receptor (EGFR) dual inhibitors bearing a pyrrolo[3,2-d]pyrimidine scaffold.J. Med. Chem.201154238030805010.1021/jm2008634 22003817
    [Google Scholar]
  54. SippelK.H. RobbinsA.H. DomsicJ. GenisC. Agbandje-McKennaM. McKennaR. High-resolution structure of human carbonic anhydrase II complexed with acetazolamide reveals insights into inhibitor drug design.Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.2009651099299510.1107/S1744309109036665 19851004
    [Google Scholar]
  55. DudutienėV. ZubrienėA. SmirnovA. GylytėJ. TimmD. ManakovaE. GražulisS. MatulisD. 4-Substituted-2,3,5,6-tetrafluorobenzenesulfonamides as inhibitors of carbonic anhydrases I, II, VII, XII, and XIII.Bioorg. Med. Chem.20132172093210610.1016/j.bmc.2013.01.008 23394791
    [Google Scholar]
  56. NormanM.H. LiuL. LeeM. XiN. FellowsI. D’AngeloN.D. DominguezC. RexK. BellonS.F. KimT.S. DussaultI. Structure-based design of novel class II c-Met inhibitors: 1. Identification of pyrazolone-based derivatives.J. Med. Chem.20125551858186710.1021/jm201330u 22320343
    [Google Scholar]
  57. WuC.C. LiT.K. FarhL. LinL.Y. LinT.S. YuY.J. YenT.J. ChiangC.W. ChanN.L. Structural basis of type II topoisomerase inhibition by the anticancer drug etoposide.Science2011333604145946210.1126/science.1204117 21778401
    [Google Scholar]
  58. EswaramoorthyS. KumaranD. SwaminathanS. Crystallographic evidence for doxorubicin binding to the receptor-binding site in Clostridium botulinum neurotoxin B.Acta Crystallogr. D Biol. Crystallogr.200157111743174610.1107/S0907444901013531 11679763
    [Google Scholar]
  59. PiduguL.S.M. MbimbaJ.C.E. AhmadM. PozharskiE. SausvilleE.A. EmadiA. TothE.A. A direct interaction between NQO1 and a chemotherapeutic dimeric naphthoquinone.BMC Struct. Biol.201616111010.1186/s12900‑016‑0052‑x 26822308
    [Google Scholar]
  60. UnderwoodK.W. ParrisK.D. FedericoE. MosyakL. CzerwinskiR.M. ShaneT. TaylorM. SvensonK. LiuY. HsiaoC.L. WolfromS. MaguireM. MalakianK. TelliezJ.B. LinL.L. KrizR.W. SeehraJ. SomersW.S. StahlM.L. Catalytically active MAP KAP kinase 2 structures in complex with staurosporine and ADP reveal differences with the autoinhibited enzyme.Structure200311662763610.1016/S0969‑2126(03)00092‑3 12791252
    [Google Scholar]
  61. VaarlaK. KarnewarS. PanugantiD. PeddiS.R. VedulaR.R. MangaV. KotamrajuS. 3‐(2‐(5‐Amino‐3‐aryl‐1 H ‐pyrazol‐1‐yl) thiazol‐4‐yl)‐2 H ‐chromen‐2‐ones as potential anticancer agents: Synthesis, anticancer activity evaluation and molecular docking studies.ChemistrySelect20194144324433010.1002/slct.201900077
    [Google Scholar]
  62. PaulK. BindalS. LuxamiV. Synthesis of new conjugated coumarin–benzimidazole hybrids and their anticancer activity.Bioorg. Med. Chem. Lett.201323123667367210.1016/j.bmcl.2012.12.071 23642480
    [Google Scholar]
  63. MorsyS.A. FarahatA.A. NasrM.N.A. TantawyA.S. Synthesis, molecular modeling and anticancer activity of new coumarin containing compounds.Saudi Pharm. J.201725687388310.1016/j.jsps.2017.02.003 28951673
    [Google Scholar]
  64. PavićK. BeusM. PojeG. UzelacL. KraljM. RajićZ. Synthesis and biological evaluation of harmirins, novel harmine–coumarin hybrids as potential anticancer agents.Molecules20212621649010.3390/molecules26216490 34770906
    [Google Scholar]
  65. RawatA. Vijaya Bhaskar ReddyA. Recent advances on anticancer activity of coumarin derivatives.Eur. J. Med. Chem. Rep.2022510003810.1016/j.ejmcr.2022.100038
    [Google Scholar]
  66. FayedE.A. SabourR. HarrasM.F. MehanyA.B.M. Design, synthesis, biological evaluation and molecular modeling of new coumarin derivatives as potent anticancer agents.Med. Chem. Res.20192881284129710.1007/s00044‑019‑02373‑x
    [Google Scholar]
  67. MusaM.A. KhanM.F. CooperwoodJ.S. Synthesis and antiproliferative activity of coumarin-estrogen conjugates against breast cancer cell lines.Lett. Drug Des. Discov.20096213313810.2174/157018009787582624 20556210
    [Google Scholar]
  68. LiuM.M. ChenX.Y. HuangY.Q. FengP. GuoY.L. YangG. ChenY. Hybrids of phenylsulfonylfuroxan and coumarin as potent antitumor agents.J. Med. Chem.201457229343935610.1021/jm500613m 25350923
    [Google Scholar]
  69. XiaoC.F. TaoL.Y. SunH.Y. WeiW. ChenY. FuL.W. ZouY. Design, synthesis and antitumor activity of a series of novel coumarin–stilbenes hybrids, the 3-arylcoumarins.Chin. Chem. Lett.201021111295129810.1016/j.cclet.2010.04.034
    [Google Scholar]
  70. SashidharaK.V. AvulaS.R. SharmaK. PalnatiG.R. BathulaS.R. Discovery of coumarin–monastrol hybrid as potential antibreast tumor-specific agent.Eur. J. Med. Chem.20136012012710.1016/j.ejmech.2012.11.044 23287057
    [Google Scholar]
  71. RubabL. AfrozS. AhmadS. HussainS. NawazI. IrfanA. BatoolF. Kotwica-MojzychK. MojzychM. An update on synthesis of coumarin sulfonamides as enzyme inhibitors and anticancer agents.Molecules2022275160410.3390/molecules27051604 35268704
    [Google Scholar]
  72. Fuentes-AguilarA. Merino-MontielP. Montiel-SmithS. Meza-ReyesS. Vega-BáezJ.L. PuertaA. FernandesM.X. PadrónJ.M. PetreniA. NocentiniA. SupuranC.T. LópezÓ. Fernández-BolañosJ.G. 2-Aminobenzoxazole-appended coum-arins as potent and selective inhibitors of tumour-associated carb-onic anhydrases.J. Enzyme Inhib. Med. Chem.202237116817710.1080/14756366.2021.1998026 34894971
    [Google Scholar]
  73. ZhaoH. Reddy KusumaB. BlaggB.S.J. Synthesis and evaluation of noviose replacements on novobiocin that manifest antiproliferative activity.ACS Med. Chem. Lett.20101731131510.1021/ml100070r 21904660
    [Google Scholar]
  74. FanY.L. HuangZ.P. LiuM. Isatin–coumarin hybrids tethered via diethylene glycol: Design, synthesis, and their in vitro antitumor activities.J. Heterocycl. Chem.201855122722272610.1002/jhet.3329
    [Google Scholar]
  75. PatelK.B. MukherjeeS. BhattH. RajaniD. AhmadI. PatelH. KumariP. Synthesis, docking, and biological investigations of new coumarin-piperazine hybrids as potential antibacterial and anticancer agents.J. Mol. Struct.2023127613475510.1016/j.molstruc.2022.134755
    [Google Scholar]
  76. ZwergelC. CzepukojcB. Evain-BanaE. XuZ. StaziG. MoriM. PatsilinakosA. MaiA. BottaB. RagnoR. BagrelD. KirschG. MeiserP. JacobC. MontenarhM. ValenteS. Novel coumarin- and quinolinone-based polycycles as cell division cycle 25-A and -C phosphatases inhibitors induce proliferation arrest and apoptosis in cancer cells.Eur. J. Med. Chem.201713431633310.1016/j.ejmech.2017.04.012 28431339
    [Google Scholar]
  77. AhmedE.Y. Abdel LatifN.A. El-MansyM.F. ElserwyW.S. AbdelhafezO.M. VEGFR-2 inhibiting effect and molecular modeling of newly synthesized coumarin derivatives as anti-breast cancer agents.Bioorg. Med. Chem.202028511532810.1016/j.bmc.2020.115328 31992477
    [Google Scholar]
  78. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.21256 19399780
    [Google Scholar]
  79. LillM.A. DanielsonM.L. Computer-aided drug design platform using PyMOL.J. Comput. Aided Mol. Des.2011251131910.1007/s10822‑010‑9395‑8 21053052
    [Google Scholar]
  80. DurgapalS.D. SoniR. UmarS. SureshB. SomanS.S. Anticancer activity and DNA binding studies of novel 3,7‐Disubstituted benzopyrones.ChemistrySelect20172114715310.1002/slct.201601361
    [Google Scholar]
  81. GramniL. VukeaN. ChakrabortyA. SamsonW.J. DingleL.M.K. XuluB. de la MareJ-A. EdkinsA.L. BooysenI.N. Anticancer evaluation of ruthenium(III) complexes with N-donor ligands tethered to coumarin or uracil moieties.Inorg. Chim. Acta20194929810710.1016/j.ica.2019.04.018
    [Google Scholar]
  82. WangZ.C. QinY.J. WangP.F. YangY.A. WenQ. ZhangX. QiuH.Y. DuanY.T. WangY.T. SangY.L. ZhuH.L. Sulfonamides containing coumarin moieties selectively and potently inhibit carbonic anhydrases II and IX: Design, synthesis, inhibitory activity and 3D-QSAR analysis.Eur. J. Med. Chem.20136611110.1016/j.ejmech.2013.04.035 23777898
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575394059250813074806
Loading
/content/journals/mrmc/10.2174/0113895575394059250813074806
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test