Skip to content
2000
image of Fruitful Interventions: A Narrative Review Addressing the Emerging Role of Antioxidant Fruits in Combating IBD-Driven Colorectal Cancer

Abstract

Individuals diagnosed with inflammatory bowel disease (IBD) face a significantly heightened risk of developing colorectal cancer (CRC), primarily due to persistent intestinal inflammation that fosters neoplastic transformations across the colon. This narrative review delves into the potential of certain fruits, such as black raspberries, Amazonian açaí, apples, grapes, cocoa, , and , in mitigating IBD-induced CRC. Preclinical studies indicate that these fruits possess anti-inflammatory and antioxidant properties that may disrupt carcinogenic pathways. Notably, black raspberries have demonstrated the ability to modulate epigenetic markers by demethylating tumor suppressor genes and inhibiting DNA methyltransferases (DNMT), like DNMT1 and DNMT3B. This epigenetic modulation influences the Wnt signaling pathway, crucial in CRC development, and affects cellular processes, such as proliferation, apoptosis, and angiogenesis. Animal models further support these findings, showing that black raspberries can suppress β-catenin signaling, reduce chronic inflammation, and decrease tumor incidence. This comprehensive analysis underscores the promising role of specific fruits in CRC prevention among IBD patients and highlights the need for further research to translate these findings into clinical applications, potentially benefiting both public health and the nutraceutical industry.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575403756250915110305
2025-09-23
2025-11-05
Loading full text...

Full text loading...

References

  1. Kefalakes H. Stylianides T.J. Amanakis G. Kolios G. Exacerbation of inflammatory bowel diseases associated with the use of nonsteroidal anti-inflammatory drugs: Myth or reality? Eur. J. Clin. Pharmacol. 2009 65 10 963 970 10.1007/s00228‑009‑0719‑3 19711064
    [Google Scholar]
  2. Khor B. Gardet A. Xavier R.J. Genetics and pathogenesis of inflammatory bowel disease. Nature 2011 474 7351 307 317 10.1038/nature10209 21677747
    [Google Scholar]
  3. Mentella M.C. Scaldaferri F. Pizzoferrato M. Gasbarrini A. Miggiano G.A.D. Nutrition, IBD and gut microbiota: A review. Nutrients 2020 12 4 944 10.3390/nu12040944 32235316
    [Google Scholar]
  4. Alatab S. Sepanlou S.G. Ikuta K. Vahedi H. Bisignano C. Safiri S. Sadeghi A. Nixon M.R. Abdoli A. Abolhassani H. Alipour V. Almadi M.A.H. Almasi-Hashiani A. Anushiravani A. Arabloo J. Atique S. Awasthi A. Badawi A. Baig A.A.A. Bhala N. Bijani A. Biondi A. Borzì A.M. Burke K.E. Carvalho F. Daryani A. Dubey M. Eftekhari A. Fernandes E. Fernandes J.C. Fischer F. Haj-Mirzaian A. Haj-Mirzaian A. Hasanzadeh A. Hashemian M. Hay S.I. Hoang C.L. Househ M. Ilesanmi O.S. Jafari Balalami N. James S.L. Kengne A.P. Malekzadeh M.M. Merat S. Meretoja T.J. Mestrovic T. Mirrakhimov E.M. Mirzaei H. Mohammad K.A. Mokdad A.H. Monasta L. Negoi I. Nguyen T.H. Nguyen C.T. Pourshams A. Poustchi H. Rabiee M. Rabiee N. Ramezanzadeh K. Rawaf D.L. Rawaf S. Rezaei N. Robinson S.R. Ronfani L. Saxena S. Sepehrimanesh M. Shaikh M.A. Sharafi Z. Sharif M. Siabani S. Sima A.R. Singh J.A. Soheili A. Sotoudehmanesh R. Suleria H.A.R. Tesfay B.E. Tran B. Tsoi D. Vacante M. Wondmieneh A.B. Zarghi A. Zhang Z-J. Dirac M. Malekzadeh R. Naghavi M. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020 5 1 17 30 10.1016/S2468‑1253(19)30333‑4 31648971
    [Google Scholar]
  5. Fava F. Danese S. Intestinal microbiota in inflammatory bowel disease: Friend of foe? World J. Gastroenterol. 2011 17 5 557 566 10.3748/wjg.v17.i5.557 21350704
    [Google Scholar]
  6. Hammer T. Nielsen K.R. Munkholm P. Burisch J. Lynge E. The faroese IBD Study: Incidence of inflammatory bowel diseases across 54 years of population-based data. J. Crohn’s Colitis 2016 10 8 934 942 10.1093/ecco‑jcc/jjw050 26933031
    [Google Scholar]
  7. van den Heuvel T.R.A. Jonkers D.M. Jeuring S.F.G. Romberg-Camps M.J.L. Oostenbrug L.E. Zeegers M.P. Masclee A.A. Pierik M.J. Cohort profile: The inflammatory bowel disease south limburg cohort (IBDSL). Int. J. Epidemiol. 2017 46 2 e7 10.1093/ije/dyv088 26045509
    [Google Scholar]
  8. Keller D.S. Windsor A. Cohen R. Chand M. Colorectal cancer in inflammatory bowel disease: Review of the evidence. Tech. Coloproctol. 2019 23 1 3 13 10.1007/s10151‑019‑1926‑2 30701345
    [Google Scholar]
  9. Higgins P. Stidham R. Colorectal cancer in inflammatory bowel disease. Clin. Colon Rectal Surg. 2018 31 3 168 178 10.1055/s‑0037‑1602237 29720903
    [Google Scholar]
  10. Kaplan G.G. The global burden of IBD: from 2015 to 2025. Nat. Rev. Gastroenterol. Hepatol. 2015 12 12 720 727 10.1038/nrgastro.2015.150 26323879
    [Google Scholar]
  11. Molodecky N.A. Soon I.S. Rabi D.M. Ghali W.A. Ferris M. Chernoff G. Benchimol E.I. Panaccione R. Ghosh S. Barkema H.W. Kaplan G.G. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 2012 142 1 46 54.e42 10.1053/j.gastro.2011.10.001 22001864
    [Google Scholar]
  12. Shivashankar R. Tremaine W.J. Harmsen W.S. Loftus E.V. Incidence and prevalence of crohn’s disease and ulcerative colitis in olmsted county, minnesota from 1970 Through 2010. Clin. Gastroenterol. Hepatol. 2017 15 6 857 863 10.1016/j.cgh.2016.10.039 27856364
    [Google Scholar]
  13. Dahlhamer J.M. Zammitti E.P. Ward B.W. Wheaton A.G. Croft J.B. Prevalence of inflammatory bowel disease among adults aged ≥18 Years — United States, 2015. MMWR Morb. Mortal. Wkly. Rep. 2016 65 42 1166 1169 10.15585/mmwr.mm6542a3 27787492
    [Google Scholar]
  14. Gajendran M. Loganathan P. Jimenez G. Catinella A.P. Ng N. Umapathy C. Ziade N. Hashash J.G. A comprehensive review and update on ulcerative colitis. Dis. Mon. 2019 65 12 100851 10.1016/j.disamonth.2019.02.004 30837080
    [Google Scholar]
  15. Ng S.C. Shi H.Y. Hamidi N. Underwood F.E. Tang W. Benchimol E.I. Panaccione R. Ghosh S. Wu J.C.Y. Chan F.K.L. Sung J.J.Y. Kaplan G.G. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 2017 390 10114 2769 2778 10.1016/S0140‑6736(17)32448‑0 29050646
    [Google Scholar]
  16. Kaplan G.G. Ng S.C. Understanding and preventing the global increase of inflammatory bowel disease. Gastroenterology 2017 152 2 313 321.e2 10.1053/j.gastro.2016.10.020 27793607
    [Google Scholar]
  17. Xavier R.J. Podolsky D.K. Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007 448 7152 427 434 10.1038/nature06005 17653185
    [Google Scholar]
  18. Favoriti P. Carbone G. Greco M. Pirozzi F. Pirozzi R.E.M. Corcione F. Worldwide burden of colorectal cancer: A review. Updates Surg. 2016 68 1 7 11 10.1007/s13304‑016‑0359‑y 27067591
    [Google Scholar]
  19. Ekbom A. Helmick C. Zack M. Adami H.O. Ulcerative colitis and colorectal cancer. A population-based study. N. Engl. J. Med. 1990 323 18 1228 1233 10.1056/NEJM199011013231802 2215606
    [Google Scholar]
  20. Mattar M.C. Lough D. Pishvaian M.J. Charabaty A. Current management of inflammatory bowel disease and colorectal cancer. Gastrointest. Cancer Res. 2011 4 2 53 61 21673876
    [Google Scholar]
  21. Bernstein C.N. Nugent Z. Blanchard J.F. 5-aminosalicylate is not chemoprophylactic for colorectal cancer in IBD: a population based study. Am. J. Gastroenterol. 2011 106 4 731 736 10.1038/ajg.2011.50 21407180
    [Google Scholar]
  22. Fornaro R. Caratto M. Caratto E. Caristo G. Fornaro F. Giovinazzo D. Sticchi C. Casaccia M. Andorno E. Colorectal cancer in patients with inflammatory bowel disease: the need for a real surveillance program. Clin. Colorectal Cancer 2016 15 3 204 212 10.1016/j.clcc.2016.02.002 27083409
    [Google Scholar]
  23. Wanders L.K. Dekker E. Pullens B. Bassett P. Travis S.P.L. East J.E. Cancer risk after resection of polypoid dysplasia in patients with longstanding ulcerative colitis: A meta-analysis. Clin. Gastroenterol. Hepatol. 2014 12 5 756 764 10.1016/j.cgh.2013.07.024 23920032
    [Google Scholar]
  24. Eaden J.A. Abrams K.R. Mayberry J.F. The risk of colorectal cancer in ulcerative colitis: A meta-analysis. Gut 2001 48 4 526 535 10.1136/gut.48.4.526 11247898
    [Google Scholar]
  25. Ullman T. Odze R. Farraye F.A. Diagnosis and management of dysplasia in patients with ulcerative colitis and Crohnʼs disease of the colon. Inflamm. Bowel Dis. 2009 15 4 630 638 10.1002/ibd.20766 18942763
    [Google Scholar]
  26. von Roon A.C. Reese G. Teare J. Constantinides V. Darzi A.W. Tekkis P.P. The risk of cancer in patients with Crohn’s disease. Dis. Colon Rectum 2007 50 6 839 855 10.1007/s10350‑006‑0848‑z 17308939
    [Google Scholar]
  27. Lakatos P.L. Lakatos L. Risk for colorectal cancer in ulcerative colitis: Changes, causes and management strategies. World J. Gastroenterol. 2008 14 25 3937 3947 10.3748/wjg.14.3937 18609676
    [Google Scholar]
  28. Rutter M.D. Saunders B.P. Wilkinson K.H. Rumbles S. Schofield G. Kamm M.A. Williams C.B. Price A.B. Talbot I.C. Forbes A. Cancer surveillance in longstanding ulcerative colitis: Endoscopic appearances help predict cancer risk. Gut 2004 53 12 1813 1816 10.1136/gut.2003.038505 15542520
    [Google Scholar]
  29. Wu M. Li J. An Y. Li P. Xiong W. Li J. Yan D. Wang M. Zhong G. Chitooligosaccharides Prevents the Development of Colitis-Associated Colorectal Cancer by Modulating the Intestinal Microbiota and Mycobiota. Front. Microbiol. 2019 10 2101 10.3389/fmicb.2019.02101 31620100
    [Google Scholar]
  30. Jess T. Rungoe C. Peyrin-Biroulet L. Risk of colorectal cancer in patients with ulcerative colitis: A meta-analysis of population-based cohort studies. Clin. Gastroenterol. Hepatol. 2012 10 6 639 645 10.1016/j.cgh.2012.01.010 22289873
    [Google Scholar]
  31. Watanabe T. Konishi T. Kishimoto J. Kotake K. Muto T. Sugihara K. Ulcerative colitis-associated colorectal cancer shows a poorer survival than sporadic colorectal cancer: A nationwide Japanese study. Inflamm. Bowel Dis. 2011 17 3 802 808 10.1002/ibd.21365 20848547
    [Google Scholar]
  32. Grivennikov S.I. Greten F.R. Karin M. Immunity, inflammation, and cancer. Cell 2010 140 6 883 899 10.1016/j.cell.2010.01.025 20303878
    [Google Scholar]
  33. Hartnett L. Egan L. J. Inflammation, DNA methylation and colitis-associated cancer. Carcinogenesis 2012 33 4 723 731 10.1093/carcin/bgs006 22235026
    [Google Scholar]
  34. Klampfer L. Cytokines, inflammation and colon cancer. Curr. Cancer Drug Targets 2011 11 4 451 464 10.2174/156800911795538066 21247378
    [Google Scholar]
  35. Luo C. Zhang H. The role of proinflammatory pathways in the pathogenesis of colitis-associated colorectal cancer. Mediators Inflamm. 2017 2017 1 8 10.1155/2017/5126048 28852270
    [Google Scholar]
  36. Wang D. DuBois R.N. The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene 2010 29 6 781 788 10.1038/onc.2009.421 19946329
    [Google Scholar]
  37. Lukas M. Inflammatory bowel disease as a risk factor for colorectal cancer. Dig. Dis. 2010 28 4-5 619 624 10.1159/000320276 21088413
    [Google Scholar]
  38. Itzkowitz S. Colon carcinogenesis in inflammatory bowel disease: Applying molecular genetics to clinical practice. J. Clin. Gastroenterol. 2003 36 5 S70 S74 [Suppl 10.1097/00004836‑200305001‑00012 12702969
    [Google Scholar]
  39. Scarpa M. Scarpa M. Castagliuolo I. Erroi F. Kotsafti A. Basato S. Brun P. D’Incà R. Rugge M. Angriman I. Castoro C. Aberrant gene methylation in non-neoplastic mucosa as a predictive marker of ulcerative colitis-associated CRC. Oncotarget 2016 7 9 10322 10331 10.18632/oncotarget.7188 26862732
    [Google Scholar]
  40. OʼConnor P.M.; Lapointe, T.K.; Beck, P.L.; Buret, A.G. Mechanisms by which inflammation may increase intestinal cancer risk in inflammatory bowel disease. Inflamm. Bowel Dis. 2010 16 8 1411 1420 10.1002/ibd.21217 20155848
    [Google Scholar]
  41. Kim E.R. Chang D.K. Colorectal cancer in inflammatory bowel disease: The risk, pathogenesis, prevention and diagnosis. World J. Gastroenterol. 2014 20 29 9872 9881 10.3748/wjg.v20.i29.9872 25110418
    [Google Scholar]
  42. Li Y. Soendergaard C. Bergenheim F.H. Aronoff D.M. Milne G. Riis L.B. Seidelin J.B. Jensen K.B. Nielsen O.H. COX-2–PGE2 signaling impairs intestinal epithelial regeneration and associates with TNF inhibitor responsiveness in ulcerative colitis. EBioMedicine 2018 36 497 507 10.1016/j.ebiom.2018.08.040 30190207
    [Google Scholar]
  43. Al-Ghadban S. Kaissi S. Homaidan F.R. Naim H.Y. El-Sabban M.E. Cross-talk between intestinal epithelial cells and immune cells in inflammatory bowel disease. Sci. Rep. 2016 6 1 29783 10.1038/srep29783 27417573
    [Google Scholar]
  44. Odenwald M.A. Turner J.R. The intestinal epithelial barrier: a therapeutic target? Nat. Rev. Gastroenterol. Hepatol. 2017 14 1 9 21 10.1038/nrgastro.2016.169 27848962
    [Google Scholar]
  45. Rose-John S. IL-6 trans-signaling via the soluble IL-6 receptor: Importance for the pro-inflammatory activities of IL-6. Int. J. Biol. Sci. 2012 8 9 1237 1247 10.7150/ijbs.4989 23136552
    [Google Scholar]
  46. Jurjus A. Eid A. Al Kattar S. Zeenny M.N. Gerges-Geagea A. Haydar H. Hilal A. Oueidat D. Matar M. Tawilah J. Hussein I.H. Schembri-Wismayer P. Cappello F. Tomasello G. Leone A. Jurjus R.A. Inflammatory bowel disease, colorectal cancer and type 2 diabetes mellitus: The links. BBA Clin. 2016 5 16 24 10.1016/j.bbacli.2015.11.002 27051585
    [Google Scholar]
  47. Ben-Neriah Y. Karin M. Inflammation meets cancer, with NF-κB as the matchmaker. Nat. Immunol. 2011 12 8 715 723 10.1038/ni.2060 21772280
    [Google Scholar]
  48. Karin M. Nuclear factor-κB in cancer development and progression. Nature 2006 441 7092 431 436 10.1038/nature04870 16724054
    [Google Scholar]
  49. Gorrini C. Harris I.S. Mak T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 2013 12 12 931 947 10.1038/nrd4002 24287781
    [Google Scholar]
  50. Jackson A.L. Loeb L.A. The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat. Res. 2001 477 1-2 7 21 10.1016/S0027‑5107(01)00091‑4 11376682
    [Google Scholar]
  51. Barrett C.W. Singh K. Motley A.K. Lintel M.K. Matafonova E. Bradley A.M. Ning W. Poindexter S.V. Parang B. Reddy V.K. Chaturvedi R. Fingleton B.M. Washington M.K. Wilson K.T. Davies S.S. Hill K.E. Burk R.F. Williams C.S. Dietary selenium deficiency exacerbates DSS-induced epithelial injury and AOM/DSS-induced tumorigenesis. PLoS One 2013 8 7 e67845 10.1371/journal.pone.0067845 23861820
    [Google Scholar]
  52. Sohn J.J. Schetter A.J. Yfantis H.G. Ridnour L.A. Horikawa I. Khan M.A. Robles A.I. Hussain S.P. Goto A. Bowman E.D. Hofseth L.J. Bartkova J. Bartek J. Wogan G.N. Wink D.A. Harris C.C. Macrophages, nitric oxide and microRNAs are associated with DNA damage response pathway and senescence in inflammatory bowel disease. PLoS One 2012 7 9 e44156 10.1371/journal.pone.0044156 22970173
    [Google Scholar]
  53. Meira L.B. Bugni J.M. Green S.L. Lee C.W. Pang B. Borenshtein D. Rickman B.H. Rogers A.B. Moroski-Erkul C.A. McFaline J.L. Schauer D.B. Dedon P.C. Fox J.G. Samson L.D. DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J. Clin. Invest. 2008 118 7 2516 2525 10.1172/JCI35073 18521188
    [Google Scholar]
  54. Bartsch H. Nair J. Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. Langenbecks Arch. Surg. 2006 391 5 499 510 10.1007/s00423‑006‑0073‑1 16909291
    [Google Scholar]
  55. Nair J. Gansauge F. Beger H. Dolara P. Winde G. Bartsch H. Increased etheno-DNA adducts in affected tissues of patients suffering from Crohn’s disease, ulcerative colitis, and chronic pancreatitis. Antioxid. Redox Signal. 2006 8 5-6 1003 1010 10.1089/ars.2006.8.1003 16771690
    [Google Scholar]
  56. D’Incà R. Cardin R. Benazzato L. Angriman I. Martines D. Sturniolo G.C. Oxidative DNA damage in the mucosa of ulcerative colitis increases with disease duration and dysplasia. Inflamm. Bowel Dis. 2004 10 1 23 27 10.1097/00054725‑200401000‑00003 15058522
    [Google Scholar]
  57. Itzkowitz S.H. Yio X. Inflammation and Cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 2004 287 1 G7 G17 10.1152/ajpgi.00079.2004 15194558
    [Google Scholar]
  58. Wang H. Wang Y. Du Q. Lu P. Fan H. Lu J. Hu R. Inflammasome-independent NLRP3 is required for epithelial-mesenchymal transition in colon cancer cells. Exp. Cell Res. 2016 342 2 184 192 10.1016/j.yexcr.2016.03.009 26968633
    [Google Scholar]
  59. Li Q. Chen H. Silencing of Wnt5a during colon cancer metastasis involves histone modifications. Epigenetics 2012 7 6 551 558 10.4161/epi.20050 22522911
    [Google Scholar]
  60. Nakazawa T. Naitoh I. Hayashi K. Okumura F. Miyabe K. Yoshida M. Yamashita H. Ohara H. Joh T. Diagnostic criteria for IgG4-related sclerosing cholangitis based on cholangiographic classification. J. Gastroenterol. 2012 47 1 79 87 10.1007/s00535‑011‑0465‑z 21947649
    [Google Scholar]
  61. Atreya I. Atreya R. Neurath M.F. NF‐κB in inflammatory bowel disease. J. Intern. Med. 2008 263 6 591 596 10.1111/j.1365‑2796.2008.01953.x 18479258
    [Google Scholar]
  62. Hnatyszyn A. Hryhorowicz S. Kaczmarek-Ryś M. Lis E. Słomski R. Scott R.J. Pławski A. Colorectal carcinoma in the course of inflammatory bowel diseases. Hered. Cancer Clin. Pract. 2019 17 1 18 10.1186/s13053‑019‑0118‑4 31338130
    [Google Scholar]
  63. Karin M. Greten F.R. NF-κB: linking inflammation and immunity to cancer development and progression. Nat. Rev. Immunol. 2005 5 10 749 759 10.1038/nri1703 16175180
    [Google Scholar]
  64. Švec J. Musílková J. Bryndová J. Jirásek T. Mandys V. Kment M. Pácha J. Enhanced expression of proproliferative and antiapoptotic genes in ulcerative colitis-associated neoplasia. Inflamm. Bowel Dis. 2010 16 7 1127 1137 10.1002/ibd.21178 20027603
    [Google Scholar]
  65. Dudzińska E. Szymona K. Gil-Kulik P. Chomik P. Świstowska M. Gryzińska M. Kocki J. Imbalance of controlled death in peripheral blood lymphocytes in crohn’s disease and ulcerative colitis. Medicina (Kaunas) 2019 55 6 231 10.3390/medicina55060231 31159239
    [Google Scholar]
  66. Popivanova B.K. Kitamura K. Wu Y. Kondo T. Kagaya T. Kaneko S. Oshima M. Fujii C. Mukaida N. Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J. Clin. Invest. 2008 118 2 560 570 18219394
    [Google Scholar]
  67. Westbrook A.M. Schiestl R.H. Atm-deficient mice exhibit increased sensitivity to dextran sulfate sodium-induced colitis characterized by elevated DNA damage and persistent immune activation. Cancer Res. 2010 70 5 1875 1884 10.1158/0008‑5472.CAN‑09‑2584 20179206
    [Google Scholar]
  68. Watson P. Lin K.M. Rodriguez-Bigas M.A. Smyrk T. Lemon S. Shashidharan M. Franklin B. Karr B. Thorson A. Lynch H.T. Colorectal carcinoma survival among hereditary nonpolyposis colorectal carcinoma family members. Cancer 1998 83 2 259 266 10.1002/(SICI)1097‑0142(19980715)83:2<259:AID‑CNCR9>3.0.CO;2‑L 9669808
    [Google Scholar]
  69. Azer S.A. Overview of molecular pathways in inflammatory bowel disease associated with colorectal cancer development. Eur. J. Gastroenterol. Hepatol. 2013 25 3 271 281 10.1097/MEG.0b013e32835b5803 23169309
    [Google Scholar]
  70. Brentnall T.A. Pan S. Bronner M.P. Crispin D.A. Mirzaei H. Cooke K. Tamura Y. Nikolskaya T. JeBailey, L.; Goodlett, D.R.; McIntosh, M.; Aebersold, R.; Rabinovitch, P.S.; Chen, R. Proteins that underlie neoplastic progression of ulcerative colitis. Proteomics Clin. Appl. 2009 3 11 1326 1337 10.1002/prca.200900061 20098637
    [Google Scholar]
  71. Sheibanie A.F. Yen J.H. Khayrullina T. Emig F. Zhang M. Tuma R. Ganea D. The proinflammatory effect of prostaglandin E2 in experimental inflammatory bowel disease is mediated through the IL-23-->IL-17 axis. J. Immunol. 2007 178 12 8138 8147 10.4049/jimmunol.178.12.8138 17548652
    [Google Scholar]
  72. Sobolewski C. Cerella C. Dicato M. Ghibelli L. Diederich M. The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int. J. Cell Biol. 2010 2010 1 21 10.1155/2010/215158 20339581
    [Google Scholar]
  73. Itatani Y. Kawada K. Sakai Y. Transforming growth Factor-β signaling pathway in colorectal cancer and its tumor microenvironment. Int. J. Mol. Sci. 2019 20 23 5822 10.3390/ijms20235822 31756952
    [Google Scholar]
  74. Troncone E. Marafini I. Stolfi C. Monteleone G. Transforming growth Factor-β1/Smad7 in intestinal immunity, inflammation, and cancer. Front. Immunol. 2018 9 1407 10.3389/fimmu.2018.01407 29973939
    [Google Scholar]
  75. Monteleone G. Pallone F. Mongersen, an Oral SMAD7 antisense oligonucleotide, and Crohn’s disease. N. Engl. J. Med. 2015 372 25 2461 10.1056/NEJMc1504845 26083213
    [Google Scholar]
  76. Ihara S. Hirata Y. Koike K. TGF-β in inflammatory bowel disease: A key regulator of immune cells, epithelium, and the intestinal microbiota. J. Gastroenterol. 2017 52 7 777 787 10.1007/s00535‑017‑1350‑1 28534191
    [Google Scholar]
  77. Feagins L.A. Role of transforming growth factor-β in inflammatory bowel disease and colitis-associated colon cancer. Inflamm. Bowel Dis. 2010 16 11 1963 1968 10.1002/ibd.21281 20848467
    [Google Scholar]
  78. Yoshimura A. Wakabayashi Y. Mori T. Cellular and molecular basis for the regulation of inflammation by TGF-. J. Biochem. 2010 147 6 781 792 10.1093/jb/mvq043 20410014
    [Google Scholar]
  79. Li J. Liu Y. Wang B. Xu Y. Ma A. Zhang F. Ge C. Yang Z. Li J. Liu Y. Myeloid TGF-β signaling contributes to colitis-associated tumorigenesis in mice. Carcinogenesis 2013 34 9 2099 2108 10.1093/carcin/bgt172 23695722
    [Google Scholar]
  80. Hundorfean G. Neurath M.F. Mudter J. Functional relevance of T helper 17 (Th17) cells and the IL-17 cytokine family in inflammatory bowel disease. Inflamm. Bowel Dis. 2012 18 1 180 186 10.1002/ibd.21677 21381156
    [Google Scholar]
  81. Erdman S.E. Poutahidis T. Roles for inflammation and regulatory T cells in colon cancer. Toxicol. Pathol. 2010 38 1 76 87 10.1177/0192623309354110 20019355
    [Google Scholar]
  82. Hawinkels L.J A C. Paauwe M. Verspaget H.W. Wiercinska E. van der Zon J.M. van der Ploeg K. Koelink P.J. Lindeman J.H.N. Mesker W. ten Dijke P. Sier C F M. Interaction with colon cancer cells hyperactivates TGF-β signaling in cancer-associated fibroblasts. Oncogene 2014 33 1 97 107 10.1038/onc.2012.536 23208491
    [Google Scholar]
  83. Nowarski R. Jackson R. Gagliani N. de Zoete M.R. Palm N.W. Bailis W. Low J.S. Harman C.C.D. Graham M. Elinav E. Flavell R.A. Epithelial IL-18 equilibrium controls barrier function in colitis. Cell 2015 163 6 1444 1456 10.1016/j.cell.2015.10.072 26638073
    [Google Scholar]
  84. Ungaro R. Colombel J.F. Lissoos T. Peyrin-Biroulet L. A treat-to-target update in ulcerative colitis: A systematic review. Am. J. Gastroenterol. 2019 114 6 874 883 10.14309/ajg.0000000000000183 30908297
    [Google Scholar]
  85. Manichanh C. Borruel N. Casellas F. Guarner F. The gut microbiota in IBD. Nat. Rev. Gastroenterol. Hepatol. 2012 9 10 599 608 10.1038/nrgastro.2012.152 22907164
    [Google Scholar]
  86. Wong S.H. Yu J. Gut microbiota in colorectal cancer: Mechanisms of action and clinical applications. Nat. Rev. Gastroenterol. Hepatol. 2019 16 11 690 704 10.1038/s41575‑019‑0209‑8 31554963
    [Google Scholar]
  87. Zou S. Fang L. Lee M.H. Dysbiosis of gut microbiota in promoting the development of colorectal cancer. Gastroenterol. Rep. (Oxf.) 2018 6 1 1 12 10.1093/gastro/gox031 29479437
    [Google Scholar]
  88. Vivarelli S. Salemi R. Candido S. Falzone L. Santagati M. Stefani S. Torino F. Banna G.L. Tonini G. Libra M. Gut microbiota and cancer: From pathogenesis to therapy. Cancers (Basel) 2019 11 1 38 10.3390/cancers11010038 30609850
    [Google Scholar]
  89. Fulde M. Sommer F. Chassaing B. van Vorst K. Dupont A. Hensel M. Basic M. Klopfleisch R. Rosenstiel P. Bleich A. Bäckhed F. Gewirtz A.T. Hornef M.W. Neonatal selection by Toll-like receptor 5 influences long-term gut microbiota composition. Nature 2018 560 7719 489 493 10.1038/s41586‑018‑0395‑5 30089902
    [Google Scholar]
  90. Maslowski K.M. Mackay C.R. Diet, gut microbiota and immune responses. Nat. Immunol. 2011 12 1 5 9 10.1038/ni0111‑5 21169997
    [Google Scholar]
  91. Chu F. Shi M. Lang Y. Shen D. Jin T. Zhu J. Cui L. Gut microbiota in multiple sclerosis and experimental autoimmune encephalomyelitis: Current applications and future perspectives. Mediators Inflamm. 2018 2018 1 17 10.1155/2018/8168717 29805314
    [Google Scholar]
  92. Karlsson F. Tremaroli V. Nielsen J. Bäckhed F. Assessing the human gut microbiota in metabolic diseases. Diabetes 2013 62 10 3341 3349 10.2337/db13‑0844 24065795
    [Google Scholar]
  93. Khan I. Ullah N. Zha L. Bai Y. Khan A. Zhao T. Che T. Zhang C. Alteration of gut microbiota in inflammatory bowel Disease (IBD): Cause or consequence? IBD treatment targeting the gut microbiome. Pathogens 2019 8 3 126 10.3390/pathogens8030126 31412603
    [Google Scholar]
  94. Frumento D. Țălu S. A linkage between inflammatory bowel diseases and type 2 diabetes. Warasan Technol. Suranaree 2023 30 1 7
    [Google Scholar]
  95. Kim C.H. Complex regulatory effects of gut microbial short-chain fatty acids on immune tolerance and autoimmunity. Cell. Mol. Immunol. 2023 20 4 341 350 10.1038/s41423‑023‑00987‑1 36854801
    [Google Scholar]
  96. Belkaid Y. Hand T.W. Role of the microbiota in immunity and inflammation. Cell 2014 157 1 121 141 10.1016/j.cell.2014.03.011 24679531
    [Google Scholar]
  97. Zhou P. Chen C. Patil S. Dong S. Unveiling the therapeutic symphony of probiotics, prebiotics, and postbiotics in gut-immune harmony. Front. Nutr. 2024 11 1355542 10.3389/fnut.2024.1355542 38389798
    [Google Scholar]
  98. Borody T. Wettstein A. Campbell J. Leis S. Torres M. Finlayson S. Nowak A. Fecal microbiota transplantation in ulcerative colitis: Review of 24 years experience. Am. J. Gastroenterol. 2012 107 S665 10.14309/00000434‑201210001‑01644
    [Google Scholar]
  99. Ahmed I. Roy B. Khan S. Septer S. Umar S. Microbiome, metabolome and inflammatory bowel disease. Microorganisms 2016 4 2 20 10.3390/microorganisms4020020 27681914
    [Google Scholar]
  100. Bryan P.F. Karla C. Edgar Alejandro M.T. Sara Elva E.P. Gemma F. Luz C. Sphingolipids as mediators in the crosstalk between microbiota and intestinal cells: Implications for inflammatory bowel disease. Mediators Inflamm. 2016 2016 1 11 10.1155/2016/9890141 27656050
    [Google Scholar]
  101. West C.E. Renz H. Jenmalm M.C. Kozyrskyj A.L. Allen K.J. Vuillermin P. Prescott S.L. MacKay C. Salminen S. Wong G. Sinn J. Stokholm J. Bisgaard H. Pawankar R. Noakes P. Kesper D. Tulic M. The gut microbiota and inflammatory noncommunicable diseases: Associations and potentials for gut microbiota therapies. J. Allergy Clin. Immunol. 2015 135 1 3 13 10.1016/j.jaci.2014.11.012 25567038
    [Google Scholar]
  102. Elinav E. Nowarski R. Thaiss C.A. Hu B. Jin C. Flavell R.A. Inflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms. Nat. Rev. Cancer 2013 13 11 759 771 10.1038/nrc3611 24154716
    [Google Scholar]
  103. Miyoshi J. Bobe A.M. Miyoshi S. Huang Y. Hubert N. Delmont T.O. Eren A.M. Leone V. Chang E.B. Peripartum antibiotics promote gut dysbiosis, loss of immune tolerance, and inflammatory bowel disease in genetically prone offspring. Cell Rep. 2017 20 2 491 504 10.1016/j.celrep.2017.06.060 28700948
    [Google Scholar]
  104. Zhou Q. Shen Z.F. Wu B. Xu C. He Z. Chen T. Shang H. Xie C. Huang S. Chen Y. Chen H. Han S. Risk of colorectal cancer in ulcerative colitis patients: A systematic review and meta-analysis. Gastroenterol. Res. Pract. 2019 2019 1 11 10.1155/2019/5363261 31781191
    [Google Scholar]
  105. Song M. Garrett W.S. Chan A.T. Nutrients, foods, and colorectal cancer prevention. Gastroenterology 2015 148 6 1244 1260.e16 10.1053/j.gastro.2014.12.035 25575572
    [Google Scholar]
  106. Terzić J. Grivennikov S. Karin E. Karin M. Inflammation and colon cancer. Gastroenterology 2010 138 6 2101 2114.e5 10.1053/j.gastro.2010.01.058 20420949
    [Google Scholar]
  107. Viennois E. Chen F. Merlin D. NF-κB pathway in colitis-associated cancers. Transl. Gastrointest. Cancer 2013 2 1 21 29 23626930
    [Google Scholar]
  108. Couturier-Maillard A. Secher T. Rehman A. Normand S. De Arcangelis A. Haesler R. Huot L. Grandjean T. Bressenot A. Delanoye-Crespin A. Gaillot O. Schreiber S. Lemoine Y. Ryffel B. Hot D. Nùñez G. Chen G. Rosenstiel P. Chamaillard M. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J. Clin. Invest. 2013 123 2 700 711 10.1172/JCI62236 23281400
    [Google Scholar]
  109. Franco A. Sikalidis A.K. Solís Herruzo J.A. Colorectal cancer: Influence of diet and lifestyle factors. Rev. Esp. Enferm. Dig. 2005 97 6 432 448 10.4321/S1130‑01082005000600006 16011418
    [Google Scholar]
  110. Arthur J.C. Perez-Chanona E. Mühlbauer M. Tomkovich S. Uronis J.M. Fan T.J. Campbell B.J. Abujamel T. Dogan B. Rogers A.B. Rhodes J.M. Stintzi A. Simpson K.W. Hansen J.J. Keku T.O. Fodor A.A. Jobin C. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012 338 6103 120 123 10.1126/science.1224820 22903521
    [Google Scholar]
  111. Dejea C.M. Fathi P. Craig J.M. Boleij A. Taddese R. Geis A.L. Wu X. DeStefano Shields C.E. Hechenbleikner E.M. Huso D.L. Anders R.A. Giardiello F.M. Wick E.C. Wang H. Wu S. Pardoll D.M. Housseau F. Sears C.L. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 2018 359 6375 592 597 10.1126/science.aah3648 29420293
    [Google Scholar]
  112. Sporn M.B. Suh N. Chemoprevention: An essential approach to controlling cancer. Nat. Rev. Cancer 2002 2 7 537 543 10.1038/nrc844 12094240
    [Google Scholar]
  113. Burke K.E. Nayor J. Campbell E.J. Ananthakrishnan A.N. Khalili H. Richter J.M. Interval colorectal cancer in inflammatory bowel disease: The role of guideline adherence. Dig. Dis. Sci. 2020 65 1 111 118 10.1007/s10620‑019‑05754‑9 31367882
    [Google Scholar]
  114. Fritsch J. Garces L. Quintero M.A. Pignac-Kobinger J. Santander A.M. Fernández I. Ban Y.J. Kwon D. Phillips M.C. Knight K. Mao Q. Santaolalla R. Chen X.S. Maruthamuthu M. Solis N. Damas O.M. Kerman D.H. Deshpande A.R. Lewis J.E. Chen C. Abreu M.T. Low-Fat, high-fiber diet reduces markers of inflammation and dysbiosis and improves quality of life in patients with ulcerative colitis. Clin. Gastroenterol. Hepatol. 2021 19 6 1189 1199.e30 10.1016/j.cgh.2020.05.026 32445952
    [Google Scholar]
  115. Tomasello G. Mazzola M. Leone A. Sinagra E. Zummo G. Farina F. Damiani P. Cappello F. Gerges Geagea A. Jurjus A. Bou Assi T. Messina M. Carini F. Nutrition, oxidative stress and intestinal dysbiosis: Influence of diet on gut microbiota in inflammatory bowel diseases. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2016 160 4 461 466 10.5507/bp.2016.052 27812084
    [Google Scholar]
  116. Liu R.H. Health-promoting components of fruits and vegetables in the diet. Adv. Nutr. 2013 4 3 384S 392S 10.3945/an.112.003517 23674808
    [Google Scholar]
  117. Baby B. Antony P. Vijayan R. Antioxidant and anticancer properties of berries. Crit. Rev. Food Sci. Nutr. 2018 58 15 2491 2507 10.1080/10408398.2017.1329198 28609132
    [Google Scholar]
  118. Zhang Y.J. Gan R.Y. Li S. Zhou Y. Li A.N. Xu D.P. Li H.B. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 2015 20 12 21138 21156 10.3390/molecules201219753 26633317
    [Google Scholar]
  119. Liu R.H. Potential synergy of phytochemicals in cancer prevention: Mechanism of action. J. Nutr. 2004 134 12 3479S 3485S [Suppl 10.1093/jn/134.12.3479S 15570057
    [Google Scholar]
  120. Baptista S.L. Copetti C.L.K. Cardoso A.L. Di Pietro P.F. Biological activities of açaí (Euterpe oleracea Mart.) and juçara (Euterpe edulis Mart.) intake in humans: an integrative review of clinical trials. Nutr. Rev. 2021 79 12 1375 1391 10.1093/nutrit/nuab002 33555024
    [Google Scholar]
  121. de Almeida Magalhães T.S.S. de Oliveira Macedo P.C. Converti A. Neves de Lima Á.A. The Use of Euterpe oleracea Mart. As a New Perspective for disease treatment and prevention. Biomolecules 2020 10 6 813 10.3390/biom10060813 32466439
    [Google Scholar]
  122. Yamaguchi K.K.L. Pereira L.F.R. Lamarão C.V. Lima E.S. da Veiga-Junior V.F. Amazon acai: Chemistry and biological activities: A review. Food Chem. 2015 179 137 151 10.1016/j.foodchem.2015.01.055 25722148
    [Google Scholar]
  123. Monteiro C.E.S. Filho H.B.C. Silva F.G.O. de Souza M.F.F. Sousa J.A.O. Franco Á.X. Resende Â.C. de Moura R.S. de Souza M.H.L. Soares P.M.G. Barbosa A.L.R. Euterpe oleracea Mart. (Açaí) attenuates experimental colitis in rats: involvement of TLR4/COX-2/NF-ĸB. Inflammopharmacology 2021 29 1 193 204 10.1007/s10787‑020‑00763‑x 32996043
    [Google Scholar]
  124. Fragoso M.F. Romualdo G.R. Ribeiro D.A. Barbisan L.F. Açai (Euterpe oleracea Mart.) feeding attenuates dimethylhydrazine-induced rat colon carcinogenesis. Food Chem. Toxicol. 2013 58 68 76 10.1016/j.fct.2013.04.011 23597449
    [Google Scholar]
  125. Choi Y.J. Choi Y.J. Kim N. Nam R.H. Lee S. Lee H.S. Lee H.N. Surh Y.J. Lee D.H. Açaí berries inhibit colon tumorigenesis in azoxymethane/dextran sulfate sodium-treated mice. Gut Liver 2017 11 2 243 252 10.5009/gnl16068 27965474
    [Google Scholar]
  126. Boyer J. Liu R.H. Apple phytochemicals and their health benefits. Nutr. J. 2004 3 1 5 10.1186/1475‑2891‑3‑5 15140261
    [Google Scholar]
  127. Gerhauser C. Cancer chemopreventive potential of apples, apple juice, and apple components. Planta Med. 2008 74 13 1608 1624 10.1055/s‑0028‑1088300 18855307
    [Google Scholar]
  128. Soler C. Soriano J.M. Mañes J. Apple-products phytochemicals and processing: a review. Nat. Prod. Commun 2009 4 (5) 10.1177/1934578X0900400504 19445316 1934578X0900400504
    [Google Scholar]
  129. Nezbedova L. McGhie T. Christensen M. Heyes J. Nasef N.A. Mehta S. Onco-preventive and chemo-protective effects of apple bioactive compounds. Nutrients 2021 13 11 4025 10.3390/nu13114025 34836282
    [Google Scholar]
  130. Tu S.H. Chen L.C. Ho Y.S. An apple a day to prevent cancer formation: Reducing cancer risk with flavonoids. Yao Wu Shi Pin Fen Xi 2017 25 1 119 124 28911529
    [Google Scholar]
  131. Waldbauer K. McKinnon R. Kopp B. Apple pomace as potential source of natural active compounds. Planta Med. 2017 83 12/13 994 1010 10.1055/s‑0043‑111898 28701021
    [Google Scholar]
  132. Li Y. Wang S. Sun Y. Xu W. Zheng H. Wang Y. Tang Y. Gao X. Song C. Long Y. Liu J. Liu L. Mei Q. Apple polysaccharide protects ICR mice against colitis associated colorectal cancer through the regulation of microbial dysbiosis. Carbohydr. Polym. 2020 230 115726 10.1016/j.carbpol.2019.115726 31887919
    [Google Scholar]
  133. Sun Y. Diao F. Niu Y. Li X. Zhou H. Mei Q. Li Y. Apple polysaccharide prevents from colitis-associated carcinogenesis through regulating macrophage polarization. Int. J. Biol. Macromol. 2020 161 704 711 10.1016/j.ijbiomac.2020.06.121 32544579
    [Google Scholar]
  134. Bars-Cortina D. Martínez-Bardají A. Macià A. Motilva M.J. Piñol-Felis C. Consumption evaluation of one apple flesh a day in the initial phases prior to adenoma/adenocarcinoma in an azoxymethane rat colon carcinogenesis model. J. Nutr. Biochem. 2020 83 108418 10.1016/j.jnutbio.2020.108418 32592950
    [Google Scholar]
  135. Barth S.W. Fähndrich C. Bub A. Dietrich H. Watzl B. Will F. Briviba K. Rechkemmer G. Cloudy apple juice decreases DNA damage, hyperproliferation and aberrant crypt foci development in the distal colon of DMH-initiated rats. Carcinogenesis 2005 26 8 1414 1421 10.1093/carcin/bgi082 15802299
    [Google Scholar]
  136. Pietro Femia A. Luceri C. Bianchini F. Salvadori M. Salvianti F. Pinzani P. Dolara P. Calorini L. Caderni G. M arie M énard apples with high polyphenol content and a low‐fat diet reduce 1,2‐dimethylhydrazine‐induced colon carcinogenesis in rats: Effects on inflammation and apoptosis. Mol. Nutr. Food Res. 2012 56 8 1353 1357 10.1002/mnfr.201200122 22715065
    [Google Scholar]
  137. Gossé F. Guyot S. Roussi S. Lobstein A. Fischer B. Seiler N. Raul F. Chemopreventive properties of apple procyanidins on human colon cancer-derived metastatic SW620 cells and in a rat model of colon carcinogenesis. Carcinogenesis 2005 26 7 1291 1295 10.1093/carcin/bgi074 15790589
    [Google Scholar]
  138. Zhang D. Mi M. Jiang F. Sun Y. Li Y. Yang L. Fan L. Li Q. Meng J. Yue Z. Liu L. Mei Q. Apple polysaccharide reduces NF-Kb mediated colitis-associated colon carcinogenesis. Nutr. Cancer 2015 67 1 177 190 10.1080/01635581.2015.965336 25412264
    [Google Scholar]
  139. Liu L. Li Y.H. Niu Y.B. Sun Y. Guo Z.J. Li Q. Li C. Feng J. Cao S.S. Mei Q.B. An apple oligogalactan prevents against inflammation and carcinogenesis by targeting LPS/TLR4/NF- B pathway in a mouse model of colitis-associated colon cancer. Carcinogenesis 2010 31 10 1822 1832 10.1093/carcin/bgq070 20400476
    [Google Scholar]
  140. Sun Y. Fan L. Mian W. Zhang F. Liu X. Tang Y. Zeng X. Mei Q. Li Y. Modified apple polysaccharide influences MUC-1 695 expression to prevent ICR mice from colitis-associated 696 carcinogenesis. Int. J. Biol. Macromol, 2018 120 (Pt B) 1387 1395 10.1016/j.ijbiomac.2018.09.142 30266641
    [Google Scholar]
  141. Li Y. Fan L. Tang T. Tang Y. Xie M. Zeng X. Sun Y. Mei Q. Modified apple polysaccharide prevents colitis through modulating IL-22 and IL-22BP expression. Int. J. Biol. Macromol. 2017 103 1217 1223 10.1016/j.ijbiomac.2017.05.172 28579463
    [Google Scholar]
  142. Zhang D. Li Y. Mi M. Jiang F.L. Yue Z. Sun Y. Fan L. Meng J. Zhang X. Liu L. Mei Q.B. Modified apple polysaccharides suppress the migration and invasion of colorectal cancer cells induced by lipopolysaccharide. Nutr. Res. 2013 33 10 839 848 10.1016/j.nutres.2013.06.004 24074742
    [Google Scholar]
  143. Chen T. Shi N. Afzali A. Chemopreventive effects of strawberry and black raspberry on colorectal cancer in inflammatory bowel disease. Nutrients 2019 11 6 1261 10.3390/nu11061261 31163684
    [Google Scholar]
  144. Kula M. Krauze-Baranowska M. Rubus occidentalis: The black raspberry—its potential in the prevention of cancer. Nutr. Cancer 2016 68 1 18 28 10.1080/01635581.2016.1115095 26699735
    [Google Scholar]
  145. Seeram N.P. Berry fruits for cancer prevention: current status and future prospects. J. Agric. Food Chem. 2008 56 3 630 635 10.1021/jf072504n 18211019
    [Google Scholar]
  146. Stoner G. Wang L. Zikri N. Chen T. Hecht S. Huang C. Sardo C. Lechner J. Cancer prevention with freeze-dried berries and berry components. Semin. Cancer Biol. 2007 17 5 403 410 10.1016/j.semcancer.2007.05.001 17574861
    [Google Scholar]
  147. Wang L.S. Kuo C.T. Huang T.H.M. Yearsley M. Oshima K. Stoner G.D. Yu J. Lechner J.F. Huang Y.W. Black raspberries protectively regulate methylation of Wnt pathway genes in precancerous colon tissue. Cancer Prev. Res., (Phila) 2013 6 (12) 1317 1327 10.1158/1940‑6207.CAPR‑13‑0077 24129635
    [Google Scholar]
  148. Wang L.S. Kuo C.T. Stoner K. Yearsley M. Oshima K. Yu J. Huang T.H.M. Rosenberg D. Peiffer D. Stoner G. Huang Y.W. Dietary black raspberries modulate DNA methylation in dextran sodium sulfate (DSS)-induced ulcerative colitis. Carcinogenesis 2013 34 12 2842 2850 10.1093/carcin/bgt310 24067901
    [Google Scholar]
  149. Huang Y.W. Echeveste C.E. Oshima K. Zhang J. Yearsley M. Yu J. Wang L.S. Anti-colonic inflammation by black raspberries through regulating Toll-like Receptor-4 Signaling in Interlukin-10 Knockout Mice. J. Cancer Prev. 2020 25 2 119 125 10.15430/JCP.2020.25.2.119 32647653
    [Google Scholar]
  150. Pan P. Kang S. Wang Y. Liu K. Oshima K. Huang Y.W. Zhang J. Yearsley M. Yu J. Wang L.S. Black raspberries enhance natural killer cell infiltration into the colon and suppress the progression of colorectal cancer. Front. Immunol. 2017 8 997 10.3389/fimmu.2017.00997 28861089
    [Google Scholar]
  151. Lippert E. Ruemmele P. Obermeier F. Goelder S. Kunst C. Rogler G. Dunger N. Messmann H. Hartmann A. Endlicher E. Anthocyanins prevent colorectal cancer development in a mouse model. Digestion 2017 95 4 275 280 10.1159/000475524 28494451
    [Google Scholar]
  152. Farzaei M.H. El-Senduny F.F. Momtaz S. Parvizi F. Iranpanah A. Tewari D. Naseri R. Abdolghaffari A.H. Rezaei N. An update on dietary consideration in inflammatory bowel disease: Anthocyanins and more. Expert Rev. Gastroenterol. Hepatol. 2018 12 10 1007 1024 10.1080/17474124.2018.1513322 30136591
    [Google Scholar]
  153. Pan P. Skaer C.W. Stirdivant S.M. Young M.R. Stoner G.D. Lechner J.F. Huang Y.W. Wang L.S. Beneficial regulation of metabolic profiles by black raspberries in human colorectal cancer patients. Cancer Prev. Res., (Phila) 2015 8 (8) 743 750 10.1158/1940‑6207.CAPR‑15‑0065 26054356
    [Google Scholar]
  154. Wang L.S. Arnold M. Huang Y.W. Sardo C. Seguin C. Martin E. Huang T.H.M. Riedl K. Schwartz S. Frankel W. Pearl D. Xu Y. Winston J. Yang G.Y. Stoner G. Modulation of genetic and epigenetic biomarkers of colorectal cancer in humans by black raspberries: A phase I pilot study. Clin. Cancer Res. 2011 17 3 598 610 10.1158/1078‑0432.CCR‑10‑1260 21123457
    [Google Scholar]
  155. Tian Q. Xu Z. Sun X. Deavila J. Du M. Zhu M. Grape pomace inhibits colon carcinogenesis by suppressing cell proliferation and inducing epigenetic modifications. J. Nutr. Biochem. 2020 84 108443 10.1016/j.jnutbio.2020.108443 32629240
    [Google Scholar]
  156. Nassiri-Asl M. Hosseinzadeh H. Review of the pharmacological effects of Vitis vinifera (Grape) and its bioactive compounds. Phytother. Res. 2009 23 9 1197 1204 10.1002/ptr.2761 19140172
    [Google Scholar]
  157. Terra X. Montagut G. Bustos M. Llopiz N. Ardèvol A. Bladé C. Fernández-Larrea J. Pujadas G. Salvadó J. Arola L. Blay M. Grape-seed procyanidins prevent low-grade inflammation by modulating cytokine expression in rats fed a high-fat diet. J. Nutr. Biochem. 2009 20 3 210 218 10.1016/j.jnutbio.2008.02.005 18602813
    [Google Scholar]
  158. Cheah K.Y. Bastian S.E.P. Acott T.M.V. Abimosleh S.M. Lymn K.A. Howarth G.S. Grape seed extract reduces the severity of selected disease markers in the proximal colon of dextran sulphate sodium-induced colitis in rats. Dig. Dis. Sci. 2013 58 4 970 977 10.1007/s10620‑012‑2464‑1 23143736
    [Google Scholar]
  159. Li X.L. Cai Y.Q. Qin H. Wu Y.J. Therapeutic effect and mechanism of proanthocyanidins from grape seeds in rats with TNBS-induced ulcerative colitis. Can. J. Physiol. Pharmacol. 2008 86 12 841 849 10.1139/Y08‑089 19088805
    [Google Scholar]
  160. Minaiyan M. Niknami E. Sajjadi S-E. Talebi A. Protective effect of Vitis vinifera (black grape) seed extract and oil on acetic acid-induced colitis in rats. Int. J. Prev. Med. 2020 11 1 102 10.4103/ijpvm.IJPVM_362_19 33042499
    [Google Scholar]
  161. Sheng K. Zhang G. Sun M. He S. Kong X. Wang J. Zhu F. Zha X. Wang Y. Grape seed proanthocyanidin extract ameliorates dextran sulfate sodium-induced colitis through intestinal barrier improvement, oxidative stress reduction, and inflammatory cytokines and gut microbiota modulation. Food Funct. 2020 11 9 7817 7829 10.1039/D0FO01418D 32808642
    [Google Scholar]
  162. Wang Y.H. Yang X.L. Wang L. Cui M.X. Cai Y.Q. Li X.L. Wu Y.J. Effects of proanthocyanidins from grape seed on treatment of recurrent ulcerative colitis in rats. Can. J. Physiol. Pharmacol. 2010 88 9 888 898 10.1139/Y10‑071 20921975
    [Google Scholar]
  163. Li X. Yang X. Cai Y. Qin H. Wang L. Wang Y. Huang Y. Wang X. Yan S. Wang L. Zhao X. Li W. Li S. Chen J. Wu Y. Proanthocyanidins from grape seeds modulate the NF-κB Signal transduction pathways in rats with TNBS-induced ulcerative colitis. Molecules 2011 16 8 6721 6731 10.3390/molecules16086721 25134774
    [Google Scholar]
  164. Chartier L.C. Howarth G.S. Trinder D. Mashtoub S. Emu oil and grape seed extract reduce tumour burden and disease parameters in murine colitis-associated colorectal cancer. Carcinogenesis 2021 42 2 202 209 10.1093/carcin/bgaa099 32940671
    [Google Scholar]
  165. Zhu X. Tian X. Yang M. Yu Y. Zhou Y. Gao Y. Zhang L. Li Z. Xiao Y. Moses R.E. Li X. Zhang B. Procyanidin B2 Promotes intestinal injury repair and attenuates colitis-associated tumorigenesis via Suppression of Oxidative Stress in Mice. Antioxid. Redox Signal. 2021 35 2 75 92 10.1089/ars.2019.7911 32940048
    [Google Scholar]
  166. Katz D.L. Doughty K. Ali A. Cocoa and chocolate in human health and disease. Antioxid. Redox Signal. 2011 15 10 2779 2811 10.1089/ars.2010.3697 21470061
    [Google Scholar]
  167. Dugo L. Tripodo G. Santi L. Fanali C. Cocoa polyphenols: Chemistry, bioavailability and effects on cardiovascular performance. Curr. Med. Chem. 2019 25 37 4903 4917 10.2174/0929867323666160919094339 27655076
    [Google Scholar]
  168. Garcia J.P. Santana A. Baruqui D.L. Suraci N. The Cardiovascular effects of chocolate. Rev. Cardiovasc. Med. 2018 19 4 123 127 10.31083/j.rcm.2018.04.3187 31064163
    [Google Scholar]
  169. Matsumoto C. Cocoa polyphenols: Evidence from epidemiological studies. Curr. Pharm. Des. 2018 24 2 140 145 10.2174/1381612823666171115095720 29141542
    [Google Scholar]
  170. Goya L. Martín M. Sarriá B. Ramos S. Mateos R. Bravo L. Effect of cocoa and its flavonoids on biomarkers of inflammation: Studies of cell culture, animals and humans. Nutrients 2016 8 4 212 10.3390/nu8040212 27070643
    [Google Scholar]
  171. Martín M. Goya L. Ramos S. Preventive effects of cocoa and cocoa antioxidants in colon cancer. Diseases 2016 4 1 6 10.3390/diseases4010006 28933386
    [Google Scholar]
  172. Massot-Cladera M. Pérez-Berezo T. Franch A. Castell M. Pérez-Cano F.J. Cocoa modulatory effect on rat faecal microbiota and colonic crosstalk. Arch. Biochem. Biophys. 2012 527 2 105 112 10.1016/j.abb.2012.05.015 22663919
    [Google Scholar]
  173. Andújar I. Recio M.C. Giner R.M. Cienfuegos-Jovellanos E. Laghi S. Muguerza B. Ríos J.L. Inhibition of ulcerative colitis in mice after oral administration of a polyphenol-enriched cocoa extract is mediated by the inhibition of STAT1 and STAT3 phosphorylation in colon cells. J. Agric. Food Chem. 2011 59 12 6474 6483 10.1021/jf2008925 21574661
    [Google Scholar]
  174. Hong M.Y. Nulton E. Shelechi M. Hernández L.M. Nemoseck T. Effects of dark chocolate on azoxymethane-induced colonic aberrant crypt foci. Nutr. Cancer 2013 65 5 677 685 10.1080/01635581.2013.789542 23859035
    [Google Scholar]
  175. Rodríguez-Ramiro I. Ramos S. López-Oliva E. Agis-Torres A. Bravo L. Goya L. Martín M.A. Cocoa polyphenols prevent inflammation in the colon of azoxymethane-treated rats and in TNF-α-stimulated Caco-2 cells. Br. J. Nutr. 2013 110 2 206 215 10.1017/S0007114512004862 23186731
    [Google Scholar]
  176. Pandurangan A.K. Saadatdoust Z. Esa N.M. Hamzah H. Ismail A. Dietary cocoa protects against colitis-associated cancer by activating the Nrf2/Keap1 pathway. Biofactors 2015 41 1 1 14 10.1002/biof.1195 25545372
    [Google Scholar]
  177. Saadatdoust Z. Pandurangan A.K. Ananda Sadagopan S.K. Mohd Esa N. Ismail A. Mustafa M.R. Dietary cocoa inhibits colitis associated cancer: A crucial involvement of the IL-6/STAT3 pathway. J. Nutr. Biochem. 2015 26 12 1547 1558 10.1016/j.jnutbio.2015.07.024 26355019
    [Google Scholar]
  178. Gao Q.H. Wu C.S. Wang M. The jujube (Ziziphus jujuba Mill.) fruit: A review of current knowledge of fruit composition and health benefits. J. Agric. Food Chem. 2013 61 14 3351 3363 10.1021/jf4007032 23480594
    [Google Scholar]
  179. Lu Y. Bao T. Mo J. Ni J. Chen W. Research advances in bioactive components and health benefits of jujube (Ziziphus jujuba Mill.) fruit. J. Zhejiang Univ. Sci. B 2021 22 6 431 449 10.1631/jzus.B2000594 34128368
    [Google Scholar]
  180. Ebrahimi S. Mollaei H. Hoshyar R. Ziziphus Jujube: A review study of its anticancer effects in various tumor models invitro and invivo. Cell. Mol. Biol. 2017 63 10 122 127 10.14715/cmb/2017.63.10.19 29096755
    [Google Scholar]
  181. Yue Y. Wu S. Li Z. Li J. Li X. Xiang J. Ding H. Wild jujube polysaccharides protect against experimental inflammatory bowel disease by enabling enhanced intestinal barrier function. Food Funct. 2015 6 8 2568 2577 10.1039/C5FO00378D 26114600
    [Google Scholar]
  182. Periasamy S. Wu W.H. Chien S.P. Liu C.T. Liu M.Y. Dietary Ziziphus jujuba Fruit Attenuates colitis-associated tumorigenesis: A pivotal role of the NF-κB/IL-6/JAK1/STAT3 pathway. Nutr. Cancer 2020 72 1 120 132 10.1080/01635581.2019.1615515 31135224
    [Google Scholar]
  183. Ji X. Hou C. Zhang X. Han L. Yin S. Peng Q. Wang M. Microbiome-metabolomic analysis of the impact of Zizyphus jujuba cv. Muzao polysaccharides consumption on colorectal cancer mice fecal microbiota and metabolites. Int. J. Biol. Macromol. 2019 131 1067 1076 10.1016/j.ijbiomac.2019.03.175 30926487
    [Google Scholar]
  184. Abd Rani N.Z. Husain K. Kumolosasi E. Moringa Genus: A review of phytochemistry and pharmacology. Front. Pharmacol. 2018 9 108 10.3389/fphar.2018.00108 29503616
    [Google Scholar]
  185. Kumar S. Bhattacharya A. Tiwari P. Sahu P.K. A review of the phytochemical and pharmacological characteristics of Moringa oleifera. J. Pharm. Bioallied Sci. 2018 10 4 181 191 10.4103/JPBS.JPBS_126_18 30568375
    [Google Scholar]
  186. Dhakad A.K. Ikram M. Sharma S. Khan S. Pandey V.V. Singh A. Biological, nutritional, and therapeutic significance of Moringa oleifera Lam. Phytother. Res. 2019 33 11 2870 2903 10.1002/ptr.6475 31453658
    [Google Scholar]
  187. Anwar F. Latif S. Ashraf M. Gilani A.H. Moringa oleifera: A food plant with multiple medicinal uses. Phytother. Res. 2007 21 1 17 25 10.1002/ptr.2023 17089328
    [Google Scholar]
  188. Ercan K. Gecesefa O.F. Taysi M.E. Ali Ali O.A. Taysi S. Moringa oleifera: A review of its occurrence, pharmacological importance and oxidative stress. Mini Rev. Med. Chem. 2021 21 3 380 396 10.2174/18755607MTA4wNTkxz 32723270
    [Google Scholar]
  189. Kou X. Li B. Olayanju J. Drake J. Chen N. Nutraceutical or pharmacological potential of Moringa oleifera Lam. Nutrients 2018 10 3 343 10.3390/nu10030343 29534518
    [Google Scholar]
  190. Abdull Razis A.F. Ibrahim M.D. Kntayya S.B. Health benefits of Moringa oleifera. Asian Pac. J. Cancer Prev. 2014 15 20 8571 8576 10.7314/APJCP.2014.15.20.8571 25374169
    [Google Scholar]
  191. Budda S. Butryee C. Tuntipopipat S. Rungsipipat A. Wangnaithum S. Lee J.S. Kupradinun P. Suppressive effects of Moringa oleifera Lam pod against mouse colon carcinogenesis induced by azoxymethane and dextran sodium sulfate. Asian Pac. J. Cancer Prev. 2011 12 12 3221 3228 22471457
    [Google Scholar]
  192. Wen Z. Tian H. Liang Y. Guo Y. Deng M. Liu G. Li Y. Liu D. Sun B. Moringa oleifera polysaccharide regulates colonic microbiota and immune repertoire in C57BL/6 mice. Int. J. Biol. Macromol. 2022 198 135 146 10.1016/j.ijbiomac.2021.12.085 34973268
    [Google Scholar]
  193. Peng L. Gao X. Nie L. Xie J. Dai T. Shi C. Tao L. Wang Y. Tian Y. Sheng J. Astragalin attenuates dextran sulfate Sodium (DSS)-Induced Acute experimental colitis by alleviating gut microbiota dysbiosis and inhibiting NF-κb activation in mice. Front. Immunol. 2020 11 2058 10.3389/fimmu.2020.02058 33042117
    [Google Scholar]
  194. Cuellar-Núñez M.L. Gonzalez de Mejia E. Loarca-Piña G. Moringa oleifera leaves alleviated inflammation through downregulation of IL-2, IL-6, and TNF-α in a colitis-associated colorectal cancer model. Food Res. Int. 2021 144 110318 10.1016/j.foodres.2021.110318 34053523
    [Google Scholar]
  195. Neto C.C. Cranberries: ripe for more cancer research? J. Sci. Food Agric. 2011 91 13 2303 2307 10.1002/jsfa.4621 21910124
    [Google Scholar]
  196. Zhao S. Liu H. Gu L. American cranberries and health benefits – an evolving story of 25 years. J. Sci. Food Agric. 2020 100 14 5111 5116 10.1002/jsfa.8882 29315597
    [Google Scholar]
  197. Blumberg J.B. Camesano T.A. Cassidy A. Kris-Etherton P. Howell A. Manach C. Ostertag L.M. Sies H. Skulas-Ray A. Vita J.A. Cranberries and their bioactive constituents in human health. Adv. Nutr. 2013 4 6 618 632 10.3945/an.113.004473 24228191
    [Google Scholar]
  198. Baranowska M. Bartoszek A. Antioxidant and antimicrobial properties of bioactive phytochemicals from cranberry. Postepy Hig. Med. Dosw. 2016 70 0 1460 1468 10.5604/17322693.1227896 28100853
    [Google Scholar]
  199. Cai X. Han Y. Gu M. Song M. Wu X. Li Z. Li F. Goulette T. Xiao H. Dietary cranberry suppressed colonic inflammation and alleviated gut microbiota dysbiosis in dextran sodium sulfate-treated mice. Food Funct. 2019 10 10 6331 6341 10.1039/C9FO01537J 31524900
    [Google Scholar]
  200. Xiao X. Kim J. Sun Q. Kim D. Park C.S. Lu T.S. Park Y. Preventive effects of cranberry products on experimental colitis induced by dextran sulphate sodium in mice. Food Chem. 2015 167 438 446 10.1016/j.foodchem.2014.07.006 25149009
    [Google Scholar]
  201. Sánchez-Patán F. Barroso E. van de Wiele T. Jiménez-Girón A. Martín-Alvarez P.J. Moreno-Arribas M.V. Martínez-Cuesta M.C. Peláez C. Requena T. Bartolomé B. Comparative in vitro fermentations of cranberry and grape seed polyphenols with colonic microbiota. Food Chem. 2015 183 273 282 10.1016/j.foodchem.2015.03.061 25863636
    [Google Scholar]
  202. Wu X. Song M. Cai X. Neto C. Tata A. Han Y. Wang Q. Tang Z. Xiao H. Chemopreventive effects of whole cranberry (Vaccinium macrocarpon) on Colitis‐Associated Colon Tumorigenesis. Mol. Nutr. Food Res. 2018 62 24 1800942 10.1002/mnfr.201800942 30353672
    [Google Scholar]
  203. Wu X. Xue L. Tata A. Song M. Neto C.C. Xiao H. Bioactive components of polyphenol-rich and non-polyphenol-rich cranberry fruit extracts and their chemopreventive effects on colitis-associated colon cancer. J. Agric. Food Chem. 2020 68 25 6845 6853 10.1021/acs.jafc.0c02604 32390426
    [Google Scholar]
  204. Wu Z.Y. Chen J.L. Li H. Su K. Han Y.W. Different types of fruit intake and colorectal cancer risk: A meta-analysis of observational studies. World J. Gastroenterol. 2023 29 2679 10.3748/wjg.v29.i17.2679
    [Google Scholar]
  205. Qian Z. Wu Z. Huang L. Qiu H. Wang L. Li L. Yao L. Kang K. Qu J. Wu Y. Luo J. Liu J.J. Yang Y. Yang W. Gou D. Mulberry fruit prevents LPS-induced NF-κB/pERK/MAPK signals in macrophages and suppresses acute colitis and colorectal tumorigenesis in mice. Sci. Rep. 2015 5 1 17348 10.1038/srep17348 26615818
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575403756250915110305
Loading
/content/journals/mrmc/10.2174/0113895575403756250915110305
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test