Skip to content
2000
image of Triterpenoid Compounds and Their Derivatives: Emerging Pharmacological Agents for Arthritis Treatment

Abstract

Arthritis has become a global public health issue due to its diverse risk factors and high prevalence. Therefore, there is a demand for more effective drugs to improve these situations. Triterpenoids have attracted the interest of researchers because of their broad spectrum of biological activities and pharmacological effects. The aim of this review is to provide an updated overview of the potential of triterpenoids and of their derivatives as therapeutic agents against Rheumatoid Arthritis (RA) and Osteoarthritis (OA), based on their anti-inflammatory and immunomodulatory properties. This review discusses the chemical and pharmacological properties of triterpenoids and their derivatives, focusing on the different mechanisms by which this class of compounds achieves therapeutic benefits in arthritis. The conclusions indicate that triterpenoids and their derivatives have a favorable potential therapeutic effect on arthritis.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575389522250825063702
2025-08-29
2025-09-21
Loading full text...

Full text loading...

References

  1. Faustino C. Pinheiro L. Duarte N. Triterpenes as potential drug candidates for rheumatoid arthritis treatment. Life 2023 13 7 1514 10.3390/life13071514 37511889
    [Google Scholar]
  2. Yin Q. Xiang L. Han X. Zhang Y. Lyu R. Yuan L. Chen S. The evolutionary advantage of artemisinin production by Artemisia annua. Trends Plant Sci. 2025 30 2 213 226 10.1016/j.tplants.2024.09.006 39362811
    [Google Scholar]
  3. Cheng L. Ji T. Zhang M. Fang B. Recent advances in squalene: Biological activities, sources, extraction, and delivery systems. Trends Food Sci. Technol. 2024 146 104392 10.1016/j.tifs.2024.104392
    [Google Scholar]
  4. Haque M.A. Nath N.D. Johnston T.V. Haruna S. Ahn J. Ovissipour R. Ku S. Harnessing biotechnology for penicillin production: Opportunities and environmental considerations. Sci. Total Environ. 2024 946 174236 10.1016/j.scitotenv.2024.174236 38942308
    [Google Scholar]
  5. Zhao Y. Miettinen K. Kampranis S.C. Celastrol: A century-long journey from the isolation to the biotechnological production and the development of an antiobesity drug. Curr. Opin. Plant Biol. 2024 81 102615 10.1016/j.pbi.2024.102615 39128271
    [Google Scholar]
  6. Zhang J. Jiang P. Wang S. Li M. Hao Z. Guan W. Pan J. Wu J. Zhang Y. Li H. Chen L. Yang B. Liu Y. Recent advances in the natural product analogues for the treatment of neurodegenerative diseases. Bioorg. Chem. 2024 153 107819 10.1016/j.bioorg.2024.107819 39276492
    [Google Scholar]
  7. Wang M. Li F. Wang Z. Lv L. Liu W. Research progress of natural product-conjugated platinum and gold complexes as potential antitumor agents. Eur. J. Med. Chem. 2024 280 116956 10.1016/j.ejmech.2024.116956 39413444
    [Google Scholar]
  8. Li Y. Wang J. Li L. Song W. Li M. Hua X. Wang Y. Yuan J. Xue Z. Natural products of pentacyclic triterpenoids: from discovery to heterologous biosynthesis. Nat. Prod. Rep. 2023 40 8 1303 1353 10.1039/D2NP00063F 36454108
    [Google Scholar]
  9. Lu J. Yan S. Xue Z. Biosynthesis and functions of triterpenoids in cereals. J. Adv. Res. 2025 71 155 171 10.1016/j.jare.2024.05.021 38788922
    [Google Scholar]
  10. Osbourn A. Goss R.J.M. Field R.A. The saponins – polar isoprenoids with important and diverse biological activities. Nat. Prod. Rep. 2011 28 7 1261 1268 10.1039/c1np00015b 21584304
    [Google Scholar]
  11. Wang S. Meng D. Feng M. Li C. Wang Y. Efficient plant triterpenoids synthesis in Saccharomyces cerevisiae: From mechanisms to engineering strategies. ACS Synth. Biol. 2024 13 4 1059 1076 10.1021/acssynbio.4c00061 38546129
    [Google Scholar]
  12. Mathur A. Singh A. Hussain Y. Mishra A. Meena A. Mishra N. Luqman S. Regulating pri/pre-microRNA up/down expressed in cancer proliferation, angiogenesis and metastasis using selected potent triterpenoids. Int. J. Biol. Macromol. 2024 257 Pt 1 127945 10.1016/j.ijbiomac.2023.127945 37951434
    [Google Scholar]
  13. Mu M. Zhou W. Arcot Y. Cisneros-Zevallos L. Akbulut M. Edible superhydrophobic coating derived from triterpenoid maslinic acid for bacterial antifouling and enhanced fresh produce food safety. Food Packag. Shelf Life 2024 43 101290 10.1016/j.fpsl.2024.101290
    [Google Scholar]
  14. Li Y. Hao N. Ye S. Hu Z. Zhao L. Qi Y. Tian X. New triterpenoid saponins from Clematis lasiandra and their mode of action against pea aphids Acyrthosiphon pisum. Ind. Crops Prod. 2022 187 115517 10.1016/j.indcrop.2022.115517
    [Google Scholar]
  15. Chen R. Li Y. Zhang N. Zhang L. Zhang P. Wu T. Anti-inflammatory oleanane triterpenoids with mono-, di-, and tri-palmitoyl chains from the stamen of Nelumbo nucifera Gaertn. Ind. Crops Prod. 2024 216 118698 10.1016/j.indcrop.2024.118698
    [Google Scholar]
  16. Nag A. Dasgupta A. Sengupta S. Lai T.K. Acharya K. An in-silico pharmacophore-based molecular docking study to evaluate the inhibitory potentials of novel fungal triterpenoid Astrakurkurone analogues against a hypothetical mutated main protease of SARS-CoV-2 virus. Comput. Biol. Med. 2023 152 106433 10.1016/j.compbiomed.2022.106433 36565483
    [Google Scholar]
  17. Xia R.F. Wei Y.R. Zhang C.Q. Huang Y. Chen M.S. Yuan X.Y. Zha H.J. Lai K.D. Xia X. Wan L.S. Structurally diverse triterpenoids with antibacterial activities from Euphorbia humifusa. Bioorg. Chem. 2024 153 107915 10.1016/j.bioorg.2024.107915 39471543
    [Google Scholar]
  18. Lee J. Lim J.H. Jung G.Y. Kang J. Jo I. Kang K. Kim J.H. Kim B.S. Yang H. Triterpenoid saponins from Camellia sinensis roots with cytotoxic and immunomodulatory effects. Phytochemistry 2023 212 113688 10.1016/j.phytochem.2023.113688 37121294
    [Google Scholar]
  19. Coghi P. Ng J.P.L. Kadioglu O. Law B.Y.K. Qiu A.C. Saeed M.E.M. Chen X. Ip C.K. Efferth T. Liu L. Wong V.K.W. Synthesis, computational docking and biological evaluation of celastrol derivatives as dual inhibitors of SERCA and P-glycoprotein in cancer therapy. Eur. J. Med. Chem. 2021 224 113676 10.1016/j.ejmech.2021.113676 34256125
    [Google Scholar]
  20. Xie Y. Kuan H. Wei Q. Gianoncelli A. Ribaudo G. Coghi P. (2R,4aS,6aS,12bR,14aS,14bR)10-Hydroxy-N-(4-((6-methoxyqui-nolin-8-yl)amino)pentyl)-2,4a,6a,9,12b,14a-hexamethyl-11-oxo-1,2,3,4,4a,5,6,6a,11,12b,13,14,14a,14b-tetradecahydropicene-2-carboxamide. Molbank 2023 2023 3 M1716 10.3390/M1716
    [Google Scholar]
  21. Ng J.P.L. Han Y. Yang L.J. Birkholtz L.M. Coertzen D. Wong H.N. Haynes R.K. Coghi P. Wong V.K.W. Antimalarial and antitumour activities of the steroidal quinone-methide celastrol and its combinations with artemiside, artemisone and methylene blue. Front. Pharmacol. 2022 13 988748 10.3389/fphar.2022.988748 36120293
    [Google Scholar]
  22. Takeuchi R. Ogihara K. Fujimoto J. Sato K. Mase N. Yoshimura K. Harada S. Narumi T. Design, synthesis, and bio-evaluation of novel triterpenoid derivatives as anti-HIV-1 compounds. Bioorg. Med. Chem. Lett. 2022 69 128768 10.1016/j.bmcl.2022.128768 35513221
    [Google Scholar]
  23. Wang M.C. Kong W.Z. Yang G.C. Wang C.H. Zhang L.H. Gao J.M. Zhang X.Y. Structure, anti-inflammatory and anti-bacterial activities of novel pentacyclic triterpenoids and other constituents from the leaves of Pittosporum elevaticostatum. Fitoterapia 2024 177 106142 10.1016/j.fitote.2024.106142 39067487
    [Google Scholar]
  24. Huang Y. Hou P. Pan L.W. Liang X.Q. Ren C.Y. Peng L.T. Gan C.Q. Yang R.Y. Xu W.F. Li J. Zhang Y.J. Oleanane-type triterpenoids from Sabia limoniacea and their anti-inflammatory activities. Bioorg. Chem. 2024 151 107683 10.1016/j.bioorg.2024.107683 39121595
    [Google Scholar]
  25. John R. Dalal B. Shankarkumar A. Devarajan P.V. Innovative Betulin Nanosuspension exhibits enhanced anticancer activity in a Triple Negative Breast Cancer Cell line and Zebrafish angiogenesis model. Int. J. Pharm. 2021 600 120511 10.1016/j.ijpharm.2021.120511 33766639
    [Google Scholar]
  26. Li N. Xu M. Zhang L. Lei Z. Chen C. Zhang T. Chen L. Sun J. Discovery of novel celastrol–imidazole derivatives with anticancer activity in vitro and in vivo. J. Med. Chem. 2022 65 6 4578 4589 10.1021/acs.jmedchem.1c01293 35238566
    [Google Scholar]
  27. Mohapatra P. Madhulika S. Behera S. Singh P. Sa P. Prasad P. Swain R.K. Sahoo S.K. Nimbolide-based nanomedicine inhibits breast cancer stem-like cells by epigenetic reprogramming of DNMTs-SFRP1-Wnt/β-catenin signaling axis. Mol. Ther. Nucleic Acids 2023 34 102031 10.1016/j.omtn.2023.102031 37771911
    [Google Scholar]
  28. Wang W.Y. Wu W.Y. Li A.L. Liu Q.S. Sun Y. Gu W. Synthesis, anticancer evaluation and mechanism studies of novel indolequinone derivatives of ursolic acid. Bioorg. Chem. 2021 109 104705 10.1016/j.bioorg.2021.104705 33618252
    [Google Scholar]
  29. Zhao J. Xu J. Zhang Z. Shao Z. Meng D. Barrigenol-like triterpenoid saponins from the husks of Xanthoceras sorbifolia bunge and their anti-inflammatory activity by inhibiting COX-2 and iNOS expression. Phytochemistry 2022 204 113430 10.1016/j.phytochem.2022.113430 36108987
    [Google Scholar]
  30. Yao Y. Fan S. Fan Y. Shen X. Chai X. Pi J. Huang X. Shao Y. Zhou Z. Zhao Y. Jin H. Intratracheal delivery of macrophage targeted Celastrol-loaded PLGA nanoparticles for enhanced anti-inflammatory efficacy in acute lung injury mice. Eur. J. Pharm. Biopharm. 2024 204 114511 10.1016/j.ejpb.2024.114511 39307441
    [Google Scholar]
  31. El-Sherbiny M. Eisa N.H. Abo El-Magd N.F. Elsherbiny N.M. Said E. Khodir A.E. Anti-inflammatory/anti-apoptotic impact of betulin attenuates experimentally induced ulcerative colitis: An insight into TLR4/NF-kB/caspase signalling modulation. Environ. Toxicol. Pharmacol. 2021 88 103750 10.1016/j.etap.2021.103750 34597787
    [Google Scholar]
  32. Zhao J. Zheng H. Sui Z. Jing F. Quan X. Zhao W. Liu G. Ursolic acid exhibits anti-inflammatory effects through blocking TLR4-MyD88 pathway mediated by autophagy. Cytokine 2019 123 154726 10.1016/j.cyto.2019.05.013 31302461
    [Google Scholar]
  33. Yang M. Mao L. Yang X. Xu X. Tang C. Wei W. Chen J. Ginsenoside compound K exerts anti-inflammatory effects through transcriptional activation and transcriptional inhibition of glucocorticoid receptor in rheumatoid arthritis fibroblast-like synoviocytes. 2023
    [Google Scholar]
  34. Wang Z. Zhang H. Qi C. Guo H. Jiao X. Yan J. Wang Y. Li Q. Zhao M. Guo X. Wan B. Li X. Ursolic acid ameliorates DNCB-induced atopic dermatitis-like symptoms in mice by regulating TLR4/NF-κB and Nrf2/HO-1 signaling pathways. Int. Immunopharmacol. 2023 118 110079 10.1016/j.intimp.2023.110079 36996741
    [Google Scholar]
  35. Lu X. Wang Y. Guo W. Zhang Z. Hu X. Nie T. Yang X. Li C. Wang X. Li X. Lu Y. Li G. Zhang Y. Sun L. Pang J. You X. Antibacterial activity of an ftsz inhibitor celastrol and its synergistic effect with vancomycin against enterococci In Vitro and In Vivo. Microbiol. Spectr. 2023 11 1 e03699 e22 10.1128/spectrum.03699‑22 36622182
    [Google Scholar]
  36. Sun Y. Li X. Wang Y. Shang X. Huang W. Ang S. Li D. Wong W.L. Hong W.D. Zhang K. Wu P. In vitro and in vivo evaluation of novel ursolic acid derivatives as potential antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA). Bioorg. Chem. 2025 154 107986 10.1016/j.bioorg.2024.107986 39615282
    [Google Scholar]
  37. Zhang J. Sun Y. Wang Y. Lu M. He J. Liu J. Chen Q. Zhang X. Zhou F. Wang G. Sun X. Non-antibiotic agent ginsenoside 20(S)-Rh2 enhanced the antibacterial effects of ciprofloxacin in vitro and in vivo as a potential NorA inhibitor. Eur. J. Pharmacol. 2014 740 277 284 10.1016/j.ejphar.2014.07.020 25054686
    [Google Scholar]
  38. Pooladanda V. Thatikonda S. Sunnapu O. Tiwary S. Vemula P.K. Talluri M.V.N.K. Godugu C. iRGD conjugated nimbolide liposomes protect against endotoxin induced acute respiratory distress syndrome. Nanomedicine 2021 33 102351 10.1016/j.nano.2020.102351 33418136
    [Google Scholar]
  39. Kang S. Song M.J. Min H. Antiviral activity of ginsenoside Rg3 isomers against gammaherpesvirus through inhibition of p38- and JNK-associated pathways. J. Funct. Foods 2018 40 219 228 10.1016/j.jff.2017.11.011
    [Google Scholar]
  40. Yu J.S. Tseng C.K. Lin C.K. Hsu Y.C. Wu Y.H. Hsieh C.L. Lee J.C. Celastrol inhibits dengue virus replication via up-regulating type I interferon and downstream interferon-stimulated responses. Antiviral Res. 2017 137 49 57 10.1016/j.antiviral.2016.11.010 27847245
    [Google Scholar]
  41. Zhang W. Jiang H. Yang J. Jin M. Du Y. Sun Q. Cao L. Xu H. Safety assessment and antioxidant evaluation of betulin by LC-MS combined with free radical assays. Anal. Biochem. 2019 587 113460 10.1016/j.ab.2019.113460 31563442
    [Google Scholar]
  42. Divya T. Dineshbabu V. Soumyakrishnan S. Sureshkumar A. Sudhandiran G. Celastrol enhances Nrf2 mediated antioxidant enzymes and exhibits anti-fibrotic effect through regulation of collagen production against bleomycin-induced pulmonary fibrosis. Chem. Biol. Interact. 2016 246 52 62 10.1016/j.cbi.2016.01.006 26768587
    [Google Scholar]
  43. Samy B.A. Raman K. Velayutham S. Senthilkumar N. Thirumalaivasan N. Kanagaraj K. Pothu R. Boddula R. Radwan A.B. Al-Qahtani N. Natural product extract fractions as potential arthritis treatments: A detailed analysis using in-silico, in-vivo, and in-vitro methods. Int. Immunopharmacol. 2025 144 113595 10.1016/j.intimp.2024.113595 39580856
    [Google Scholar]
  44. Misra D.P. Clinical manifestations of rheumatoid arthritis, including comorbidities, complications, and long-term follow-up. Best Pract. Res. Clin. Rheumatol. 2025 39 1 102020 10.1016/j.berh.2024.102020 39489658
    [Google Scholar]
  45. Sharma S.D. Leung S.H. Viatte S. Genetics of rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol. 2024 38 4 101968 10.1016/j.berh.2024.101968 38955657
    [Google Scholar]
  46. Zeng L. Shi Y. Subatijang P. Zhang L. Gao J. Sun R. Jiang K. Global research trends and hotspots in rheumatoid arthritis joint replacement:Bibliometric analysis and visualization study. J. Orthop. 2025 61 72 84 10.1016/j.jor.2024.09.017 39430126
    [Google Scholar]
  47. Jang S. Kwon E.J. Lee J.J. Rheumatoid arthritis: Pathogenic roles of diverse immune cells. Int. J. Mol. Sci. 2022 23 2 905 10.3390/ijms23020905 35055087
    [Google Scholar]
  48. Gravallese E.M. Firestein G.S. Rheumatoid arthritis — Common origins, divergent mechanisms. N. Engl. J. Med. 2023 388 6 529 542 10.1056/NEJMra2103726 36780677
    [Google Scholar]
  49. Martel-Pelletier J. Barr A.J. Cicuttini F.M. Conaghan P.G. Cooper C. Goldring M.B. Goldring S.R. Jones G. Teichtahl A.J. Pelletier J.P. Osteoarthritis. Nat. Rev. Dis. Primers 2016 2 1 16072 10.1038/nrdp.2016.72 27734845
    [Google Scholar]
  50. Glyn-Jones S. Palmer A.J.R. Agricola R. Price A.J. Vincent T.L. Weinans H. Carr A.J. Osteoarthritis. Lancet 2015 386 9991 376 387 10.1016/S0140‑6736(14)60802‑3 25748615
    [Google Scholar]
  51. Jiang Y. Osteoarthritis year in review 2021: biology. Osteoarthritis Cartilage 2022 30 2 207 215 10.1016/j.joca.2021.11.009 34801671
    [Google Scholar]
  52. Abramoff B. Caldera F.E. Osteoarthritis. Med. Clin. North Am 2020 104 2 293 311 10.1016/j.mcna.2019.10.007 32035570
    [Google Scholar]
  53. Knights A.J. Redding S.J. Maerz T. Inflammation in osteoarthritis: the latest progress and ongoing challenges. Curr. Opin. Rheumatol. 2023 35 2 128 134 10.1097/BOR.0000000000000923 36695054
    [Google Scholar]
  54. Zhao Z.X. Zou Q.Y. Ma Y.H. Morris-Natschke S.L. Li X.Y. Shi L.C. Ma G.X. Xu X.D. Yang M.H. Zhao Z.J. Li Y.X. Xue J. Chen C.H. Wu H.F. Recent progress on triterpenoid derivatives and their anticancer potential. Phytochemistry 2025 229 114257 10.1016/j.phytochem.2024.114257 39209239
    [Google Scholar]
  55. Venetsanopoulou A.I. Alamanos Y. Voulgari P.V. Drosos A.A. Epidemiology of rheumatoid arthritis: Genetic and environmental influences. Expert Rev. Clin. Immunol. 2022 18 9 923 931 10.1080/1744666X.2022.2106970 35904251
    [Google Scholar]
  56. van der Woude D. van der Helm-van Mil A.H.M. Update on the epidemiology, risk factors, and disease outcomes of rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol. 2018 32 2 174 187 10.1016/j.berh.2018.10.005 30527425
    [Google Scholar]
  57. Fidler L. Widdifield J. Fisher J.H. Shapera S. Gershon A.S. Rheumatoid arthritis associated interstitial lung disease: Trends in epidemiology and mortality in Ontario from 2000 to 2018. Respir. Med. 2023 13 107282 10.1016/j.rmed.2023.107282 37187431
    [Google Scholar]
  58. Berenbaum F. Wallace I.J. Lieberman D.E. Felson D.T. Modern-day environmental factors in the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 2018 14 11 674 681 10.1038/s41584‑018‑0073‑x 30209413
    [Google Scholar]
  59. Courties A. Kouki I. Soliman N. Mathieu S. Sellam J. Osteoarthritis year in review 2024: Epidemiology and therapy. Osteoarthritis Cartilage 2024 32 11 1397 1404 10.1016/j.joca.2024.07.014 39103081
    [Google Scholar]
  60. Allen K.D. Thoma L.M. Golightly Y.M. Epidemiology of osteoarthritis. Osteoarthritis Cartilage 2022 30 2 184 195 10.1016/j.joca.2021.04.020 34534661
    [Google Scholar]
  61. Srivastava S. Rasool M. Genetics, epigenetics and autoimmunity constitute a Bermuda triangle for the pathogenesis of rheumatoid arthritis. Life Sci. 2024 357 10.1016/j.lfs.2024.123075
    [Google Scholar]
  62. Scherer H.U. Häupl T. Burmester G.R. The etiology of rheumatoid arthritis. J. Autoimmun. 2020 110 102400 10.1016/j.jaut.2019.102400 31980337
    [Google Scholar]
  63. Dieppe P.A. Lohmander L.S. Pathogenesis and management of pain in osteoarthritis. Lancet 2005 365 9463 965 973 10.1016/S0140‑6736(05)71086‑2 15766999
    [Google Scholar]
  64. Griffin T.M. Huebner J.L. Kraus V.B. Guilak F. Extreme obesity due to impaired leptin signaling in mice does not cause knee osteoarthritis. Arthritis Rheum. 2009 60 10 2935 2944 10.1002/art.24854 19790050
    [Google Scholar]
  65. Francisco V. Pérez T. Pino J. López V. Franco E. Alonso A. Gonzalez-Gay M.A. Mera A. Lago F. Gómez R. Gualillo O. Biomechanics, obesity, and osteoarthritis. The role of adipokines: When the levee breaks. J. Orthop. Res. 2018 36 2 594 604 10.1002/jor.23788 29080354
    [Google Scholar]
  66. Xia B. Di Chen; Zhang, J.; Hu, S.; Jin, H.; Tong, P. Osteoarthritis pathogenesis: A review of molecular mechanisms. Calcif. Tissue Int. 2014 95 6 495 505 10.1007/s00223‑014‑9917‑9 25311420
    [Google Scholar]
  67. Baig M.M.F.A. Kwan C.H. Wu H. Chair S.Y. The etiology, pathogenesis, treatment, and development of transdermal drug delivery systems for rheumatoid arthritis. RSC Pharmaceutics 2024 1 4 592 607 10.1039/D4PM00085D
    [Google Scholar]
  68. Guo H. Li L. Liu B. Lu P. Cao Z. Ji X. Li L. Ouyang G. Nie Z. Lyu A. Lu C. Inappropriate treatment response to DMARDs: A pathway to difficult-to-treat rheumatoid arthritis. Int. Immunopharmacol. 2023 122 110655 10.1016/j.intimp.2023.110655 37481847
    [Google Scholar]
  69. Mitsuboshi S. Risk of haematological events and preventive effect of folic acid in methotrexate users with chronic kidney disease and rheumatoid arthritis: Analysis of the Japanese Adverse Drug Event Report database. Br. J. Clin. Pharmacol. 2021 87 5 2286 2289 10.1111/bcp.14641 33179261
    [Google Scholar]
  70. Zewail M.B. Asaad G.F. Shabana M.E. Elbokhomy A.S. Elbadry A.M.M. Riad P.Y. Salama G.A. El-Dakroury W.A. PEGylated lipid polymeric nanoparticles for management of rheumatoid arthritis. J. Drug Deliv. Sci. Technol. 2024 101 106242 10.1016/j.jddst.2024.106242
    [Google Scholar]
  71. Di Francesco M. Fragassi A. Pannuzzo M. Ferreira M. Brahmachari S. Decuzzi P. Management of osteoarthritis: From drug molecules to nano/micromedicines. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022 14 3 e1780 10.1002/wnan.1780 35253405
    [Google Scholar]
  72. Steinmeyer J. Bock F. Stöve J. Jerosch J. Flechtenmacher J. Pharmacological treatment of knee osteoarthritis: Special considerations of the new German guideline. Orthop. Rev.36104304 2018 10 4 7782 10.4081/or.2018.7782 30662685
    [Google Scholar]
  73. Bátai I.Z. Sár C.P. Horváth Á. Borbély É. Bölcskei K. Kemény Á. Sándor Z. Nemes B. Helyes Z. Perkecz A. Mócsai A. Pozsgai G. Pintér E. TRPA1 ion channel determines beneficial and detrimental effects of GYY4137 in murine serum-transfer arthritis. Front. Pharmacol. 2019 10 964 10.3389/fphar.2019.00964 31551776
    [Google Scholar]
  74. Mäki-Opas I. Hämäläinen M. Moilanen L.J. Haavikko R. Ahonen T.J. Alakurtti S. Moreira V.M. Muraki K. Yli-Kauhaluoma J. Moilanen E. Pyrazine-fused triterpenoids block the TRPA1 ion channel in Vitro and Inhibit TRPA1-mediated acute inflammation in Vivo. ACS Chem. Neurosci. 2019 10 6 2848 2857 10.1021/acschemneuro.9b00083 31034197
    [Google Scholar]
  75. Moilanen L.J. Hämäläinen M. Nummenmaa E. Ilmarinen P. Vuolteenaho K. Nieminen R.M. Lehtimäki L. Moilanen E. Monosodium iodoacetate-induced inflammation and joint pain are reduced in TRPA1 deficient mice – potential role of TRPA1 in osteoarthritis. Osteoarthritis Cartilage 2015 23 11 2017 2026 10.1016/j.joca.2015.09.008 26521748
    [Google Scholar]
  76. Huimin D. Hui C. Guowei S. Shouyun X. Junyang P. Juncheng W. Protective effect of betulinic acid on Freund’s complete adjuvant‐induced arthritis in rats. J. Biochem. Mol. Toxicol. 2019 33 9 e22373 10.1002/jbt.22373 31364231
    [Google Scholar]
  77. Xu J. Li Z. Luo J. Yang F. Liu T. Liu M. Qiu W.W. Tang J. Synthesis and biological evaluation of heterocyclic ring-fused betulinic acid derivatives as novel inhibitors of osteoclast differentiation and bone resorption. J. Med. Chem. 2012 55 7 3122 3134 10.1021/jm201540h 22435650
    [Google Scholar]
  78. Guo Y. Xiao Y. Coluccini C. Coghi P. ((1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-9-Acetoxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)icosahydro-3aH-cyclopenta[a]chrysen-3a-yl)methyl 2-Bromo-3-methylbenzoate. Molbank 2025 2025 1 M1971 10.3390/M1971
    [Google Scholar]
  79. Wang J. Wei W. Zhang X. Cao S. Hu B. Ye Y. Jiang M. Wang T. Zuo J. He S. Yang C. Synthesis and biological evaluation of C-17-amino-substituted pyrazole-fused betulinic acid derivatives as novel agents for osteoarthritis treatment. J. Med. Chem. 2021 64 18 13676 13692 10.1021/acs.jmedchem.1c01019 34491054
    [Google Scholar]
  80. Nummenmaa E. Hämäläinen M. Moilanen L.J. Paukkeri E.L. Nieminen R.M. Moilanen T. Vuolteenaho K. Moilanen E. Transient receptor potential ankyrin 1 (TRPA1) is functionally expressed in primary human osteoarthritic chondrocytes. Arthritis Res. Ther. 2016 18 1 185 10.1186/s13075‑016‑1080‑4 27515912
    [Google Scholar]
  81. de Seabra Rodrigues Dias I.R. Mok S.W.F. Gordillo-Martínez F. Khan I. Hsiao W.W.L. Law B.Y.K. Wong V.K.W. Liu L. The calcium-induced regulation in the molecular and transcriptional circuitry of human inflammatory response and autoimmunity. Front. Pharmacol. 2018 8 962 10.3389/fphar.2017.00962 29358919
    [Google Scholar]
  82. Wong V.K.W. Qiu C. Xu S.W. Law B.Y.K. Zeng W. Wang H. Michelangeli F. Dias I.R.D.S.R. Qu Y.Q. Chan T.W. Han Y. Zhang N. Mok S.W.F. Chen X. Yu L. Pan H. Hamdoun S. Efferth T. Yu W.J. Zhang W. Li Z. Xie Y. Luo R. Jiang Q. Liu L. Ca2+ signalling plays a role in celastrol‐mediated suppression of synovial fibroblasts of rheumatoid arthritis patients and experimental arthritis in rats. Br. J. Pharmacol. 2019 176 16 2922 2944 10.1111/bph.14718 31124139
    [Google Scholar]
  83. Yang J. Liu J. Li J. Jing M. Zhang L. Sun M. Wang Q. Sun H. Hou G. Wang C. Xin W. Celastrol inhibits rheumatoid arthritis by inducing autophagy via inhibition of the PI3K/AKT/mTOR signaling pathway. Int. Immunopharmacol. 2022 112 109241 10.1016/j.intimp.2022.109241 36116150
    [Google Scholar]
  84. Yin L. Fan Y. Zhong X. Meng X. He Z. Hong Z. Chen J. Zhang Q. Kong M. Wang J. Tong Y. Bi Q. The therapeutic potential of pristimerin in osteoarthritis: Mechanistic insights from in vitro and in vivo studies. Drug Des. Devel. Ther. 2024 18 5445 5459 10.2147/DDDT.S490388 39628956
    [Google Scholar]
  85. Kumar Singh P. Kashyap A. Silakari O. Exploration of the therapeutic aspects of Lck: A kinase target in inflammatory mediated pathological conditions. Biomed. Pharmacother. 2018 108 1565 1571 10.1016/j.biopha.2018.10.002 30372858
    [Google Scholar]
  86. He Q.W. Feng J.H. Hu X.L. Long H. Huang X.F. Jiang Z.Z. Zhang X.Q. Ye W.C. Wang H. Synthesis and biological evaluation of celastrol derivatives as potential immunosuppressive agents. J. Nat. Prod. 2020 83 9 2578 2586 10.1021/acs.jnatprod.0c00067 32822186
    [Google Scholar]
  87. Limami Y. Pinon A. Wahnou H. Oudghiri M. Liagre B. Simon A. Duval R.E. Ursolic Acid’s alluring journey: One triterpenoid vs. cancer hallmarks. Molecules 2023 28 23 7897 10.3390/molecules28237897 38067626
    [Google Scholar]
  88. Huang L. Hu S. Shao M. Wu X. Zhang J. Cao G. Combined cornus officinalis and paeonia lactiflora pall therapy alleviates rheumatoid arthritis by regulating synovial apoptosis via ampk-mediated mitochondrial fission. Front. Pharmacol. 2021 12 639009 10.3389/fphar.2021.639009 33897428
    [Google Scholar]
  89. Zahran E.M. Mohamad S.A. Elsayed M.M. Hisham M. Maher S.A. Abdelmohsen U.R. Elrehany M. Desoukey S.Y. Kamel M.S. Ursolic acid inhibits NF-κB signaling and attenuates MMP-9/TIMP-1 in progressive osteoarthritis: a network pharmacology-based analysis. RSC Advances 2024 14 26 18296 18310 10.1039/D4RA02780A 38863821
    [Google Scholar]
  90. Lv J. Sharma A. Zhang T. Wu Y. Ding X. Pharmacological review on asiatic acid and its derivatives: A potential compound. SLAS Technol. 2018 23 2 111 127 10.1177/2472630317751840 29361877
    [Google Scholar]
  91. Sun M. Wang Q. Huang J. Sun Q. Yu Q. Liu X. Liu Z. Asiatic acid induces ferroptosis of RA-FLS via the Nrf2/HMOX1 pathway to relieve inflammation in rheumatoid arthritis. Int. Immunopharmacol. 2024 137 112394 10.1016/j.intimp.2024.112394 38852517
    [Google Scholar]
  92. Nagini S. Nivetha R. Palrasu M. Mishra R. Nimbolide, a Neem Limonoid, Is a promising candidate for the anticancer drug arsenal. J. Med. Chem. 2021 64 7 3560 3577 10.1021/acs.jmedchem.0c02239 33739088
    [Google Scholar]
  93. Anchi P. Swamy V. Godugu C. Nimbolide exerts protective effects in complete Freund’s adjuvant induced inflammatory arthritis via abrogation of STAT-3/NF-κB/Notch-1 signaling. Life Sci. 2021 266 118911 10.1016/j.lfs.2020.118911 33333049
    [Google Scholar]
  94. Israr M. Naseem N. Akhtar T. Aftab U. Zafar M.S. Faheem M.A. Shahzad M. Nimbolide attenuates complete Freund’s adjuvant induced arthritis through expression regulation of toll‐like receptors signaling pathway. Phytother. Res. 2023 37 3 903 912 10.1002/ptr.7672 36437579
    [Google Scholar]
  95. Anchi P. Panda B. Mahajan R.B. Godugu C. Co-treatment of Nimbolide augmented the anti-arthritic effects of methotrexate while protecting against organ toxicities. Life Sci. 2022 295 120372 10.1016/j.lfs.2022.120372 35143824
    [Google Scholar]
  96. Yang Y. Jian Y. Liu Y. Ismail M. Xie Q. Yu H. Wang B. Li B. Peng C. Liu B. Man R. Wang W. Triterpenoids From Kadsura coccinea With Their Anti-inflammatory and Inhibited Proliferation of Rheumatoid Arthritis-Fibroblastoid Synovial Cells Activities. Front Chem. 2021 9 808870 10.3389/fchem.2021.808870 34957056
    [Google Scholar]
  97. Yang Y. Jian Y. Liu Y. Xie Q. Yu H. Wang B. Li B. Peng C. Wang W. Heilaohuacid G. Heilaohuacid G, a new triterpenoid from Kadsura coccinea inhibits proliferation, induces apoptosis, and ameliorates inflammation in RA‐FLS and RAW 264.7 cells via suppressing NF ‐휅B pathway. Phytother. Res. 2022 36 10 3900 3910 10.1002/ptr.7527 36104304
    [Google Scholar]
  98. Ahmad M.F. Wahab S. Ahmad F.A. Ashraf S.A. Abullais S.S. Saad H.H. Ganoderma lucidum: A potential pleiotropic approach of ganoderic acids in health reinforcement and factors influencing their production. Fungal Biol. Rev. 2022 39 100 125 10.1016/j.fbr.2021.12.003
    [Google Scholar]
  99. Cao T. Tang C. Xue L. Cui M. Wang D. Protective effect of Ganoderic acid A on adjuvant-induced arthritis. Immunol. Lett. 2020 226 1 6 10.1016/j.imlet.2020.06.010 32565114
    [Google Scholar]
  100. Wu W. Song K. Chen G. Liu N. Cao T. Ganoderic acid A improves osteoarthritis by regulating RANKL/OPG ratio. Chem. Biol. Drug Des. 2022 100 3 313 319 10.1111/cbdd.14101 35708158
    [Google Scholar]
  101. Liu Y. Zhou C. Tan J. Wu T. Pan C. Liu J. Cheng X. Ganoderic acid A slows osteoarthritis progression by attenuating endoplasmic reticulum stress and blocking NF‐Κb pathway. Chem. Biol. Drug Des. 2024 103 1 e14382 10.1111/cbdd.14382 37984927
    [Google Scholar]
  102. Im D.S. Pro-Resolving Effect of Ginsenosides as an Anti-Inflammatory Mechanism of Panax ginseng. Biomolecules 2020 10 3 444 10.3390/biom10030444 32183094
    [Google Scholar]
  103. Hossain M.A. Alam M.J. Kim B. Kang C.W. Kim J.H. Ginsenoside-Rb1 prevents bone cartilage destruction through down-regulation of p-Akt, p-P38, and p-P65 signaling in rabbit. Phytomedicine 2022 100 154039 10.1016/j.phymed.2022.154039 35344713
    [Google Scholar]
  104. Guo Y. Tian T. Yang S. Cai Y. Ginsenoside Rg1/ADSCs supplemented with hyaluronic acid as the matrix improves rabbit temporomandibular joint osteoarthrosis. Biotechnol. Genet. Eng. Rev. 2023 40 1 1 22 10.1080/02648725.2023.2183575 36892223
    [Google Scholar]
  105. Zhao X. Cao X. Fu W. Yu P. Li Y. Yu X. Xu H. Protective effect of Ginsenoside Rc on the complete Freund’s adjuvant-induced rheumatoid arthritis in rats by attenuation of inflammatory mediators through inhibition NF-κB pathway. J. Funct. Foods 2022 95 105136 10.1016/j.jff.2022.105136
    [Google Scholar]
  106. Tian Y. Feng X. Zhou Z. Qin S. Chen S. Zhao J. Hou J. Liu D. Ginsenoside Compound K Ameliorates osteoarthritis by inhibiting the chondrocyte endoplasmic reticulum stress-mediated IRE1α-TXNIP-NLRP3 axis and pyroptosis. J. Agric. Food Chem. 2023 71 3 1499 1509 10.1021/acs.jafc.2c06134 36630614
    [Google Scholar]
  107. Liang Y. Chen B. Liang D. Quan X. Gu R. Meng Z. Gan H. Wu Z. Sun Y. Liu S. Dou G. Pharmacological effects of astragaloside IV: A review. Molecules 2023 28 16 6118 10.3390/molecules28166118 37630371
    [Google Scholar]
  108. Xu H. Jing-Bo W. Chen Y.P. Huang W. Wei Z.B. Astragaloside I.V. Astragaloside IV Protects Against IL-1β-Induced Chondrocyte Damage Via Activating Autophagy. Curr. Mol. Med. 2024 24 11 1382 1389 10.2174/0115665240249154231016080115 37855351
    [Google Scholar]
  109. Yang K. Xie Q. Tang T. Zhao N. Liang J. Shen Y. Li Z. Liu B. Chen J. Cheng W. Bai X. Zhang P. Liu Q. Song B. Hu C. Liu L. Wang Y. Astragaloside IV as a novel CXCR4 antagonist alleviates osteoarthritis in the knee of monosodium iodoacetate-induced rats. Phytomedicine 2023 108 154506 10.1016/j.phymed.2022.154506 36403512
    [Google Scholar]
  110. Cui X. Wang J. Fan C. Jiang H. Li W. Astragalosides inhibit proliferation of fibroblast‐like synoviocytes in experimental arthritis by modulating LncRNA S56464. 1/miR ‐152‐3p/Wnt1 signaling axis. Int. J. Rheum. Dis. 2023 26 8 1547 1556 10.1111/1756‑185X.14782 37317788
    [Google Scholar]
  111. Jiang H. Fan C. Lu Y. Cui X. Liu J. Astragaloside regulates lncRNA LOC100912373 and the miR 17 5p/PDK1 axis to inhibit the proliferation of fibroblast like synoviocytes in rats with rheumatoid arthritis. Int. J. Mol. Med. 2021 48 1 130 10.3892/ijmm.2021.4963 34013364
    [Google Scholar]
  112. Xie W. Qi S. Dou L. Wang L. Wang X. Bi R. Li N. Zhang Y. Achyranthoside D attenuates chondrocyte loss and inflammation in osteoarthritis via targeted regulation of Wnt3a. Phytomedicine 2023 111 154663 10.1016/j.phymed.2023.154663 36657317
    [Google Scholar]
  113. Meng M. Yue Z. Chang L. Liu Y. Hu J. Song Z. Tang Z. Zhou R. Wang C. Anti-rheumatoid arthritic effects of paris saponin vii in human rheumatoid arthritis fibroblast-like synoviocytes and adjuvant-induced arthritis in rats. Front. Pharmacol. 2021 12 683698 10.3389/fphar.2021.683698 34122110
    [Google Scholar]
  114. Li P. Huang Y. Wang J. Zeng J. Li L. Platycodin D relieves rheumatoid arthritis by promoting apoptosis of mitochondria to inhibit activation of hedgehog pathway. Autoimmunity 2023 56 1 2205053 10.1080/08916934.2023.2205053 37138547
    [Google Scholar]
  115. Guo C. Yue Y. Wang B. Chen S. Li D. Zhen F. Liu L. Zhu H. Xie M. Anemoside B4 alleviates arthritis pain via suppressing ferroptosis‐mediated inflammation. J. Cell. Mol. Med. 2024 28 4 e18136 10.1111/jcmm.18136 38334255
    [Google Scholar]
  116. Kun-Liu Wang, J.Y.; Zhang, L.; Pan, Y.Y.; Chen, X.Y.; Yuan, Y. Effects of betulinic acid on synovial inflammation in rats with collagen-induced arthritis. Int. J. Immunopathol. Pharmacol. 2020 34 2058738420945078 10.1177/2058738420945078 32718263
    [Google Scholar]
  117. Liu B. Wu Y. Liang T. Zhou Y. Chen G. He J. Ji C. Liu P. Zhang C. Lin J. Shi K. Luo Z. Liu N. Su X. Betulinic acid attenuates osteoarthritis via limiting nlrp3 inflammasome activation to decrease interleukin-1β maturation and secretion. Mediators Inflamm. 2023 2023 1 1 22 10.1155/2023/3706421 37789884
    [Google Scholar]
  118. Liu M. Guo J. Zhao J. Li H. Feng X. Liu H. Zhang H. Jia X. Wei R. Li F. Chen C. Hou M. Lv N. Xu H. Activation of NRF2 by celastrol increases antioxidant functions and prevents the progression of osteoarthritis in mice. Chin. J. Nat. Med. 2024 22 2 137 145 10.1016/S1875‑5364(24)60586‑8 38342566
    [Google Scholar]
  119. Anchi P. Chilvery S. Tekalkar S. bolla, L.; Rao Gajula, S.N.; Sonti, R.; Godugu, C. Nimbolide loaded sustained release microparticles as single-dose formulations for effective management of arthritis. J. Drug Deliv. Sci. Technol. 2022 75 103638 10.1016/j.jddst.2022.103638
    [Google Scholar]
  120. Wang M. Huang J. Fan H. He D. Zhao S. Shu Y. Li H. Liu L. Lu S. Xiao C. Liu Y. Treatment of rheumatoid arthritis using combination of methotrexate and tripterygium glycosides Tablets—A quantitative plasma pharmacochemical and pseudotargeted metabolomic approach. Front. Pharmacol. 2018 9 1051 10.3389/fphar.2018.01051 30356765
    [Google Scholar]
  121. Banji D. Banji O.J.F. Rashida S. Alshahrani S. Alqahtani S.S. Bioavailability, anti-inflammatory and anti-arthritic effect of Acetyl Keto Boswellic acid and its combination with methotrexate in an arthritic animal model. J. Ethnopharmacol. 2022 292 115200 10.1016/j.jep.2022.115200 35306043
    [Google Scholar]
  122. Wang X. Zu Y. Huang L. Yu J. Zhao H. Wen C. Chen Z. Xu Z. Treatment of rheumatoid arthritis with combination of methotrexate and Tripterygium wilfordii: A meta-analysis. Life Sci. 2017 171 45 50 10.1016/j.lfs.2017.01.004 28088452
    [Google Scholar]
  123. Srisaisap M. Boonserm P. Anticancer efficacy of biosynthesized silver nanoparticles loaded with recombinant truncated parasporin-2 protein. Sci. Rep. 2024 14 1 15544 10.1038/s41598‑024‑66650‑5 38969695
    [Google Scholar]
  124. Chen Z. Wang A. Qin Y. Chen X. Feng X. He G. Zhu X. Xiao Y. Yu X. Zhong T. Zhang K. Preparation of a thermosensitive and antibacterial in situ gel using poloxamer-quaternized chitosan for sustained ocular delivery of Levofloxacin hydrochloride. Int. J. Biol. Macromol. 2024 283 Pt 1 137479 10.1016/j.ijbiomac.2024.137479 39537073
    [Google Scholar]
  125. Li L. He D. Guo Q. Zhang Z. Ru D. Wang L. Gong K. Liu F. Duan Y. Li H. Exosome-liposome hybrid nanoparticle codelivery of TP and miR497 conspicuously overcomes chemoresistant ovarian cancer. J. Nanobiotechnology 2022 20 1 50 10.1186/s12951‑022‑01264‑5 35078498
    [Google Scholar]
  126. Faustino C. Duarte N. Pinheiro L. Triterpenes drug delivery systems, a modern approach for arthritis targeted therapy. Pharmaceuticals 2023 17 1 54 10.3390/ph17010054 38256888
    [Google Scholar]
  127. Canter P.H. Lee H.S. Ernst E. A systematic review of randomised clinical trials of Tripterygium wilfordii for rheumatoid arthritis. Phytomedicine 2006 13 5 371 377 10.1016/j.phymed.2006.01.010 16487688
    [Google Scholar]
  128. Zheng W. Mei Y. Chen C. Cai L. Chen H. The effectiveness and safety of Tripterygium wilfordii glycosides combined with disease‐modifying anti‐rheumatic drugs in the treatment of rheumatoid arthritis: A systematic review and meta‐analysis of 40 randomized controlled trials. Phytother. Res. 2021 35 6 2902 2924 10.1002/ptr.6996 33368709
    [Google Scholar]
  129. Zhou Y.Y. Xia X. Peng W.K. Wang Q.H. Peng J.H. Li Y. Wu J.X. Zhang J.Y. Zhao Y. Chen X.M. Huang R.Y. Jakobsson P.J. Wen Z.H. Huang Q.C. The Effectiveness and Safety of Tripterygium wilfordii Hook. F Extracts in Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2018 9 356 10.3389/fphar.2018.00356 29713281
    [Google Scholar]
  130. Yu G. Xiang W. Zhang T. Zeng L. Yang K. Li J. Effectiveness of Boswellia and Boswellia extract for osteoarthritis patients: a systematic review and meta-analysis. BMC Complementary Medicine and Therapies 2020 20 1 225 10.1186/s12906‑020‑02985‑6 32680575
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575389522250825063702
Loading
/content/journals/mrmc/10.2174/0113895575389522250825063702
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test