Skip to content
2000
image of Inhibitors of Epigenetic Modulators as Therapeutic Alternatives for Cardiovascular Diseases

Abstract

Cardiovascular diseases are the leading cause of death worldwide. Despite the development of a wide variety of drugs, treatment regimens do not seem to be able to prevent the progression of these pathologies. In recent years, the study of epigenetic mechanisms has led to the discovery of new targets that may facilitate the search for therapeutic alternatives. Furthermore, it has been demonstrated that the onset of cardiovascular diseases is associated with changes in DNA methylation status and altered histone modification patterns. Therefore, the use of natural and synthetic inhibitors of epigenetic modulators, such as DNA methyltransferases (DNMTs), is likely to constitute a new approach in the therapy of cardiovascular diseases. In this review article, we discuss the mechanisms of action of inhibitors of epigenetic modulators and their applications in the treatment of cardiovascular diseases.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575406970250919065317
2025-09-24
2025-11-06
Loading full text...

Full text loading...

References

  1. World Health. Statistics 2018; Monitoring Health for the Sustainable Development Goals: Geneva, Switzerland, 2018. 2018
    [Google Scholar]
  2. HEARTS HEARTS Technical Package for Cardiovascular Disease Management in Primary Health. Care. United Kingdom World Health Organization 2018
    [Google Scholar]
  3. Transforming Our World Transforming Our World: The 2030 Agenda for Sustainable Development. York City, USA United Nations General Assembly 2015
    [Google Scholar]
  4. Heidenreich P.A. Trogdon J.G. Khavjou O.A. Butler J. Dracup K. Ezekowitz M.D. Finkelstein E.A. Hong Y. Johnston S.C. Khera A. Lloyd-Jones D.M. Nelson S.A. Nichol G. Orenstein D. Wilson P.W.F. Woo Y.J. Forecasting the future of cardiovascular disease in the United States: A policy statement from the American Heart Association. Circulation 2011 123 8 933 944 10.1161/CIR.0b013e31820a55f5 21262990
    [Google Scholar]
  5. Chistiakov D.A. Orekhov A.N. Bobryshev Y.V. Treatment of cardiovascular pathology with epigenetically active agents: Focus on natural and synthetic inhibitors of DNA methylation and histone deacetylation. Int. J. Cardiol. 2017 227 66 82 10.1016/j.ijcard.2016.11.204 27852009
    [Google Scholar]
  6. Motawi T.K. Darwish H.A. Diab I. Helmy M.W. Noureldin M.H. Combinatorial strategy of epigenetic and hormonal therapies: A novel promising approach for treating advanced prostate cancer. Life Sci. 2018 198 71 78 10.1016/j.lfs.2018.02.019 29455003
    [Google Scholar]
  7. Joo L.J.S. Zhao J.T. Gild M.L. Glover A.R. Sidhu S.B. Epigenetic regulation of RET receptor tyrosine kinase and non-coding RNAs in MTC. Mol. Cell. Endocrinol. 2018 469 48 53 10.1016/j.mce.2017.03.014 28315378
    [Google Scholar]
  8. Burggren W. Epigenetic inheritance and its role in evolutionary biology: Re-evaluation and new perspectives. Biology 2016 5 2 24 10.3390/biology5020024 27231949
    [Google Scholar]
  9. Martinez S.R. Gay M.S. Zhang L. Epigenetic mechanisms in heart development and disease. Drug Discov. Today 2015 20 7 799 811 10.1016/j.drudis.2014.12.018 25572405
    [Google Scholar]
  10. Schiattarella G.G. Madonna R. Van Linthout S. Thum T. Schulz R. Ferdinandy P. Perrino C. Epigenetic modulation of vascular diseases: Assessing the evidence and exploring the opportunities. Vascul. Pharmacol. 2018 107 43 52 10.1016/j.vph.2018.02.009 29548901
    [Google Scholar]
  11. Pachaiyappan B. Woster P.M. Design of small molecule epigenetic modulators. Bioorg. Med. Chem. Lett. 2014 24 1 21 32 10.1016/j.bmcl.2013.11.001 24300735
    [Google Scholar]
  12. Kungulovski G. Jeltsch A. Epigenome editing: State of the art, concepts, and perspectives. Trends Genet. 2016 32 2 101 113 10.1016/j.tig.2015.12.001 26732754
    [Google Scholar]
  13. Handel A.E. Ebers G.C. Ramagopalan S.V. Epigenetics: Molecular mechanisms and implications for disease. Trends Mol. Med. 2010 16 1 7 16 10.1016/j.molmed.2009.11.003 20022812
    [Google Scholar]
  14. Wallace R. Twomey L. Custaud M-A. Turner J. Moyna N. Cummins P. Murphy R. The role of epigenetics in cardiovascular health and ageing: A focus on physical activity and nutrition. Mech. Ageing Dev. 2017 29155255
    [Google Scholar]
  15. Jeffries M.A. Epigenetic editing: How cutting-edge targeted epigenetic modification might provide novel avenues for autoimmune disease therapy. Clin. Immunol. 2018 196 49 58 10.1016/j.clim.2018.02.001 29421443
    [Google Scholar]
  16. Zhong J. Agha G. Baccarelli A.A. The role of DNA methylation in cardiovascular risk and disease. Circ. Res. 2016 118 1 119 131 10.1161/CIRCRESAHA.115.305206 26837743
    [Google Scholar]
  17. Kim H. Wang X. Jin P. Developing DNA methylation-based diagnostic biomarkers. J. Genet. Genomics 2018 45 2 87 97 10.1016/j.jgg.2018.02.003 29496486
    [Google Scholar]
  18. Jin Z. Liu Y. DNA methylation in human diseases. Genes Dis. 2018 5 1 1 8 10.1016/j.gendis.2018.01.002 30258928
    [Google Scholar]
  19. Cheng X. Blumenthal R.M. Mammalian DNA methyltransferases: A structural perspective. Structure 2008 16 3 341 350 10.1016/j.str.2008.01.004 18334209
    [Google Scholar]
  20. Rondelet G. Wouters J. Human DNA (cytosine-5)-methyltransferases: A functional and structural perspective for epigenetic cancer therapy. Biochimie 2017 139 137 147 10.1016/j.biochi.2017.06.003 28600135
    [Google Scholar]
  21. Suarez-Alvarez B. Rodriguez R.M. Fraga M.F. López-Larrea C. DNA methylation: A promising landscape for immune system-related diseases. Trends Genet. 2012 28 10 506 514 10.1016/j.tig.2012.06.005 22824525
    [Google Scholar]
  22. Zhang Y. Zeng C. Role of DNA methylation in cardiovascular diseases. In: Clinical and Experimental Clin. Exp. Hypertension. 2016 38 261 267 10.3109/10641963.2015.1107087
    [Google Scholar]
  23. Han L. Liu Y. Duan S. Perry B. Li W. He Y. DNA methylation and hypertension: Emerging evidence and challenges. Brief. Funct. Genomics 2016 15 6 elw014 10.1093/bfgp/elw014 27142121
    [Google Scholar]
  24. Duan L. Hu J. Xiong X. Liu Y. Wang J. The role of DNA methylation in coronary artery disease. Gene 2018 646 91 97 10.1016/j.gene.2017.12.033 29287712
    [Google Scholar]
  25. Tao H. Shi K.H. Yang J.J. Li J. Epigenetic mechanisms in atrial fibrillation: New insights and future directions. Trends Cardiovasc. Med. 2016 26 4 306 318 10.1016/j.tcm.2015.08.006 26475117
    [Google Scholar]
  26. Nakatochi M. Ichihara S. Yamamoto K. Naruse K. Yokota S. Asano H. Matsubara T. Yokota M. Epigenome-wide association of myocardial infarction with DNA methylation sites at loci related to cardiovascular disease. Clin. Epigenetics 2017 9 1 54 10.1186/s13148‑017‑0353‑3 28515798
    [Google Scholar]
  27. Over R.S. Michaels S.D. Open and closed: The roles of linker histones in plants and animals. Mol. Plant 2014 7 3 481 491 10.1093/mp/sst164 24270504
    [Google Scholar]
  28. Iwasaki W. Miya Y. Horikoshi N. Osakabe A. Taguchi H. Tachiwana H. Shibata T. Kagawa W. Kurumizaka H. Contribution of histone N‐terminal tails to the structure and stability of nucleosomes. FEBS Open Bio 2013 3 1 363 369 10.1016/j.fob.2013.08.007 24251097
    [Google Scholar]
  29. Chrun E.S. Modolo F. Daniel F.I. Histone modifications: A review about the presence of this epigenetic phenomenon in carcinogenesis. Pathol. Res. Pract. 2017 213 11 1329 1339 10.1016/j.prp.2017.06.013 28882400
    [Google Scholar]
  30. Kebede A.F. Schneider R. Daujat S. Novel types and sites of histone modifications emerge as players in the transcriptional regulation contest. FEBS J. 2015 282 9 1658 1674 10.1111/febs.13047 25220185
    [Google Scholar]
  31. Rousseaux S. Khochbin S. Histone acylation beyond acetylation: Terra incognita in chromatin biology. Cell J. 2015 17 1 1 6 25870829
    [Google Scholar]
  32. Tessarz P. Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol. 2014 15 11 703 708 10.1038/nrm3890 25315270
    [Google Scholar]
  33. de Gonzalo-Calvo D. Iglesias-Gutiérrez E. Llorente-Cortés V. Epigenetic biomarkers and cardiovascular disease: Circulating microRNAs. Rev. Esp. Cardiol. 2017 70 9 763 769 10.1016/j.rec.2017.05.013 28623159
    [Google Scholar]
  34. Jones Buie J.N. Goodwin A.J. Cook J.A. Halushka P.V. Fan H. The role of miRNAs in cardiovascular disease risk factors. Atherosclerosis 2016 254 271 281 10.1016/j.atherosclerosis.2016.09.067 27693002
    [Google Scholar]
  35. Condorelli G. Latronico M.V.G. Cavarretta E. microRNAs in cardiovascular diseases: Current knowledge and the road ahead. J. Am. Coll. Cardiol. 2014 63 21 2177 2187 10.1016/j.jacc.2014.01.050 24583309
    [Google Scholar]
  36. Ali S.S. Kala C. Abid M. Ahmad N. Sharma U.S. Khan N.A. Pathological microRNAs in acute cardiovascular diseases and microRNA therapeutics. J. Acute Dis. 2016 5 1 9 15 10.1016/j.joad.2015.08.001
    [Google Scholar]
  37. Bhat S.A. Ahmad S.M. Mumtaz P.T. Malik A.A. Dar M.A. Urwat U. Shah R.A. Ganai N.A. Long non-coding RNAs: Mechanism of action and functional utility. Noncoding RNA Res. 2016 1 1 43 50 10.1016/j.ncrna.2016.11.002 30159410
    [Google Scholar]
  38. Ma Y. Ma W. Huang L. Feng D. Cai B. Long non-coding RNAs, a new important regulator of cardiovascular physiology and pathology. Int. J. Cardiol. 2015 188 105 110 10.1016/j.ijcard.2015.04.021 25917923
    [Google Scholar]
  39. Gomes C.P.C. Salgado-Somoza A. Creemers E.E. Dieterich C. Lustrek M. Devaux Y. Circular RNAs in the cardiovascular system. Noncoding RNA Res. 2018 3 1 1 11 10.1016/j.ncrna.2018.02.002 30159434
    [Google Scholar]
  40. Hermans-Beijnsberger S. van Bilsen M. Schroen B. Long non-coding RNAs in the failing heart and vasculature. Noncoding RNA Res. 2018 3 3 118 130 10.1016/j.ncrna.2018.04.002
    [Google Scholar]
  41. Han D. Gao Q. Cao F. Long noncoding RNAs (LncRNAs) — The dawning of a new treatment for cardiac hypertrophy and heart failure. Biochim. Biophys. Acta Mol. Basis Dis. 2017 1863 8 2078 2084 10.1016/j.bbadis.2017.02.024 28259753
    [Google Scholar]
  42. Gomes C.P.C. Spencer H. Ford K.L. Michel L.Y.M. Baker A.H. Emanueli C. Balligand J.L. Devaux Y. The function and therapeutic potential of long non-coding rnas in cardiovascular development and disease. Mol. Ther. Nucleic Acids 2017 8 494 507 10.1016/j.omtn.2017.07.014 28918050
    [Google Scholar]
  43. Simó-Riudalbas L. Esteller M. Targeting the histone orthography of cancer: Drugs for writers, erasers and readers. Br. J. Pharmacol. 2015 172 11 2716 2732 10.1111/bph.12844 25039449
    [Google Scholar]
  44. Bowers E.M. Yan G. Mukherjee C. Orry A. Wang L. Holbert M.A. Crump N.T. Hazzalin C.A. Liszczak G. Yuan H. Larocca C. Saldanha S.A. Abagyan R. Sun Y. Meyers D.J. Marmorstein R. Mahadevan L.C. Alani R.M. Cole P.A. Virtual ligand screening of the p300/CBP histone acetyltransferase: Identification of a selective small molecule inhibitor. Chem. Biol. 2010 17 5 471 482 10.1016/j.chembiol.2010.03.006 20534345
    [Google Scholar]
  45. Schneider A. Chatterjee S. Bousiges O. Selvi B.R. Swaminathan A. Cassel R. Blanc F. Kundu T.K. Boutillier A.L. Acetyltransferases (HATs) as targets for neurological therapeutics. Neurotherapeutics 2013 10 4 568 588 10.1007/s13311‑013‑0204‑7 24006237
    [Google Scholar]
  46. Marmorstein R. Zhou M.M. Writers and readers of histone acetylation: Structure, mechanism, and inhibition. Cold Spring Harb. Perspect. Biol. 2014 6 7 a018762 10.1101/cshperspect.a018762 24984779
    [Google Scholar]
  47. Yang M. Zhang Y. Ren J. Acetylation in cardiovascular diseases: Molecular mechanisms and clinical implications. Biochim. Biophys. Acta Mol. Basis Dis. 2020 1866 10 165836 10.1016/j.bbadis.2020.165836 32413386
    [Google Scholar]
  48. Liu C.F. Tang W.H.W. Epigenetics in cardiac hypertrophy and heart failure. JACC Basic Transl. Sci. 2019 4 8 976 993 10.1016/j.jacbts.2019.05.011 31909304
    [Google Scholar]
  49. Papait R. Serio S. Condorelli G. Role of the Epigenome in Heart Failure. Physiol. Rev. 2020 100 4 1753 1777 10.1152/physrev.00037.2019 32326823
    [Google Scholar]
  50. Funamoto M. Sunagawa Y. Gempei M. Shimizu K. Katanasaka Y. Shimizu S. Hamabe-Horiike T. Appendino G. Minassi A. Koeberle A. Komiyama M. Mori K. Hasegawa K. Morimoto T. Pyrazole-curcumin suppresses cardiomyocyte hypertrophy by disrupting the CDK9/CyclinT1 complex. Pharmaceutics 2022 14 6 1269 10.3390/pharmaceutics14061269 35745840
    [Google Scholar]
  51. Shimizu K. Sunagawa Y. Funamoto M. Wakabayashi H. Genpei M. Miyazaki Y. Katanasaka Y. Sari N. Shimizu S. Katayama A. Shibata H. Iwabuchi Y. Kakeya H. Wada H. Hasegawa K. Morimoto T. The synthetic curcumin analogue go-y030 effectively suppresses the development of pressure overload-induced heart failure in mice. Sci. Rep. 2020 10 1 7172 10.1038/s41598‑020‑64207‑w 32346115
    [Google Scholar]
  52. Lei H. Hu J. Sun K. Xu D. The role and molecular mechanism of epigenetics in cardiac hypertrophy. Heart Fail. Rev. 2021 26 6 1505 1514 10.1007/s10741‑020‑09959‑3 32297065
    [Google Scholar]
  53. Ghosh A.K. Acetyltransferase p300 Is a putative epidrug target for amelioration of cellular aging-related cardiovascular disease. Cells 2021 10 11 2839 10.3390/cells10112839 34831061
    [Google Scholar]
  54. Zhou W. Jiang D. Tian J. Liu L. Lu T. Huang X. Sun H. Acetylation of H3K4, H3K9, and H3K27 mediated by p300 regulates the expression of GATA4 in cardiocytes. Genes Dis. 2019 6 3 318 325 10.1016/j.gendis.2018.10.002 32042871
    [Google Scholar]
  55. Xu L. Zhang H. Wang Y. Guo W. Gu L. Yang A. Ma S. Yang Y. Wu K. Jiang Y. H3K14 hyperacetylation mediated c Myc binding to the miR 30a 5p gene promoter under hypoxia postconditioning protects senescent cardiomyocytes from hypoxia/reoxygenation injury. Mol. Med. Rep. 2021 23 6 468 10.3892/mmr.2021.12107 33880587
    [Google Scholar]
  56. Ameer S.S. Hossain M.B. Knöll R. Epigenetics and heart failure. Int. J. Mol. Sci. 2020 21 23 9010 10.3390/ijms21239010 33260869
    [Google Scholar]
  57. Miyamoto S. Kawamura T. Morimoto T. Ono K. Wada H. Kawase Y. Matsumori A. Nishio R. Kita T. Hasegawa K. Histone acetyltransferase activity of p300 is required for the promotion of left ventricular remodeling after myocardial infarction in adult mice in vivo. Circulation 2006 113 5 679 690 10.1161/CIRCULATIONAHA.105.585182 16461841
    [Google Scholar]
  58. Funamoto M. Sunagawa Y. Katanasaka Y. Shimizu K. Miyazaki Y. Sari N. Shimizu S. Mori K. Wada H. Hasegawa K. Morimoto T. Histone acetylation domains are differentially induced during development of heart failure in dahl salt-sensitive rats. Int. J. Mol. Sci. 2021 22 4 1771 10.3390/ijms22041771 33578969
    [Google Scholar]
  59. Koturbash I. Simpson N.E. Beland F.A. Pogribny I.P. Alterations in histone H4 lysine 20 methylation: Implications for cancer detection and prevention. Antioxid. Redox Signal. 2012 17 2 365 374 10.1089/ars.2011.4370 22035019
    [Google Scholar]
  60. Cui J.Y. Fu Z.D. Dempsey J. The role of histone methylation and methyltransferases in gene regulation. In: Toxicoepigenetics. McCullough Shaun.D. Dolinoy Dana.C. United States Academic Press 2019 31 84 10.1016/B978‑0‑12‑812433‑8.00002‑2
    [Google Scholar]
  61. Yang J. Qiu Q. Chen L. Histone lysine-to-methionine mutation as anticancer drug target. Adv. Exp. Med. Biol. 2021 1283 85 96 10.1007/978‑981‑15‑8104‑5_7 33155140
    [Google Scholar]
  62. Mushtaq A. Mir U.S. Hunt C.R. Pandita S. Tantray W.W. Bhat A. Pandita R.K. Altaf M. Pandita T.K. Role of histone methylation in maintenance of genome integrity. Genes 2021 12 7 1000 10.3390/genes12071000 34209979
    [Google Scholar]
  63. Guo P. Lim R.C. Rajawasam K. Trinh T. Sun H. Zhang H. A methylation-phosphorylation switch controls EZH2 stability and hematopoiesis. eLife 2024 13 86168 10.7554/eLife.86168 38346162
    [Google Scholar]
  64. Szulik M.W. Davis K. Bakhtina A. Azarcon P. Bia R. Horiuchi E. Franklin S. Transcriptional regulation by methyltransferases and their role in the heart: Highlighting novel emerging functionality. Am. J. Physiol. Heart Circ. Physiol. 2020 319 4 H847 H865 10.1152/ajpheart.00382.2020 32822544
    [Google Scholar]
  65. Zhu J. van de Leemput J. Han Z. The roles of histone lysine methyltransferases in heart development and disease. J. Cardiovasc. Dev. Dis. 2023 10 7 305 10.3390/jcdd10070305 37504561
    [Google Scholar]
  66. Yuan J.L. Yin C.Y. Li Y.Z. Song S. Fang G.J. Wang Q.S. EZH2 as an epigenetic regulator of cardiovascular development and diseases. J. Cardiovasc. Pharmacol. 2021 78 2 192 201 10.1097/FJC.0000000000001062 34029268
    [Google Scholar]
  67. Giaimo B. Robert-Finestra T. Oswald F. Gribnau J. Borggrefe T. Chromatin regulator SPEN/SHARP in X inactivation and disease. Cancers 2021 13 7 1665 10.3390/cancers13071665 33916248
    [Google Scholar]
  68. Cyrus S. Burkardt D. Weaver D.D. Gibson W.T. PRC2‐complex related dysfunction in overgrowth syndromes: A review of EZH2, EED, and SUZ12 and their syndromic phenotypes. Am. J. Med. Genet. C. Semin. Med. Genet. 2019 181 4 519 531 10.1002/ajmg.c.31754 31724824
    [Google Scholar]
  69. Petracovici A. Bonasio R. Distinct PRC2 subunits regulate maintenance and establishment of Polycomb repression during differentiation. Mol. Cell 2021 81 12 2625 2639.e5 10.1016/j.molcel.2021.03.038 33887196
    [Google Scholar]
  70. Neele A.E. Chen H.J. Gijbels M.J.J. van der Velden S. Hoeksema M.A. Boshuizen M.C.S. Van den Bossche J. Tool A.T. Matlung H.L. van den Berg T.K. Lutgens E. de Winther M.P.J. Myeloid Ezh2 deficiency limits atherosclerosis development. Front. Immunol. 2021 11 594603 10.3389/fimmu.2020.594603 33574814
    [Google Scholar]
  71. Tao Y. Li G. Yang Y. Wang Z. Wang S. Li X. Yu T. Fu X. Epigenomics in aortic dissection: From mechanism to therapeutics. Life Sci. 2023 335 122249 10.1016/j.lfs.2023.122249 37940070
    [Google Scholar]
  72. Wang Y. Huang X.X. Leng D. Li J.F. Liang Y. Jiang T. Effect of EZH2 on pulmonary artery smooth muscle cell migration in pulmonary hypertension. Mol. Med. Rep. 2020 23 2 129 10.3892/mmr.2020.11768 33313943
    [Google Scholar]
  73. Kempkes R.W.M. Rief L.C.M. Griffith G.R. Roomen C.P.A.A. Hoeksema M.A. Prange K.H.M. De Winther M. EZH2 inhibition reduces macrophage inflammatory responses in atherosclerosis. Atherosclerosis 2023 379 S11 S12 10.1016/j.atherosclerosis.2023.06.085
    [Google Scholar]
  74. Xie K. Zeng J. Wen L. Peng X. Lin Z. Xian G. Guo Y. Yang X. Li P. Xu D. Zeng Q. Abnormally elevated EZH2-mediated H3K27me3 enhances osteogenesis in aortic valve interstitial cells by inhibiting SOCS3 expression. Atherosclerosis 2023 364 1 9 10.1016/j.atherosclerosis.2022.11.017 36455343
    [Google Scholar]
  75. Fledderus J. Brouwer L. Kuiper T. Harmsen M.C. Krenning G. H3K27Me3 abundance increases fibrogenesis during endothelial-to-mesenchymal transition via the silencing of microRNA-29c. Front. Cardiovasc. Med. 2024 11 1373279 10.3389/fcvm.2024.1373279 38774662
    [Google Scholar]
  76. Liang J. Li Q. Cai W. Zhang X. Yang B. Li X. Jiang S. Tian S. Zhang K. Song H. Ai D. Zhang X. Wang C. Zhu Y. Inhibition of polycomb repressor complex 2 ameliorates neointimal hyperplasia by suppressing trimethylation of H3K27 in vascular smooth muscle cells. Br. J. Pharmacol. 2019 176 17 3206 3219 10.1111/bph.14754 31162630
    [Google Scholar]
  77. Liu R. Leslie K.L. Martin K.A. Epigenetic regulation of smooth muscle cell plasticity. Biochim. Biophys. Acta. Gene Regul. Mech. 2015 1849 4 448 453 10.1016/j.bbagrm.2014.06.004 24937434
    [Google Scholar]
  78. Dave J. Jagana V. Janostiak R. Bisserier M. Unraveling the epigenetic landscape of pulmonary arterial hypertension: Implications for personalized medicine development. J. Transl. Med. 2023 21 1 477 10.1186/s12967‑023‑04339‑5 37461108
    [Google Scholar]
  79. Habbout K. Omura J. Awada C. Bourgeois A. Grobs Y. Krishna V. Breuils-Bonnet S. Tremblay E. Mkannez G. Martineau S. Nadeau V. Roux-Dalvai F. Orcholski M. Jeyaseelan J. Gutstein D. Potus F. Provencher S. Bonnet S. Paulin R. Boucherat O. Implication of EZH2 in the pro-proliferative and apoptosis-resistant phenotype of pulmonary artery smooth muscle cells in pah: A transcriptomic and proteomic approach. Int. J. Mol. Sci. 2021 22 6 2957 10.3390/ijms22062957 33803922
    [Google Scholar]
  80. Vanchin B. Sol M. Gjaltema R.A.F. Brinker M. Kiers B. Pereira A.C. Harmsen M.C. Moonen J.R.A.J. Krenning G. Reciprocal regulation of endothelial–mesenchymal transition by MAPK7 and EZH2 in intimal hyperplasia and coronary artery disease. Sci. Rep. 2021 11 1 17764 10.1038/s41598‑021‑97127‑4 34493753
    [Google Scholar]
  81. Aljubran S.A. Cox R. Tamarapu Parthasarathy P. Kollongod Ramanathan G. Rajanbabu V. Bao H. Mohapatra S.M. Lockey R. Kolliputi N. Enhancer of zeste homolog 2 induces pulmonary artery smooth muscle cell proliferation. PLoS One 2012 7 5 37712 10.1371/journal.pone.0037712 22662197
    [Google Scholar]
  82. Chakraborty A. Li Y. Zhang C. Li Y. Rebello K.R. Li S. Xu S. Vasquez H.G. Zhang L. Luo W. Wang G. Chen K. Coselli J.S. LeMaire S.A. Shen Y.H. Epigenetic induction of smooth muscle cell phenotypic alterations in aortic aneurysms and dissections. Circulation 2023 148 12 959 977 10.1161/CIRCULATIONAHA.123.063332 37555319
    [Google Scholar]
  83. Pan S. Lai H. Shen Y. Breeze C. Beck S. Hong T. Wang C. Teschendorff A.E. DNA methylome analysis reveals distinct epigenetic patterns of ascending aortic dissection and bicuspid aortic valve. Cardiovasc. Res. 2017 113 6 692 704 10.1093/cvr/cvx050 28444195
    [Google Scholar]
  84. Luo H. Li Y. Song H. Zhao K. Li W. Hong H. Wang Y. Qi L. Zhang Y. Role of EZH2-mediated epigenetic modi fi cation on vascular smooth muscle in cardiovascular diseases: A. Front. Pharmacol. 2024 2024 1 10
    [Google Scholar]
  85. Li R. Yi X. Wei X. Huo B. Guo X. Cheng C. Fang Z.M. Wang J. Feng X. Zheng P. Su Y.S. Masau J.F. Zhu X.H. Jiang D.S. EZH2 inhibits autophagic cell death of aortic vascular smooth muscle cells to affect aortic dissection. Cell Death Dis. 2018 9 2 180 10.1038/s41419‑017‑0213‑2 29416002
    [Google Scholar]
  86. Yan F. Chen Z. Cui W. H3K9me2 regulation of BDNF expression via G9a partakes in the progression of heart failure. BMC Cardiovasc. Disord. 2022 22 1 182 10.1186/s12872‑022‑02621‑w 35439934
    [Google Scholar]
  87. Awada C. Grobs Y. Breuils-bonnet S. Krishna V. Jeyaseelan J.R. Potus F. Paulin R. Provencher S. Bonnet S. Boucherat O. Abstract 9771: Novel contribution of an epigenetic factor “g9a” in pulmonary arterial hypertension. Circulation 2021 144 Suppl. 1 A9771 A9771 10.1161/circ.144.suppl_1.9771
    [Google Scholar]
  88. Liu H. Wang W. Weng X. Chen H. Chen Z. Du Y. Liu X. Wang L. The H3K9 histone methyltransferase G9a modulates renal ischemia reperfusion injury by targeting Sirt1. Free Radic. Biol. Med. 2021 172 123 135 10.1016/j.freeradbiomed.2021.06.002 34102281
    [Google Scholar]
  89. Hao J. Liu Y. Epigenetics of methylation modifications in diabetic cardiomyopathy. Front. Endocrinol. 2023 14 1119765 10.3389/fendo.2023.1119765 37008904
    [Google Scholar]
  90. Poulard C. Noureddine L.M. Pruvost L. Le Romancer M. Structure, activity, and function of the protein lysine methyltransferase G9a. Life 2021 11 10 1082 10.3390/life11101082 34685453
    [Google Scholar]
  91. Chen T.Q. Hu N. Huo B. Masau J.F. Yi X. Zhong X.X. Chen Y.J. Guo X. Zhu X.H. Wei X. Jiang D.S. EHMT2/G9a inhibits aortic smooth muscle cell death by suppressing autophagy activation. Int. J. Biol. Sci. 2020 16 7 1252 1263 10.7150/ijbs.38835 32174799
    [Google Scholar]
  92. Han P. Li W. Yang J. Shang C. Lin C.H. Cheng W. Hang C.T. Cheng H.L. Chen C.H. Wong J. Xiong Y. Zhao M. Drakos S.G. Ghetti A. Li D.Y. Bernstein D. Chen H.V. Quertermous T. Chang C.P. Epigenetic response to environmental stress: Assembly of BRG1–G9a/GLP–DNMT3 repressive chromatin complex on Myh6 promoter in pathologically stressed hearts. Biochim. Biophys. Acta Mol. Cell Res. 2016 1863 7 1772 1781 10.1016/j.bbamcr.2016.03.002 26952936
    [Google Scholar]
  93. Costantino S. Paneni F. Virdis A. Hussain S. Mohammed S.A. Capretti G. Akhmedov A. Dalgaard K. Chiandotto S. Pospisilik J.A. Jenuwein T. Giorgio M. Volpe M. Taddei S. Lüscher T.F. Cosentino F. Interplay among H3K9-editing enzymes SUV39H1, JMJD2C and SRC-1 drives p66Shc transcription and vascular oxidative stress in obesity. Eur. Heart J. 2019 40 4 383 391 10.1093/eurheartj/ehx615 29077881
    [Google Scholar]
  94. Luo Y. Fan C. Yang M. Dong M. Bucala R. Pei Z. Zhang Y. Ren J. CD74 knockout protects against LPS‐induced myocardial contractile dysfunction through AMPK‐Skp2‐SUV39H1 ‐mediated demethylation of BCLB. Br. J. Pharmacol. 2020 177 8 1881 1897 10.1111/bph.14959 31877229
    [Google Scholar]
  95. Zhang J. Chen J. Yang J. Xu C. Hu Q. Wu H. Cai W. Guo Q. Gao W. He C. Yang C. Yang J. Suv39h1 downregulation inhibits neointimal hyperplasia after vascular injury. Atherosclerosis 2019 288 76 84 10.1016/j.atherosclerosis.2019.06.909 31330382
    [Google Scholar]
  96. Weirich S. Khella M.S. Jeltsch A. Structure, activity and function of the suv39h1 and suv39h2 protein lysine methyltransferases. Life 2021 11 7 703 10.3390/life11070703 34357075
    [Google Scholar]
  97. Niu W. Cao W. Wu F. Liang C. SUV39H1 inhibits angiogenesis in limb ischemia of mice. Cell Transplant. 2023 32 09636897231198167 10.1177/09636897231198167 37811706
    [Google Scholar]
  98. Qi L. Chi X. Zhang X. Feng X. Chu W. Zhang S. Wu J. Song Y. Zhang Y. Kong W. Yu Y. Zhang H. Kindlin-2 suppresses transcription factor GATA4 through interaction with SUV39H1 to attenuate hypertrophy. Cell Death Dis. 2019 10 12 890 10.1038/s41419‑019‑2121‑0 31767831
    [Google Scholar]
  99. Yi X. Zhu Q. Wu X. Tan T. Jiang X. Histone methylation and oxidative stress in cardiovascular diseases. Oxid. Med. Cell. Longev. 2022 ••• 6023710 10.1155/2022/6023710
    [Google Scholar]
  100. Vaughan R.M. Kupai A. Rothbart S.B. Chromatin regulation through ubiquitin and ubiquitin-like histone modifications. Trends Biochem. Sci. 2021 46 4 258 269 10.1016/j.tibs.2020.11.005 33308996
    [Google Scholar]
  101. Yang Q. Zhao J. Chen D. Wang Y. E3 ubiquitin ligases: Styles, structures and functions. Molecular Biomedicine 2021 2 1 23 10.1186/s43556‑021‑00043‑2 35006464
    [Google Scholar]
  102. Guo H.J. Rahimi N. Tadi P. Biochemistry, Ubiquitination. Treasure Island, FL StatPearls Publishing 2023
    [Google Scholar]
  103. Han S.W. Jung B.K. Ryu K.Y. Regulation of polyubiquitin genes to meet cellular ubiquitin requirement. BMB Rep. 2021 54 4 189 195 10.5483/BMBRep.2021.54.4.005 33612153
    [Google Scholar]
  104. Chen X. Ma J. Wang Z. Wang Z. The E3 ubiquitin ligases regulate inflammation in cardiovascular diseases. Semin. Cell Dev. Biol. 2024 154 Pt C 167 174 10.1016/j.semcdb.2023.02.008 36872193
    [Google Scholar]
  105. Hwang J.T. Lee A. Kho C. Ubiquitin and ubiquitin-like proteins in cancer, neurodegenerative disorders, and heart diseases. Int. J. Mol. Sci. 2022 23 9 5053 10.3390/ijms23095053 35563444
    [Google Scholar]
  106. Yang B. Kumar S. Nedd4 and Nedd4-2: Closely related ubiquitin-protein ligases with distinct physiological functions. Cell Death Differ. 2010 17 1 68 77 10.1038/cdd.2009.84 19557014
    [Google Scholar]
  107. Goel P. Manning J.A. Kumar S. NEDD4-2 (NEDD4L): The ubiquitin ligase for multiple membrane proteins. Gene 2015 557 1 1 10 10.1016/j.gene.2014.11.051 25433090
    [Google Scholar]
  108. Pohl P. Joshi R. Petrvalska O. Obsil T. Obsilova V. 14-3-3-protein regulates Nedd4-2 by modulating interactions between HECT and WW domains. Commun. Biol. 2021 4 1 899 10.1038/s42003‑021‑02419‑0 34294877
    [Google Scholar]
  109. Huang X. Chen J. Cao W. Yang L. Chen Q. He J. Yi Q. Huang H. Zhang E. Cai Z. The many substrates and functions of NEDD4-1. Cell Death Dis. 2019 10 12 904 10.1038/s41419‑019‑2142‑8 31787758
    [Google Scholar]
  110. Li M. Sun G. Wang P. Wang W. Cao K. Song C. Sun Y. Zhang Y. Zhang N. Research progress of Nedd4L in cardiovascular diseases. Cell Death Discov. 2022 8 1 206 10.1038/s41420‑022‑01017‑1 35429991
    [Google Scholar]
  111. Fujio Y. Nguyen T. Wencker D. Kitsis R.N. Walsh K. Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation 2000 101 6 660 667 10.1161/01.CIR.101.6.660 10673259
    [Google Scholar]
  112. Dai C. Wu B. Chen Y. Li X. Bai Y. Du Y. Pang Y. Wang Y.T. Dong Z. Aagab acts as a novel regulator of NEDD4-1-mediated Pten nuclear translocation to promote neurological recovery following hypoxic-ischemic brain damage. Cell Death Differ. 2021 28 8 2367 2384 10.1038/s41418‑021‑00757‑4 33712741
    [Google Scholar]
  113. Drinjakovic J. Jung H. Campbell D.S. Strochlic L. Dwivedy A. Holt C.E. E3 ligase Nedd4 promotes axon branching by downregulating PTEN. Neuron 2010 65 3 341 357 10.1016/j.neuron.2010.01.017 20159448
    [Google Scholar]
  114. Xu H. Tan L. Qu Q. Zhang W. NEDD4 attenuates oxidized low density lipoprotein induced inflammation and dysfunction in vascular endothelial cells via regulating APEX1 expression. Exp. Ther. Med. 2023 25 2 88 10.3892/etm.2023.11787 36684652
    [Google Scholar]
  115. Dong C.X. Malecki C. Robertson E. Hambly B. Jeremy R. Molecular mechanisms in genetic aortopathy–signaling pathways and potential interventions. Int. J. Mol. Sci. 2023 24 2 1795 10.3390/ijms24021795 36675309
    [Google Scholar]
  116. Wang D. Zou Y. Huang X. Yin Z. Li M. Xu J. Wu B. Li D. Zhang Y. Sun Y. Zhang X. Zhang N. The role of SMURFs in non‐cancerous diseases. FASEB J. 2023 37 8 23110 10.1096/fj.202300598R 37490283
    [Google Scholar]
  117. Clemente A. Traghella I. Mazzone A. Sbrana S. Vassalle C. Chapter Two - Vascular and valvular calcification biomarkers. In: Advances in Clinical Chemistry; Makowski, G.S., Ed. Elsevier: Amsterdam, Netherlands 2020 95,pp 73 103
    [Google Scholar]
  118. Neidhardt S. Garbade J. Emrich F. Klaeske K. Borger M.A. Lehmann S. Jawad K. Dieterlen M.T. Ischemic cardiomyopathy affects the thioredoxin system in the human myocardium. J. Card. Fail. 2019 25 3 204 212 10.1016/j.cardfail.2019.01.017 30721734
    [Google Scholar]
  119. Zhang N. Wang X. Circular RNA ITCH mediates H2O2‐induced myocardial cell apoptosis by targeting miR‐17‐5p via wnt/β‐catenin signalling pathway. Int. J. Exp. Pathol. 2021 102 1 22 31 10.1111/iep.12367 33350543
    [Google Scholar]
  120. Saito Y. Otaki Y. Watanabe T. Tachibana S. Sato J. Kobayashi Y. Aono T. Goto J. Wanezaki M. Kutsuzawa D. Kato S. Tamura H. Nishiyama S. Arimoto T. Takahashi H. Watanabe M. Cardiac-specific ITCH overexpression ameliorates septic cardiomyopathy via inhibition of the NF-κB signaling pathway. J. Mol. Cell. Card Plus 2022 2 100018 10.1016/j.jmccpl.2022.100018 39802494
    [Google Scholar]
  121. Cheng Y. Wang Y. Yin R. Xu Y. Zhang L. Central role of cardiac Fi broblasts in myocardial FI brosis of diabetic cardiomyopathy. Front. Endocrinol. 2023 ••• 1 13
    [Google Scholar]
  122. Yuan H. Xu J. Xu X. Gao T. Wang Y. Fan Y. Hu J. Shao Y. Zhao B. Li H. Sun J. Xu C. Calhex231 Alleviates high glucose-induced myocardial fibrosis via inhibiting itch-ubiquitin proteasome pathway in vitro. Biol. Pharm. Bull. 2019 42 8 1337 1344 10.1248/bpb.b19‑00090 31167987
    [Google Scholar]
  123. Nicholson T.B. Veland N. Chen T. Writers, Readers, and Erasers of Epigenetic Marks. Amsterdam, Netherlands Elsevier 2015 10.1016/B978‑0‑12‑800206‑3.00003‑3
    [Google Scholar]
  124. Dan J. Chen T. Writers, erasers, and readers of dna and histone methylation marks. In: Epigenetic Cancer Therapy, Second Edition; Gray, Steven G., Ed.; Academic Press: United States, 2023 pp 39 6 10.1016/B978‑0‑323‑91367‑6.00012‑X
    [Google Scholar]
  125. Sobiak B. Leśniak W. The effect of single CPG demethylation on the pattern of dna-protein binding. Int. J. Mol. Sci. 2019 20 4 914 10.3390/ijms20040914 30791552
    [Google Scholar]
  126. Beck D.B. Petracovici A. He C. Moore H.W. Louie R.J. Ansar M. Douzgou S. Sithambaram S. Cottrell T. Santos-Cortez R.L.P. Prijoles E.J. Bend R. Keren B. Mignot C. Nougues M.C. Õunap K. Reimand T. Pajusalu S. Zahid M. Saqib M.A.N. Buratti J. Seaby E.G. McWalter K. Telegrafi A. Baldridge D. Shinawi M. Leal S.M. Schaefer G.B. Stevenson R.E. Banka S. Bonasio R. Fahrner J.A. Delineation of a human mendelian disorder of the DNA demethylation machinery: TET3 deficiency. Am. J. Hum. Genet. 2020 106 2 234 245 10.1016/j.ajhg.2019.12.007 31928709
    [Google Scholar]
  127. Światowy W.J. Drzewiecka H. Kliber M. Sąsiadek M. Karpiński P. Pławski A. Jagodziński P.P. Physical activity and DNA methylation in humans. Int. J. Mol. Sci. 2021 22 23 12989 10.3390/ijms222312989 34884790
    [Google Scholar]
  128. Chatterjee B. Lin M.H. Chen C.C. Peng K.L. Wu M.S. Tseng M.C. Chen Y.J. Shen C.K.J. DNA demethylation by DNMT3A and DNMT3B in vitro and of methylated episomal dna in transiently transfected cells. Biochim. Biophys. Acta. Gene Regul. Mech. 2018 1861 11 1048 1061 10.1016/j.bbagrm.2018.09.009 30300721
    [Google Scholar]
  129. Zhang X. Zhang Y. Wang C. Wang X. TET (Ten-eleven translocation) family proteins: Structure, biological functions and applications. Signal Transduct. Target. Ther. 2023 8 1 297 10.1038/s41392‑023‑01537‑x 37563110
    [Google Scholar]
  130. Yang J. Bashkenova N. Zang R. Huang X. Wang J. The roles of TET family proteins in development and stem cells. Development 2020 147 2 dev183129 10.1242/dev.183129 31941705
    [Google Scholar]
  131. Liu K. Min J. Structural basis for the recognition of non-methylated DNA by the CXXC domain. J. Mol. Biol. 2020 432 6 1674 1686 10.1016/j.jmb.2019.09.025 31626811
    [Google Scholar]
  132. Matuleviciute R. Cunha P.P. Johnson R.S. Foskolou I.P. Oxygen regulation of TET enzymes. FEBS J. 2021 288 24 7143 7161 10.1111/febs.15695 33410283
    [Google Scholar]
  133. Bontempo P. Capasso L. De Masi L. Nebbioso A. Rigano D. Therapeutic potential of natural compounds acting through epigenetic mechanisms in cardiovascular diseases: Current findings and future directions. Nutrients 2024 16 15 2399 10.3390/nu16152399 39125279
    [Google Scholar]
  134. Ferrone C.K. Blydt-Hansen M. Rauh M.J. Age-associated TET2 Mutations: Common drivers of myeloid dysfunction, cancer and cardiovascular disease. Int. J. Mol. Sci. 2020 21 2 626 10.3390/ijms21020626 31963585
    [Google Scholar]
  135. Wołowiec A. Wołowiec Ł. Grześk G. Jaśniak A. Osiak J. Husejko J. Kozakiewicz M. The role of selected epigenetic pathways in cardiovascular diseases as a potential therapeutic target. Int. J. Mol. Sci. 2023 24 18 13723 10.3390/ijms241813723 37762023
    [Google Scholar]
  136. Tang H.Y. Chen A.Q. Zhang H. Gao X.F. Kong X.Q. Zhang J.J. Vascular smooth muscle cells phenotypic switching in cardiovascular diseases. Cells 2022 11 24 4060 10.3390/cells11244060 36552822
    [Google Scholar]
  137. Liu L. He X. Zhao M. Yang S. Wang S. Yu X. Liu J. Zang W. Regulation of DNA methylation and 2-OG/TET signaling by choline alleviated cardiac hypertrophy in spontaneously hypertensive rats. J. Mol. Cell. Cardiol. 2019 128 26 37 10.1016/j.yjmcc.2019.01.011 30660679
    [Google Scholar]
  138. Ramaiah M.J. Tangutur A.D. Manyam R.R. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci. 2021 277 119504 10.1016/j.lfs.2021.119504 33872660
    [Google Scholar]
  139. Bahl S. Seto E. Regulation of histone deacetylase activities and functions by phosphorylation and its physiological relevance. Cell. Mol. Life Sci. 2021 78 2 427 445 10.1007/s00018‑020‑03599‑4 32683534
    [Google Scholar]
  140. Curcio A. Rocca R. Alcaro S. Artese A. The histone deacetylase family: Structural features and application of combined computational methods. Pharmaceuticals 2024 17 5 620 10.3390/ph17050620
    [Google Scholar]
  141. Blanquart C. Linot C. Cartron P.F. Tomaselli D. Mai A. Bertrand P. Epigenetic metalloenzymes. Curr. Med. Chem. 2019 26 15 2748 2785 10.2174/0929867325666180706105903 29984644
    [Google Scholar]
  142. Hai Y. Christianson D.W. Histone deacetylase 6 structure and molecular basis of catalysis and inhibition. Nat. Chem. Biol. 2016 12 9 741 747 10.1038/nchembio.2134 27454933
    [Google Scholar]
  143. Porter N.J. Christianson D.W. Structure, mechanism, and inhibition of the zinc-dependent histone deacetylases. Curr. Opin. Struct. Biol. 2019 59 9 18 10.1016/j.sbi.2019.01.004 30743180
    [Google Scholar]
  144. Seto E. Yoshida M. Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 2014 6 4 a018713 10.1101/cshperspect.a018713 24691964
    [Google Scholar]
  145. Zheng W. The Zinc-dependent HDACs: Non-histone Substrates and Catalytic Deacylation Beyond Deacetylation. Mini Rev. Med. Chem. 2022 22 19 2478 2485 10.2174/1389557522666220330144151 35362374
    [Google Scholar]
  146. Ganesan A. Targeting the zinc-dependent histone deacetylases (HDACs) for drug discovery. In: Chemical Epigenetics. Mai A. Cham Springer International Publishing 2020 1 27
    [Google Scholar]
  147. Asfaha Y. Schrenk C. Alves Avelar L.A. Hamacher A. Pflieger M. Kassack M.U. Kurz T. Recent advances in class IIa histone deacetylases research. Bioorg. Med. Chem. 2019 27 22 115087 10.1016/j.bmc.2019.115087 31561937
    [Google Scholar]
  148. Kutil Z. Meleshin M. Baranova P. Havlinova B. Schutkowski M. Barinka C. Characterization of the class IIa histone deacetylases substrate specificity. FASEB J. 2022 36 5 22287 10.1096/fj.202101663R 35349187
    [Google Scholar]
  149. Park S.Y. Kim J.S. A short guide to histone deacetylases including recent progress on class II enzymes. Exp. Mol. Med. 2020 52 2 204 212 10.1038/s12276‑020‑0382‑4 32071378
    [Google Scholar]
  150. Zhu Y. Feng M. Wang B. Zheng Y. Jiang D. Zhao L. Mamun M.A.A. Kang H. Nie H. Zhang X. Guo N. Qin S. Wang N. Liu H. Gao Y. New insights into the non-enzymatic function of HDAC6. Biomed. Pharmacother. 2023 161 114438 10.1016/j.biopha.2023.114438 37002569
    [Google Scholar]
  151. Núñez-Álvarez Y. Suelves M. HDAC11: A multifaceted histone deacetylase with proficient fatty deacylase activity and its roles in physiological processes. FEBS J. 2022 289 10 2771 2792 10.1111/febs.15895 33891374
    [Google Scholar]
  152. Liu S.S. Wu F. Jin Y.M. Chang W.Q. Xu T.M. HDAC11: A rising star in epigenetics. Biomed. Pharmacother. 2020 131 110607 10.1016/j.biopha.2020.110607 32841898
    [Google Scholar]
  153. Wang Y. He J. Liao M. Hu M. Li W. Ouyang H. Wang X. Ye T. Zhang Y. Ouyang L. An overview of Sirtuins as potential therapeutic target: Structure, function and modulators. Eur. J. Med. Chem. 2019 161 48 77 10.1016/j.ejmech.2018.10.028 30342425
    [Google Scholar]
  154. Bonomi R.E. Riordan W. Gelovani J.G. The structures, functions, and roles of class III HDACs (Sirtuins) in neuropsychiatric diseases. Cells 2024 13 19 1644 10.3390/cells13191644 39404407
    [Google Scholar]
  155. Li P. Ge J. Li H. Lysine acetyltransferases and lysine deacetylases as targets for cardiovascular disease. Nat. Rev. Cardiol. 2020 17 2 96 115 10.1038/s41569‑019‑0235‑9 31350538
    [Google Scholar]
  156. Bagchi R.A. Weeks K.L. Histone deacetylases in cardiovascular and metabolic diseases. J. Mol. Cell. Cardiol. 2019 130 151 159 10.1016/j.yjmcc.2019.04.003 30978343
    [Google Scholar]
  157. Gillette T.G. HDAC inhibition in the heart. Circulation 2021 143 19 1891 1893 10.1161/CIRCULATIONAHA.121.054262 33970677
    [Google Scholar]
  158. Han Y. Nie J. Wang D.W. Ni L. Mechanism of histone deacetylases in cardiac hypertrophy and its therapeutic inhibitors. Front. Cardiovasc. Med. 2022 9 931475 10.3389/fcvm.2022.931475 35958418
    [Google Scholar]
  159. Liu W. Yuan Q. Cao S. Wang G. Liu X. Xia Y. Bian Y. Xu F. Chen Y. Review: Acetylation mechanisms and targeted therapies in cardiac fibrosis. Pharmacol. Res. 2023 193 106815 10.1016/j.phrs.2023.106815 37290541
    [Google Scholar]
  160. Lazaropoulos M.P. Elrod J.W. Cardiac fibrosis mitigated by an endogenous negative regulator of HDAC. Circ. Res. 2023 133 3 252 254 10.1161/CIRCRESAHA.123.323211 37471486
    [Google Scholar]
  161. Wang K. Tang R. Wang S. Xiong Y. Wang W. Chen G. Zhang K. Li P. Tang Y.D. Isoform-selective HDAC inhibitor mocetinostat (MGCD0103) alleviates myocardial ischemia/reperfusion injury via mitochondrial protection through the HDACs/CREB/PGC-1α signaling pathway. J. Cardiovasc. Pharmacol. 2022 79 2 217 228 10.1097/FJC.0000000000001174
    [Google Scholar]
  162. Kim G.J. Jung H. Lee E. Chung S.W. Histone deacetylase inhibitor, mocetinostat, regulates cardiac remodelling and renin-angiotensin system activity in rats with transverse aortic constriction-induced pressure overload cardiac hypertrophy. Rev. Cardiovasc. Med. 2021 22 3 1037 1045 10.31083/j.rcm2203113 34565105
    [Google Scholar]
  163. Theodoropoulou M.A. Mantzourani C. Kokotos G. Histone deacetylase (HDAC) inhibitors as a novel therapeutic option against fibrotic and inflammatory diseases. Biomolecules 2024 14 12 1605 10.3390/biom14121605 39766311
    [Google Scholar]
  164. Sanchez-Fernandez E. Guerra-Ojeda S. Suarez A. Serna E. Mauricio M.D. Histone deacetylase inhibitors as a promising treatment against myocardial infarction: A systematic review. J. Clin. Med. 2024 13 24 7797 10.3390/jcm13247797 39768722
    [Google Scholar]
  165. Shao J. Liu J. Zuo S. Roles of epigenetics in cardiac fibroblast activation and fibrosis. Cells 2022 11 15 2347 10.3390/cells11152347 35954191
    [Google Scholar]
  166. Fatehi Hassanabad A. Zarzycki A.N. Patel V.B. Fedak P.W.M. Current concepts in the epigenetic regulation of cardiac fibrosis. Cardiovasc. Pathol. 2024 73 107673 10.1016/j.carpath.2024.107673 38996851
    [Google Scholar]
  167. Di Nisio E. Manzini V. Licursi V. Negri R. To erase or not to erase: Non-canonical catalytic functions and non-catalytic functions of members of histone lysine demethylase families. Int. J. Mol. Sci. 2024 25 13 6900 10.3390/ijms25136900 39000010
    [Google Scholar]
  168. Liu R. Wu J. Guo H. Yao W. Li S. Lu Y. Jia Y. Liang X. Tang J. Zhang H. Post‐translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm 2023 4 3 292 10.1002/mco2.292 37220590
    [Google Scholar]
  169. Zhou X. Ma H. Evolutionary history of histone demethylase families: Distinct evolutionary patterns suggest functional divergence. BMC Evol. Biol. 2008 8 1 294 10.1186/1471‑2148‑8‑294 18950507
    [Google Scholar]
  170. Hoekstra M. Biggar K.K. Identification of in vitro JMJD lysine demethylase candidate substrates via systematic determination of substrate preference. Anal. Biochem. 2021 633 114429 10.1016/j.ab.2021.114429 34678252
    [Google Scholar]
  171. Sarah L. Fujimori D.G. Recent developments in catalysis and inhibition of the Jumonji histone demethylases. Curr. Opin. Struct. Biol. 2023 83 102707 10.1016/j.sbi.2023.102707 37832177
    [Google Scholar]
  172. Singh W. Quinn D. Moody T.S. Huang M. Reaction mechanism of histone demethylation in αKG-dependent non-heme iron enzymes. J. Phys. Chem. B 2019 123 37 7801 7811 10.1021/acs.jpcb.9b06064 31469562
    [Google Scholar]
  173. Paik W.K. Kim S. Lim I.K. Protein methylation and interaction with the antiproliferative gene, BTG2/TIS21/Pc3. Yonsei Med. J. 2014 55 2 292 303 10.3349/ymj.2014.55.2.292 24532495
    [Google Scholar]
  174. Mao F. Shi Y.G. Targeting the LSD1/KDM1 Family of Lysine Demethylases in Cancer and Other Human Diseases. In: Targeting Lysine Demethylases in Cancer and Other Human Diseases. Yan Q. Cham Springer International Publishing 2023 15 49 10.1007/978‑3‑031‑38176‑8_2
    [Google Scholar]
  175. Williams S.T. Walport L.J. Hopkinson R.J. Madden S.K. Chowdhury R. Schofield C.J. Kawamura A. Studies on the catalytic domains of multiple JmjC oxygenases using peptide substrates. Epigenetics 2014 9 12 1596 1603 10.4161/15592294.2014.983381 25625844
    [Google Scholar]
  176. Meng Y. Li H. Liu C. Zheng L. Shen B. Jumonji domain-containing protein family: The functions beyond lysine demethylation. J. Mol. Cell Biol. 2018 10 4 371 373 10.1093/jmcb/mjy010 29659917
    [Google Scholar]
  177. Rosales W. Lizcano F. The histone demethylase JMJD2A modulates the induction of hypertrophy markers in IPSC-derived cardiomyocytes. Front. Genet. 2018 9 14 10.3389/fgene.2018.00014 29479368
    [Google Scholar]
  178. Xie J. Lin H. Zuo A. Shao J. Sun W. Wang S. Song J. Yao W. Luo Y. Sun J. Wang M. The JMJD family of histone demethylase and their intimate links to cardiovascular disease. Cell. Signal. 2024 116 111046 10.1016/j.cellsig.2024.111046 38242266
    [Google Scholar]
  179. Huo J. An Q. Chen X. Qin Z. Gao E. Chen D. Wang C. Liu H.M. Zhao W. Cardiac-specific inactivation of LSD1 in mice leads to myocardial hypertrophy and heart failure. J. Mol. Cell. Cardiol. 2020 140 45 10.1016/j.yjmcc.2019.11.107
    [Google Scholar]
  180. Astro V. Ramirez-Calderon G. Pennucci R. Caroli J. Saera-Vila A. Cardona-Londoño K. Forastieri C. Fiacco E. Maksoud F. Alowaysi M. Sogne E. Falqui A. Gonzàlez F. Montserrat N. Battaglioli E. Mattevi A. Adamo A. Fine-tuned KDM1A alternative splicing regulates human cardiomyogenesis through an enzymatic-independent mechanism. iScience 2022 25 7 104665 10.1016/j.isci.2022.104665 35856020
    [Google Scholar]
  181. Bandarian V. Radical SAM enzymes involved in the biosynthesis of purine-based natural products. Biochim. Biophys. Acta. Proteins Proteomics 2012 1824 11 1245 1253 10.1016/j.bbapap.2012.07.014 22902275
    [Google Scholar]
  182. Wang P. Fan F. Li X. Sun X. Ma L. Wu J. Shen C. Zhu H. Dong Z. Wang C. Zhang S. Zhao X. Ma X. Zou Y. Hu K. Sun A. Ge J. Riboflavin attenuates myocardial injury via LSD1-mediated crosstalk between phospholipid metabolism and histone methylation in mice with experimental myocardial infarction. J. Mol. Cell. Cardiol. 2018 115 115 129 10.1016/j.yjmcc.2018.01.006 29325932
    [Google Scholar]
  183. Zhang Q.J. Tran T.A.T. Wang M. Ranek M.J. Kokkonen-Simon K.M. Gao J. Luo X. Tan W. Kyrychenko V. Liao L. Xu J. Hill J.A. Olson E.N. Kass D.A. Martinez E.D. Liu Z.P. Histone lysine dimethyl-demethylase KDM3A controls pathological cardiac hypertrophy and fibrosis. Nat. Commun. 2018 9 1 5230 10.1038/s41467‑018‑07173‑2 30531796
    [Google Scholar]
  184. Hohl M. Wagner M. Reil J.C. Müller S.A. Tauchnitz M. Zimmer A.M. Lehmann L.H. Thiel G. Böhm M. Backs J. Maack C. HDAC4 controls histone methylation in response to elevated cardiac load. J. Clin. Invest. 2013 123 3 1359 1370 10.1172/JCI61084 23434587
    [Google Scholar]
  185. Takawale A. Zhang P. Patel V.B. Wang X. Oudit G. Kassiri Z. Tissue inhibitor of matrix metalloproteinase 1 promotes myocardial fibrosis by mediating cd63–integrin β1 interaction. Hypertension 2017 69 6 1092 1103 10.1161/HYPERTENSIONAHA.117.09045
    [Google Scholar]
  186. Radhakrishnan M. Undru A. Patel S. Sharma P. Kumar A. Chakravarty S. Transcriptomic profiling reveals sex-specific epigenetic dynamics involving kdm6b and h3k27 methylation in cerebral ischemia-induced neurogenesis and recovery. Neuromolecular Med. 2024 26 1 49 10.1007/s12017‑024‑08816‑y 39585493
    [Google Scholar]
  187. Yu R. Yu Q. Li Z. Li J. Yang J. Hu Y. Zheng N. Li X. Song Y. Li J. Chen X. Du W. Su J. Transcriptome-wide map of N6-methyladenosine (m6A) profiling in coronary artery disease (CAD) with clopidogrel resistance. Clin. Epigenetics 2023 15 1 194 10.1186/s13148‑023‑01602‑w 38098098
    [Google Scholar]
  188. Huang Z. Song S. Zhang X. Zeng L. Sun A. Ge J. Metabolic substrates, histone modifications, and heart failure. Biochim. Biophys. Acta. Gene Regul. Mech. 2023 1866 1 194898 10.1016/j.bbagrm.2022.194898 36403753
    [Google Scholar]
  189. Qin J. Guo N. Tong J. Wang Z. Function of histone methylation and acetylation modifiers in cardiac hypertrophy. J. Mol. Cell. Cardiol. 2021 159 120 129 10.1016/j.yjmcc.2021.06.011 34175302
    [Google Scholar]
  190. Liu X. Wang X. Bi Y. Bu P. Zhang M. The histone demethylase PHF8 represses cardiac hypertrophy upon pressure overload. Exp. Cell Res. 2015 335 1 123 134 10.1016/j.yexcr.2015.04.012 25921086
    [Google Scholar]
  191. Zhan X. Yang Y. Li Q. He F. The role of deubiquitinases in cardiac disease. Expert Rev. Mol. Med. 2024 26 3 10.1017/erm.2024.2 38525836
    [Google Scholar]
  192. Klaeske K. Dix M. Adams V. Jawad K. Eifert S. Etz C. Saeed D. Borger M.A. Dieterlen M.T. Differential Regulation of Myocardial E3 Ligases and Deubiquitinases in Ischemic Heart Failure. Life (Basel) 2021 11 12 1430 10.3390/life11121430 34947961
    [Google Scholar]
  193. Estavoyer B. Messmer C. Echbicheb M. Rudd C.E. Milot E. Affar E.B. Mechanisms orchestrating the enzymatic activity and cellular functions of deubiquitinases. J. Biol. Chem. 2022 298 8 102198 10.1016/j.jbc.2022.102198 35764170
    [Google Scholar]
  194. Ge F. Li Y. Yuan T. Wu Y. He Q. Yang B. Zhu H. Deubiquitinating enzymes: Promising targets for drug resistance. Drug Discov. Today 2022 27 9 2603 2613 10.1016/j.drudis.2022.06.009 35760282
    [Google Scholar]
  195. Parihar N. Bhatt L.K. Deubiquitylating enzymes: Potential target in autoimmune diseases. Inflammopharmacology 2021 29 6 1683 1699 10.1007/s10787‑021‑00890‑z 34792672
    [Google Scholar]
  196. Ozhelvaci F. Steczkiewicz K. Identification and classification of papain-like cysteine proteinases. J. Biol. Chem. 2023 299 6 104801 10.1016/j.jbc.2023.104801 37164157
    [Google Scholar]
  197. Pan X. Wu S. Wei W. Chen Z. Wu Y. Gong K. Structural and functional basis of JAMM deubiquitinating enzymes in disease. Biomolecules 2022 12 7 910 10.3390/biom12070910 35883466
    [Google Scholar]
  198. Snyder N.A. Silva G.M. Deubiquitinating enzymes (DUBs): Regulation, homeostasis, and oxidative stress response. J. Biol. Chem. 2021 297 3 101077 10.1016/j.jbc.2021.101077 34391779
    [Google Scholar]
  199. Hameed D.S. Sapmaz A. Burggraaff L. Amore A. Slingerland C.J. van Westen G.J.P. Ovaa H. Development of ubiquitin‐based probe for metalloprotease deubiquitinases. Angew. Chem. Int. Ed. 2019 58 41 14477 14482 10.1002/anie.201906790 31381834
    [Google Scholar]
  200. Gopinath P. Ohayon S. Nawatha M. Brik A. Chemical and semisynthetic approaches to study and target deubiquitinases. Chem. Soc. Rev. 2016 45 15 4171 4198 10.1039/C6CS00083E 27049734
    [Google Scholar]
  201. Zhou R. Tomkovicz V.R. Butler P.L. Ochoa L.A. Peterson Z.J. Snyder P.M. Ubiquitin-specific peptidase 8 (USP8) regulates endosomal trafficking of the epithelial Na+ channel. J. Biol. Chem. 2013 288 8 5389 5397 10.1074/jbc.M112.425272 23297398
    [Google Scholar]
  202. Zhang M. Wang Z. Zhao Q. Yang Q. Bai J. Yang C. Zhang Z.R. Liu Y. USP20 deubiquitinates and stabilizes the reticulophagy receptor RETREG1/FAM134B to drive reticulophagy. Autophagy 2024 20 8 1780 1797 10.1080/15548627.2024.2347103 38705724
    [Google Scholar]
  203. Wang B. Cai W. Ai D. Zhang X. Yao L. The role of deubiquitinases in vascular diseases. J. Cardiovasc. Transl. Res. 2020 13 131 141 10.1007/s12265‑019‑09909‑x
    [Google Scholar]
  204. Zeng L. Zhang X. Huang Z. Song S. Li M. Wang T. Sun A. Ge J. Ubiquitin proteasome system in cardiac fibrosis. J. Adv.Res 2024 S2090-1232 24 00562 9 39653114
    [Google Scholar]
  205. Zeng M. Wei X. He Y. Yang Y. Ubiquitin‐specific protease 11‐mediated CD36 deubiquitination acts on C1q/TNF‐related protein 9 against atherosclerosis. ESC Heart Fail. 2023 10 4 2499 2509 10.1002/ehf2.14423 37287426
    [Google Scholar]
  206. Shi Y. Zhang H. Huang S. Yin L. Wang F. Luo P. Huang H. Epigenetic regulation in cardiovascular disease: Mechanisms and advances in clinical trials. Signal Transduct. Target. Ther. 2022 7 1 200 10.1038/s41392‑022‑01055‑2 35752619
    [Google Scholar]
  207. Sarno F. Benincasa G. List M. Barabasi A.L. Baumbach J. Ciardiello F. Filetti S. Glass K. Loscalzo J. Marchese C. Maron B.A. Paci P. Parini P. Petrillo E. Silverman E.K. Verrienti A. Altucci L. Napoli C. Sarno F. Benincasa G. List M. Barabasi A. Baumbach J. Ciardiello F. Filetti S. Glass K. Loscalzo J. Marchese C. Maron B.A. Paci P. Parini P. Petrillo E. Silverman E.K. Verrienti A. Altucci L. Napoli C. Clinical epigenetics settings for cancer and cardiovascular diseases: Real-life applications of network medicine at the bedside. Clin. Epigenetics 2021 13 1 66 10.1186/s13148‑021‑01047‑z 33785068
    [Google Scholar]
  208. Usova E.I. Alieva A.S. Yakovlev A.N. Alieva M.S. Prokhorikhin A.A. Konradi A.O. Shlyakhto E.V. Magni P. Catapano A.L. Baragetti A. Integrative analysis of multi-omics and genetic approaches-a new level in atherosclerotic cardiovascular risk prediction. Biomolecules 2021 11 11 1597 10.3390/biom11111597
    [Google Scholar]
  209. Desiderio A. Pastorino M. Campitelli M. Longo M. Miele C. Napoli R. Beguinot F. Raciti G.A. DNA methylation in cardiovascular disease and heart failure: Novel prediction models? Clin. Epigenetics 2024 16 1 115 10.1186/s13148‑024‑01722‑x 39175069
    [Google Scholar]
  210. Chandra S. Ehrlich K.C. Lacey M. Baribault C. Ehrlich M. Epigenetics and expression of key genes associated with cardiac fibrosis: NLRP3, MMP2, MMP9, CCN2/CTGF and AGT. Epigenomics 2021 13 3 219 234 10.2217/epi‑2020‑0446 33538177
    [Google Scholar]
  211. Komal S. Gao Y. Wang Z.M. Yu Q.W. Wang P. Zhang L.R. Han S.N. Epigenetic regulation in myocardial fibroblasts and its impact on cardiovascular diseases. Pharmaceuticals 2024 17 10 1353 10.3390/ph17101353 39458994
    [Google Scholar]
  212. Liu Z.Y. Song K. Tu B. Lin L.C. Sun H. Zhou Y. Li R. Shi Y. Yang J.J. Zhang Y. Zhao J.Y. Tao H. Crosstalk between oxidative stress and epigenetic marks: New roles and therapeutic implications in cardiac fibrosis. Redox Biol. 2023 65 102820 10.1016/j.redox.2023.102820 37482041
    [Google Scholar]
  213. Juárez-Mercado K.E. Prieto-Martínez F.D. Sánchez-Cruz N. Peña-Castillo A. Prada-Gracia D. Medina-Franco J.L. Expanding the structural diversity of dna methyltransferase inhibitors. Pharmaceuticals 2020 14 1 17 10.3390/ph14010017 33375520
    [Google Scholar]
  214. Hruba L. Das V. Hajduch M. Dzubak P. Nucleoside-based anticancer drugs: Mechanism of action and drug resistance. Biochem. Pharmacol. 2023 215 115741 10.1016/j.bcp.2023.115741 37567317
    [Google Scholar]
  215. Lopez M. Gilbert J. Contreras J. Halby L. Arimondo P.B. Inhibitors of DNA Methylation. In: DNA Methyltransferases - Role and Function. Jeltsch A. Jurkowska R.Z. Cham Springer International Publishing 2022 471 513 10.1007/978‑3‑031‑11454‑0_17
    [Google Scholar]
  216. Kuykendall J.R. 5-azacytidine and decitabine monotherapies of myelodysplastic disorders. Ann. Pharmacother. 2005 39 10 1700 1709 10.1345/aph.1E612 16144884
    [Google Scholar]
  217. Aimiuwu J. Wang H. Chen P. Xie Z. Wang J. Liu S. Klisovic R. Mims A. Blum W. Marcucci G. Chan K.K. RNA-dependent inhibition of ribonucleotide reductase is a major pathway for 5-azacytidine activity in acute myeloid leukemia. Blood 2012 119 22 5229 5238 10.1182/blood‑2011‑11‑382226 22517893
    [Google Scholar]
  218. Jones P.A. Taylor S.M. Cellular differentiation, cytidine analogs and DNA methylation. Cell 1980 20 1 85 93 10.1016/0092‑8674(80)90237‑8 6156004
    [Google Scholar]
  219. Taylor S.M. Jones P.A. Multiple new phenotypes induced in and 3T3 cells treated with 5-azacytidine. Cell 1979 17 4 771 779 10.1016/0092‑8674(79)90317‑9 90553
    [Google Scholar]
  220. Jeong H. Kang W.S. Hong M.H. Jeong H.C. Shin M.G. Jeong M.H. Kim Y.S. Ahn Y. 5-Azacytidine modulates interferon regulatory factor 1 in macrophages to exert a cardioprotective effect. Sci. Rep. 2015 5 1 15768 10.1038/srep15768 26510961
    [Google Scholar]
  221. Kim Y.S. Kang W.S. Kwon J.S. Hong M.H. Jeong H. Jeong H.C. Jeong M.H. Ahn Y. Protective role of 5‐azacytidine on myocardial infarction is associated with modulation of macrophage phenotype and inhibition of fibrosis. J. Cell. Mol. Med. 2014 18 6 1018 1027 10.1111/jcmm.12248 24571348
    [Google Scholar]
  222. Karahoca M. Momparler R.L. Pharmacokinetic and pharmacodynamic analysis of 5-aza-2′-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy. Clin. Epigenetics 2013 5 1 3 10.1186/1868‑7083‑5‑3 23369223
    [Google Scholar]
  223. Singh M. Kumar V. Sehrawat N. Yadav M. Chaudhary M. Upadhyay S.K. Kumar S. Sharma V. Kumar S. Dilbaghi N. Sharma A.K. Current paradigms in epigenetic anticancer therapeutics and future challenges. Semin. Cancer Biol. 2022 83 422 440 10.1016/j.semcancer.2021.03.013 33766649
    [Google Scholar]
  224. Pleyer L. Greil R. Digging deep into “dirty” drugs – modulation of the methylation machinery. Drug Metab. Rev. 2015 47 2 252 279 10.3109/03602532.2014.995379 25566693
    [Google Scholar]
  225. Alva A.S. Hahn N.M. Aparicio A.M. Singal R. Yellapragada S. Sonpavde G. Hypomethylating agents for urologic cancers. Future Oncol. 2011 7 3 447 463 10.2217/fon.11.9 21417907
    [Google Scholar]
  226. Flotho C. Claus R. Batz C. Schneider M. Sandrock I. Ihde S. Plass C. Niemeyer C.M. Lübbert M. The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia 2009 23 6 1019 1028 10.1038/leu.2008.397 19194470
    [Google Scholar]
  227. Horton J.R. Pathuri S. Wong K. Ren R. Rueda L. Fosbenner D.T. Heerding D.A. McCabe M.T. Pappalardi M.B. Zhang X. King B.W. Cheng X. Structural characterization of dicyanopyridine containing DNMT1-selective, non-nucleoside inhibitors. Structure 2022 30 6 793 802.e5 10.1016/j.str.2022.03.009 35395178
    [Google Scholar]
  228. Yu J. Xie T. Wang Z. Wang X. Zeng S. Kang Y. Hou T. DNA methyltransferases: Emerging targets for the discovery of inhibitors as potent anticancer drugs. Drug Discov. Today 2019 24 12 2323 2331 10.1016/j.drudis.2019.08.006 31494187
    [Google Scholar]
  229. Amrani-Midoun A. Laredj N. Boukerche F. DNA methylation and coronary artery disease: Brief summary of the main findings. Cor Vasa 2023 65 6 843 847 10.33678/cor.2023.067
    [Google Scholar]
  230. Li X. Shen D. Zhu Z. Lyu D. He C. Sun Y. Li J. Lu Q. Wang G. Dual roles of demethylation in cancer treatment and cardio-function recovery. Redox Biol. 2023 64 102785 10.1016/j.redox.2023.102785 37343447
    [Google Scholar]
  231. Yang B.H. Lin W.Z. Chiang Y.T. Chen Y.C. Chung C.H. Chien W.C. Shiau C.Y. Epigenetics-associated risk reduction of hematologic neoplasms in a nationwide cohort study: The chemopreventive and therapeutic efficacy of hydralazine. Front. Oncol. 2022 12 809014 10.3389/fonc.2022.809014 35186746
    [Google Scholar]
  232. Rabkin S.W. Wong C.N. Epigenetics in heart failure: Role of dna methylation in potential pathways leading to heart failure with preserved ejection fraction. Biomedicines 2023 11 10 2815 10.3390/biomedicines11102815 37893188
    [Google Scholar]
  233. Kao Y.H. Cheng C.C. Chen Y.C. Chung C.C. Lee T.I. Chen S.A. Chen Y.J. Hydralazine-induced promoter demethylation enhances sarcoplasmic reticulum Ca2+-ATPase and calcium homeostasis in cardiac myocytes. Lab. Invest. 2011 91 9 1291 1297 10.1038/labinvest.2011.92 21747360
    [Google Scholar]
  234. Tampe B. Tampe D. Zeisberg E.M. Müller G.A. Bechtel-Walz W. Koziolek M. Kalluri R. Zeisberg M. Induction of Tet3-dependent epigenetic remodeling by low-dose hydralazine attenuates progression of chronic kidney disease. EBioMedicine 2015 2 1 19 36 10.1016/j.ebiom.2014.11.005 25717475
    [Google Scholar]
  235. Tampe B. Steinle U. Tampe D. Carstens J.L. Korsten P. Zeisberg E.M. Müller G.A. Kalluri R. Zeisberg M. Low-dose hydralazine prevents fibrosis in a murine model of acute kidney injury–to–chronic kidney disease progression. Kidney Int. 2017 91 1 157 176 10.1016/j.kint.2016.07.042 27692563
    [Google Scholar]
  236. Castellano S. Kuck D. Sala M. Novellino E. Lyko F. Sbardella G. Constrained analogues of procaine as novel small molecule inhibitors of DNA methyltransferase-1. J. Med. Chem. 2008 51 7 2321 2325 10.1021/jm7015705 18345608
    [Google Scholar]
  237. Chen T. Mahdadi S. Vidal M. Desbène-Finck S. Non-nucleoside inhibitors of DNMT1 and DNMT3 for targeted cancer therapy. Pharmacol. Res. 2024 207 107328 10.1016/j.phrs.2024.107328 39079576
    [Google Scholar]
  238. Yan L. Geng Q. Cao Z. Liu B. Li L. Lu P. Lin L. Wei L. Tan Y. He X. Li L. Zhao N. Lu C. Insights into DNMT1 and programmed cell death in diseases. Biomed. Pharmacother. 2023 168 115753 10.1016/j.biopha.2023.115753 37871559
    [Google Scholar]
  239. Roberti A. Valdes A.F. Torrecillas R. Fraga M.F. Fernandez A.F. Epigenetics in cancer therapy and nanomedicine. Clin. Epigenetics 2019 11 1 81 10.1186/s13148‑019‑0675‑4 31097014
    [Google Scholar]
  240. Zwergel C. Schnekenburger M. Sarno F. Battistelli C. Manara M.C. Stazi G. Mazzone R. Fioravanti R. Gros C. Ausseil F. Florean C. Nebbioso A. Strippoli R. Ushijima T. Scotlandi K. Tripodi M. Arimondo P.B. Altucci L. Diederich M. Mai A. Valente S. Identification of a novel quinoline-based DNA demethylating compound highly potent in cancer cells. Clin. Epigenetics 2019 11 1 68 10.1186/s13148‑019‑0663‑8 31060628
    [Google Scholar]
  241. Royston K.J. Tollefsbol T.O. The epigenetic impact of cruciferous vegetables on cancer prevention. Curr. Pharmacol. Rep. 2015 1 1 46 51 10.1007/s40495‑014‑0003‑9 25774338
    [Google Scholar]
  242. Pappalardi M.B. Keenan K. Cockerill M. Kellner W.A. Stowell A. Sherk C. Wong K. Pathuri S. Briand J. Steidel M. Chapman P. Groy A. Wiseman A.K. McHugh C.F. Campobasso N. Graves A.P. Fairweather E. Werner T. Raoof A. Butlin R.J. Rueda L. Horton J.R. Fosbenner D.T. Zhang C. Handler J.L. Muliaditan M. Mebrahtu M. Jaworski J.P. McNulty D.E. Burt C. Eberl H.C. Taylor A.N. Ho T. Merrihew S. Foley S.W. Rutkowska A. Li M. Romeril S.P. Goldberg K. Zhang X. Kershaw C.S. Bantscheff M. Jurewicz A.J. Minthorn E. Grandi P. Patel M. Benowitz A.B. Mohammad H.P. Gilmartin A.G. Prinjha R.K. Ogilvie D. Carpenter C. Heerding D. Baylin S.B. Jones P.A. Cheng X. King B.W. Luengo J.I. Jordan A.M. Waddell I. Kruger R.G. McCabe M.T. Discovery of a first-in-class reversible DNMT1-selective inhibitor with improved tolerability and efficacy in acute myeloid leukemia. Nat. Can. 2021 2 10 1002 1017 10.1038/s43018‑021‑00249‑x 34790902
    [Google Scholar]
  243. Lamiable-Oulaidi F. Harijan R.K. Shaffer K.J. Crump D.R. Sun Y. Du Q. Gulab S.A. Khan A.A. Luxenburger A. Woolhouse A.D. Sidoli S. Tyler P.C. Schramm V.L. Synthesis and characterization of transition-state analogue inhibitors against human DNA methyltransferase 1. J. Med. Chem. 2022 65 7 5462 5494 10.1021/acs.jmedchem.1c01869 35324190
    [Google Scholar]
  244. Yoo C.B. Jeong S. Egger G. Liang G. Phiasivongsa P. Tang C. Redkar S. Jones P.A. Delivery of 5-aza-2′-deoxycytidine to cells using oligodeoxynucleotides. Cancer Res. 2007 67 13 6400 6408 10.1158/0008‑5472.CAN‑07‑0251 17616700
    [Google Scholar]
  245. Issa J.P.J. Roboz G. Rizzieri D. Jabbour E. Stock W. O’Connell C. Yee K. Tibes R. Griffiths E.A. Walsh K. Daver N. Chung W. Naim S. Taverna P. Oganesian A. Hao Y. Lowder J.N. Azab M. Kantarjian H. Safety and tolerability of guadecitabine (SGI-110) in patients with myelodysplastic syndrome and acute myeloid leukaemia: A multicentre, randomised, dose-escalation phase 1 study. Lancet Oncol. 2015 16 9 1099 1110 10.1016/S1470‑2045(15)00038‑8 26296954
    [Google Scholar]
  246. Choi W.J. Chung H.J. Chandra G. Alexander V. Zhao L.X. Lee H.W. Nayak A. Majik M.S. Kim H.O. Kim J.H. Lee Y.B. Ahn C.H. Lee S.K. Jeong L.S. Fluorocyclopentenyl-cytosine with broad spectrum and potent antitumor activity. J. Med. Chem. 2012 55 9 4521 4525 10.1021/jm3004009 22524616
    [Google Scholar]
  247. Balboni B. El Hassouni B. Honeywell R.J. Sarkisjan D. Giovannetti E. Poore J. Heaton C. Peterson C. Benaim E. Lee Y.B. Kim D.J. Peters G.J. RX-3117 (fluorocyclopentenyl cytosine): A novel specific antimetabolite for selective cancer treatment. Expert Opin. Investig. Drugs 2019 28 4 311 322 10.1080/13543784.2019.1583742 30879349
    [Google Scholar]
  248. Matherly L.H. Hou Z. Gangjee A. The promise and challenges of exploiting the proton-coupled folate transporter for selective therapeutic targeting of cancer. Cancer Chemother. Pharmacol. 2018 81 1 1 15 10.1007/s00280‑017‑3473‑8 29127457
    [Google Scholar]
  249. Sarkisjan D. Julsing J.R. El Hassouni B. Honeywell R.J. Kathmann I. Matherly L.H. Lee Y.B. Kim D.J. Peters G.J. RX-3117 (Fluorocyclopentenyl-Cytosine)-mediated down-regulation of DNA methyltransferase 1 leads to protein expression of tumor-suppressor genes and increased functionality of the proton-coupled folate carrier. Int. J. Mol. Sci. 2020 21 8 2717 10.3390/ijms21082717 32295203
    [Google Scholar]
  250. Zhu W. Qian J. Clinical trials In: Chapter 23 Epigenetic Cancer Therapy; Gray, S.G., Ed.; Academic Press: Boston 2015 pp 525 568 10.1016/B978‑0‑12‑800206‑3.00023‑9
    [Google Scholar]
  251. Saani I.A. Elim A. Andrew Z. Recent discoveries and clinical applications of deoxyribonucleic acid (dna) methylation inhibitors in the diagnosis, classification, and treatment of meningiomas. Biomarkers 2025 13 2 129 144 10.22034/ijabbr.2025.2145160
    [Google Scholar]
  252. Li M. Zhang D. DNA methyltransferase-1 in acute myeloid leukaemia: Beyond the maintenance of DNA methylation. Ann. Med. 2022 54 1 2011 2023 10.1080/07853890.2022.2099578 35838271
    [Google Scholar]
  253. Datta J. Ghoshal K. Denny W.A. Gamage S.A. Brooke D.G. Phiasivongsa P. Redkar S. Jacob S.T. A new class of quinoline-based DNA hypomethylating agents reactivates tumor suppressor genes by blocking DNA methyltransferase 1 activity and inducing its degradation. Cancer Res. 2009 69 10 4277 4285 10.1158/0008‑5472.CAN‑08‑3669 19417133
    [Google Scholar]
  254. Valente S. Liu Y. Schnekenburger M. Zwergel C. Cosconati S. Gros C. Tardugno M. Labella D. Florean C. Minden S. Hashimoto H. Chang Y. Zhang X. Kirsch G. Novellino E. Arimondo P.B. Miele E. Ferretti E. Gulino A. Diederich M. Cheng X. Mai A. Selective non-nucleoside inhibitors of human DNA methyltransferases active in cancer including in cancer stem cells. J. Med. Chem. 2014 57 3 701 713 10.1021/jm4012627 24387159
    [Google Scholar]
  255. Bárcena-Varela M. Caruso S. Llerena S. Álvarez-Sola G. Uriarte I. Latasa M.U. Urtasun R. Rebouissou S. Alvarez L. Jimenez M. Santamaría E. Rodriguez-Ortigosa C. Mazza G. Rombouts K. San José-Eneriz E. Rabal O. Agirre X. Iraburu M. Santos-Laso A. Banales J.M. Zucman-Rossi J. Prósper F. Oyarzabal J. Berasain C. Ávila M.A. Fernández-Barrena M.G. Dual targeting of histone methyltransferase g9a and dna‐methyltransferase 1 for the treatment of experimental hepatocellular carcinoma. Hepatology 2019 69 2 587 603 10.1002/hep.30168 30014490
    [Google Scholar]
  256. Medicament P.F. Centre National de La Recherche Scientifique. CNRS 2015
    [Google Scholar]
  257. Rai R. Sun T. Ramirez V. Lux E. Eren M. Vaughan D.E. Ghosh A.K. Acetyltransferase p300 inhibitor reverses hypertension‐induced cardiac fibrosis. J. Cell. Mol. Med. 2019 23 4 3026 3031 10.1111/jcmm.14162 30710427
    [Google Scholar]
  258. Su H. Zeng H. He X. Zhu S.H. Chen J.X. Histone acetyltransferase p300 inhibitor improves coronary flow reserve in SIRT3 (Sirtuin 3) knockout mice. J. Am. Heart Assoc. 2020 9 18 017176 10.1161/JAHA.120.017176 32865093
    [Google Scholar]
  259. Shi J. Wang Q.H. Wei X. Huo B. Ye J.N. Yi X. Feng X. Fang Z.M. Jiang D.S. Ma M.J. Histone acetyltransferase P300 deficiency promotes ferroptosis of vascular smooth muscle cells by activating the HIF-1α/HMOX1 axis. Mol. Med. 2023 29 1 91 10.1186/s10020‑023‑00694‑7 37415103
    [Google Scholar]
  260. Sunagawa Y. Funamoto M. Shimizu K. Shimizu S. Sari N. Katanasaka Y. Miyazaki Y. Kakeya H. Hasegawa K. Morimoto T. Curcumin, an inhibitor of p300-HAT activity, suppresses the development of hypertension-induced left ventricular hypertrophy with preserved ejection fraction in dahl rats. Nutrients 2021 13 8 2608 10.3390/nu13082608 34444769
    [Google Scholar]
  261. Kim J.Y. Jo J. Leem J. Park K.K. Inhibition of p300 by garcinol protects against cisplatin-induced acute kidney injury through suppression of oxidative stress, inflammation, and tubular cell death in mice. Antioxidants 2020 9 12 1271 10.3390/antiox9121271 33327548
    [Google Scholar]
  262. Wan C.C. Hu X. Li M. Rengasamy K.R.R. Cai Y. Liu Z. Potential protective function of green tea polyphenol EGCG against high glucose-induced cardiac injury and aging. J. Funct. Foods 2023 104 105506 10.1016/j.jff.2023.105506
    [Google Scholar]
  263. Li S. Peng B. Luo X. Sun H. Peng C. Anacardic acid attenuates pressure‐overload cardiac hypertrophy through inhibiting histone acetylases. J. Cell. Mol. Med. 2019 23 4 2744 2752 10.1111/jcmm.14181 30712293
    [Google Scholar]
  264. Yang Y. Luan Y. Yuan R.X. Luan Y. Histone methylation related therapeutic challenge in cardiovascular diseases. Front. Cardiovasc. Med. 2021 8 710053 10.3389/fcvm.2021.710053 34568453
    [Google Scholar]
  265. Gurrala C.T. Cheng Z.A. Mallaredy V. Cimini M. Joladarashi D. Truongcao M. Wang C. Lucchese A.M. Huang G. Gonzalez C. Magadum A. Roy R. Ghosh J. Benedict C. Koch W.J. Kishore R. Abstract 11486: Hormone-independent sex dimorphisms in cardiac reparative functions of bone marrow stem cells: Underlying epigenetic insights. Circulation 2022 146 Suppl. 1 A11486 A11486 10.1161/circ.146.suppl_1.11486
    [Google Scholar]
  266. Sung P.H. Luo C.W. Chiang J.Y. Yip H.K. The combination of G9a histone methyltransferase inhibitors with erythropoietin protects heart against damage from acute myocardial infarction. Am. J. Transl. Res. 2020 12 7 3255 3271 32774698
    [Google Scholar]
  267. Awada C. Bourgeois A. Lemay S.E. Grobs Y. Yokokawa T. Breuils-Bonnet S. Martineau S. Krishna V. Potus F. Jeyaseelan J. Provencher S. Bonnet S. Boucherat O. G9a/GLP targeting ameliorates pulmonary vascular remodeling in pulmonary arterial hypertension. Am. J. Respir. Cell Mol. Biol. 2023 68 5 537 550 10.1165/rcmb.2022‑0300OC 36724371
    [Google Scholar]
  268. Sweis R.F. Pliushchev M. Brown P.J. Guo J. Li F. Maag D. Petros A.M. Soni N.B. Tse C. Vedadi M. Michaelides M.R. Chiang G.G. Pappano W.N. Discovery and development of potent and selective inhibitors of histone methyltransferase g9a. ACS Med. Chem. Lett. 2014 5 2 205 209 10.1021/ml400496h 24900801
    [Google Scholar]
  269. Khanban H. Fattahi E. Talkhabi M. In vivo administration of G9a inhibitor A366 decreases osteogenic potential of bone marrow-derived mesenchymal stem cells. EXCLI J. 2019 18 300 309 31338003
    [Google Scholar]
  270. Kwon W.A. Seo H.K. Novel G9a/DNMT first-in-class dual reversible inhibitor has potent antitumor effect in bladder cancer. Transl. Cancer Res. 2020 9 3 1319 1321 10.21037/tcr.2020.01.16 35117479
    [Google Scholar]
  271. Luo H. Li Y. Song H. Zhao K. Li W. Hong H. Wang Y.T. Qi L. Zhang Y. Role of EZH2-mediated epigenetic modification on vascular smooth muscle in cardiovascular diseases: A mini-review. Front. Pharmacol. 2024 15 1416992 10.3389/fphar.2024.1416992 38994197
    [Google Scholar]
  272. Aziz S. Yalan L. Raza M.A. Lemin J. Akram H.M.B. Zhao W. GSK126 an inhibitor of epigenetic regulator EZH2 suppresses cardiac fibrosis by regulating the EZH2-PAX6-CXCL10 pathway. Biochem. Cell Biol. 2023 101 1 87 100 10.1139/bcb‑2022‑0224 36469862
    [Google Scholar]
  273. Li S.S. Pan L. Zhang Z.Y. Zhou M.D. Chen X.F. Qian L.L. Dai M. Lu J. Yu Z.M. Dang S. Wang R.X. Diabetes Promotes Myocardial Fibrosis via AMPK/EZH2/PPAR-γ Signaling Pathway. Diabetes Metab. J. 2024 48 4 716 729 10.4093/dmj.2023.0031 38408883
    [Google Scholar]
  274. Arifuzzaman S. Das A. Kim S.H. Yoon T. Lee Y.S. Jung K.H. Chai Y.G. Selective inhibition of EZH2 by a small molecule inhibitor regulates microglial gene expression essential for inflammation. Biochem. Pharmacol. 2017 137 61 80 10.1016/j.bcp.2017.04.016 28431938
    [Google Scholar]
  275. Wilson John N. Dang C. Reddy N. Chao C. Ho K.J. Jiang B. Bioengineering strategies for treating neointimal hyperplasia in peripheral vasculature: Innovations and challenges. Adv. Healthc. Mater. 2025 14 7 2401056 10.1002/adhm.202401056 39888207
    [Google Scholar]
  276. Katakia Y.T. Thakkar N.P. Thakar S. Sakhuja A. Goyal R. Sharma H. Dave R. Mandloi A. Basu S. Nigam I. Kuncharam B.V.R. Chowdhury S. Majumder S. Dynamic alterations of H3K4me3 and H3K27me3 at ADAM17 and Jagged‐1 gene promoters cause an inflammatory switch of endothelial cells. J. Cell. Physiol. 2022 237 1 992 1012 10.1002/jcp.30579 34520565
    [Google Scholar]
  277. Xu B. On D.M. Ma A. Parton T. Konze K.D. Pattenden S.G. Allison D.F. Cai L. Rockowitz S. Liu S. Liu Y. Li F. Vedadi M. Frye S.V. Garcia B.A. Zheng D. Jin J. Wang G.G. Selective inhibition of EZH2 and EZH1 enzymatic activity by a small molecule suppresses MLL-rearranged leukemia. Blood 2015 125 2 346 357 10.1182/blood‑2014‑06‑581082 25395428
    [Google Scholar]
  278. Rizq O. Mimura N. Oshima M. Saraya A. Koide S. Kato Y. Aoyama K. Nakajima-Takagi Y. Wang C. Chiba T. Ma A. Jin J. Iseki T. Nakaseko C. Iwama A. Dual inhibition of EZH2 and EZH1 sensitizes prc2-dependent tumors to proteasome inhibition. Clin. Cancer Res. 2017 23 16 4817 4830 10.1158/1078‑0432.CCR‑16‑2735 28490465
    [Google Scholar]
  279. Kempkes R.W.M. Rief L.C.M. Roomen C.P A A. Griffith G.R. Vos W.G. Bosmans L.A. Gijbels M.J.J. Hoeksema M.A. Prange K.H.M. De Winther M.P.J. Neele A.E. EZH2 inhibition reduces macrophage inflammatory responses in atherosclerosis. Cardiovasc Res 2024 120 Suppl. 1 cvae088.143 10.1093/cvr/cvae088.143
    [Google Scholar]
  280. Ren Y. Wang Y. Zhang J. Wang Q. Han L. Mei M. Kang C. Targeted design and identification of AC1NOD4Q to block activity of HOTAIR by abrogating the scaffold interaction with EZH2. Clin. Epigenetics 2019 11 1 29 10.1186/s13148‑019‑0624‑2 30764859
    [Google Scholar]
  281. Sun K. Chen M. Kong X. Hou W. Xu Z. Liu L. Cardiac-specific Suv39h1 knockout ameliorates high-fat diet induced diabetic cardiomyopathy via regulating Hmox1 transcription. Life Sci. 2025 360 123258 10.1016/j.lfs.2024.123258 39580141
    [Google Scholar]
  282. Jafari S. Shoghi M. Khazdair M.R. Pharmacological effects of genistein on cardiovascular diseases. Evid. Based Complement. Alternat. Med. 2023 2023 1 8250219 10.1155/2023/8250219 37275572
    [Google Scholar]
  283. Fledderus J. Vanchin B. Rots M. Krenning G. The endothelium as a target for anti-atherogenic therapy: A focus on the epigenetic enzymes EZH2 and SIRT1. J. Pers. Med. 2021 11 2 103 10.3390/jpm11020103 33562658
    [Google Scholar]
  284. Shukla S.K. Rafiq K. Proteasome biology and therapeutics in cardiac diseases. Transl. Res. 2019 205 64 76 10.1016/j.trsl.2018.09.003 30342797
    [Google Scholar]
  285. Zou J. Ma W. Littlejohn R. Li J. Stansfield B.K. Kim I. Liu J. Zhou J. Weintraub N.L. Su H. Transient inhibition of neddylation at neonatal stage evokes reversible cardiomyopathy and predisposes the heart to isoproterenol-induced heart failure. Am. J. Physiol. Heart Circ. Physiol. 2019 316 6 H1406 H1416 10.1152/ajpheart.00806.2018 30925068
    [Google Scholar]
  286. Gong L. Cui D. Xiong X. Zhao Y. Targeting cullin-ring ubiquitin ligases and the applications in PROTACs. In: Cullin-RING Ligases and Protein Neddylation: Biology and Therapeutics. Sun Y. Wei W. Jin J. Singapore Springer Singapore 2020 317 347 10.1007/978‑981‑15‑1025‑0_19
    [Google Scholar]
  287. Kowalski T.W. Gomes J.A. Garcia G.B.C. Fraga L.R. Paixao-Cortes V.R. Recamonde-Mendoza M. Sanseverino M.T.V. Schuler-Faccini L. Vianna F.S.L. CRL4-cereblon complex in thalidomide embryopathy: A translational investigation. Sci. Rep. 2020 10 1 851 10.1038/s41598‑020‑57512‑x 31964914
    [Google Scholar]
  288. Pontrelli P. Conserva F. Menghini R. Rossini M. Stasi A. Divella C. Casagrande V. Cinefra C. Barozzino M. Simone S. Pesce F. Castellano G. Stallone G. Gallone A. Giorgino F. Federici M. Gesualdo L. Inhibition of lysine 63 ubiquitination prevents the progression of renal fibrosis in diabetic DBA/2J mice. Int. J. Mol. Sci. 2021 22 10 5194 10.3390/ijms22105194 34068941
    [Google Scholar]
  289. Borlepawar A. Frey N. Rangrez A.Y. A systematic view on E3 ligase Ring TRIMmers with a focus on cardiac function and disease. Trends Cardiovasc. Med. 2019 29 1 1 8 10.1016/j.tcm.2018.05.007 29880235
    [Google Scholar]
  290. Belle R. Saraç H. Salah E. Bhushan B. Szykowska A. Roper G. Tumber A. Kriaucionis S. Burgess-Brown N. Schofield C.J. Brown T. Kawamura A. Focused screening identifies different sensitivities of human TET oxygenases to the oncometabolite 2-hydroxyglutarate. J. Med. Chem. 2024 67 6 4525 4540 10.1021/acs.jmedchem.3c01820 38294854
    [Google Scholar]
  291. Zelencova-Gopejenko D. Grandāne A. Loža E. Loļa D. Sipola A. Liepinsh E. Arsenyan P. Jaudzems K. Binding versus enzymatic processing of ε-trimethyllysine dioxygenase substrate analogues. ACS Med. Chem. Lett. 2022 13 11 1723 1729 10.1021/acsmedchemlett.2c00261 36385923
    [Google Scholar]
  292. Tian R. Jin Z. Zhou L. Zeng X.P. Lu N. Quercetin attenuated myeloperoxidase-dependent HOCl generation and endothelial dysfunction in diabetic vasculature. J. Agric. Food Chem. 2021 69 1 404 413 10.1021/acs.jafc.0c06335 33395297
    [Google Scholar]
  293. Zhang W. Guo Y. Han W. Yang M. Wen L. Wang K. Jiang P. Curcumin relieves depressive-like behaviors via inhibition of the NLRP3 inflammasome and kynurenine pathway in rats suffering from chronic unpredictable mild stress. Int. Immunopharmacol. 2019 67 138 144 10.1016/j.intimp.2018.12.012 30551030
    [Google Scholar]
  294. Maity J. Majumder S. Pal R. Saha B. Mukhopadhyay P.K. Ascorbic acid modulates immune responses through Jumonji‐C domain containing histone demethylases and Ten eleven translocation (TET) methylcytosine dioxygenase. BioEssays 2023 45 11 2300035 10.1002/bies.202300035 37694689
    [Google Scholar]
  295. Yoon S. Eom G.H. HDAC and HDAC inhibitor: From cancer to cardiovascular diseases. Chonnam Med. J. 2016 52 1 1 11 10.4068/cmj.2016.52.1.1 26865995
    [Google Scholar]
  296. Gao Q. Wei A. Chen F. Chen X. Ding W. Ding Z. Wu Z. Du R. Cao W. Enhancing PPARγ by HDAC inhibition reduces foam cell formation and atherosclerosis in ApoE deficient mice. Pharmacol. Res. 2020 160 105059 10.1016/j.phrs.2020.105059 32621955
    [Google Scholar]
  297. Freundt J.K. Frommeyer G. Spieker T. Wötzel F. Grotthoff J.S. Stypmann J. Hempel G. Schäfers M. Jacobs A.H. Eckardt L. Lange P.S. Histone deacetylase inhibition by Entinostat for the prevention of electrical and structural remodeling in heart failure. BMC Pharmacol. Toxicol. 2019 20 1 16 10.1186/s40360‑019‑0294‑x 30841920
    [Google Scholar]
  298. Zhang S. Fujita Y. Matsuzaki R. Yamashita T. Class I. Class I histone deacetylase (HDAC) inhibitor CI-994 promotes functional recovery following spinal cord injury. Cell Death Dis. 2018 9 5 460 10.1038/s41419‑018‑0543‑8 29700327
    [Google Scholar]
  299. Choi S.Y. Kee H.J. Jin L. Ryu Y. Sun S. Kim G.R. Jeong M.H. Inhibition of class IIa histone deacetylase activity by gallic acid, sulforaphane, TMP269, and panobinostat. Biomed. Pharmacother. 2018 101 145 154 10.1016/j.biopha.2018.02.071 29482060
    [Google Scholar]
  300. Lv F. Xie L. Li L. Lin J. LMK235 ameliorates inflammation and fibrosis after myocardial infarction by inhibiting LSD1-related pathway. Sci. Rep. 2024 14 1 23450 10.1038/s41598‑024‑74887‑3 39379699
    [Google Scholar]
  301. Milan M. Pace V. Maiullari F. Chirivì M. Baci D. Maiullari S. Madaro L. Maccari S. Stati T. Marano G. Frati G. Puri P.L. De Falco E. Bearzi C. Rizzi R. Givinostat reduces adverse cardiac remodeling through regulating fibroblasts activation. Cell Death Dis. 2018 9 2 108 10.1038/s41419‑017‑0174‑5 29371598
    [Google Scholar]
  302. Al-Yafeai Z. Ghoweba M. Ananthaneni A. Abduljabar H. Aziz D. Cardiovascular complications of modern multiple myeloma therapy: A pharmacovigilance study. Br. J. Clin. Pharmacol. 2023 89 2 641 648 10.1111/bcp.15499 35996166
    [Google Scholar]
  303. Liu X. Zhou L. Huang W. Yang Y. Yang Y. Liu T. Guo M. Yu T. Li Y. Proteomic analysis and 2-hydroxyisobutyrylation profiling in metabolic syndrome induced restenosis. Mol. Cell. Proteomics 2025 24 6 100978 10.1016/j.mcpro.2025.100978 40287094
    [Google Scholar]
  304. Groenewald A. Burns K.E. Tingle M.D. Ward M.L. Power A.S. Acute exposure to clozapine and sodium valproate impairs oxidative phosphorylation in human cardiac mitochondria. Toxicol. Rep. 2025 14 101990 10.1016/j.toxrep.2025.101990 40151211
    [Google Scholar]
  305. Jung H. Lee E. Kim I. Song J. Kim G. Histone deacetylase inhibition has cardiac and vascular protective effects in rats with pressure overload cardiac hypertrophy. Physiol. Res. 2019 68 5 727 737 10.33549/physiolres.934110 31424255
    [Google Scholar]
  306. Weeks K.L. HDAC inhibitors and cardioprotection: Homing in on a mechanism of action. EBioMedicine 2019 40 21 22 10.1016/j.ebiom.2019.01.015 30639419
    [Google Scholar]
  307. Wang Q. Zuurbier C.J. Huhn R. Torregroza C. Hollmann M.W. Preckel B. van den Brom C.E. Weber N.C. Pharmacological cardioprotection against ischemia reperfusion injury—the search for a clinical effective therapy. Cells 2023 12 10 1432 10.3390/cells12101432 37408266
    [Google Scholar]
  308. Noonan A.M. Eisch R.A. Liewehr D.J. Sissung T.M. Venzon D.J. Flagg T.P. Haigney M.C. Steinberg S.M. Figg W.D. Piekarz R.L. Bates S.E. Electrocardiographic studies of romidepsin demonstrate its safety and identify a potential role for K(ATP) channel. Clin. Cancer Res. 2013 19 11 3095 3104 10.1158/1078‑0432.CCR‑13‑0109 23589175
    [Google Scholar]
  309. Koyu H. İstanbullu H. Ozoglu S.E.T. Temiz T.K. Investigation of in vitro HDAC 1 inhibitory activity of Curcuma Longa L. extracts, isolated fractions and curcumin. Eur. Food Res. Technol. 2023 ••• 1 9
    [Google Scholar]
  310. Lin X. Han T. Fan Y. Wu S. Wang F. Wang C. Quercetin improves vascular endothelial function through promotion of autophagy in hypertensive rats. Life Sci. 2020 378 118106 10.1016/j.lfs.2020.118106 32682916
    [Google Scholar]
  311. Chelladurai P. Boucherat O. Stenmark K. Kracht M. Seeger W. Bauer U.M. Bonnet S. Pullamsetti S.S. Targeting histone acetylation in pulmonary hypertension and right ventricular hypertrophy. Br. J. Pharmacol. 2021 178 1 54 71 10.1111/bph.14932 31749139
    [Google Scholar]
  312. Ciesielski O. Biesiekierska M. Balcerczyk A. Epigallocatechin-3-gallate (EGCG) Alters Histone Acetylation and Methylation and Impacts Chromatin Architecture Profile in Human Endothelial Cells. Molecules 2020 25 10 2326 10.3390/molecules25102326 32429384
    [Google Scholar]
  313. Karoor V. Strassheim D. Sullivan T. Verin A. Umapathy N.S. Dempsey E.C. Frank D.N. Stenmark K.R. Gerasimovskaya E. The short-chain fatty acid butyrate attenuates pulmonary vascular remodeling and inflammation in hypoxia-induced pulmonary hypertension. Int. J. Mol. Sci. 2021 22 18 9916 10.3390/ijms22189916 34576081
    [Google Scholar]
  314. Kurakula K.B. Sun X.Q. Van Der Feen D.E. Hagdorn Q.A.J. Bogaard H.J. Berger R.M. Goumans M.J. Selective inhibition of histone deacetylases reverses vascular remodelling and improves right ventricle function in pulmonary hypertension. Eur Heart J 2020 41 Suppl. 2 ehaa946.3807 10.1093/ehjci/ehaa946.3807
    [Google Scholar]
  315. Gallo P. Latronico M.V.G. Gallo P. Grimaldi S. Borgia F. Todaro M. Jones P. Gallinari P. De Francesco R. Ciliberto G. Steinkühler C. Esposito G. Condorelli G. Inhibition of class I histone deacetylase with an apicidin derivative prevents cardiac hypertrophy and failure. Cardiovasc. Res. 2008 80 3 416 424 10.1093/cvr/cvn215 18697792
    [Google Scholar]
  316. Audu C.O. Melvin W.J. Joshi A.D. Wolf S.J. Moon J.Y. Davis F.M. Barrett E.C. Mangum K.D. Deng H. Xing X. Wasikowski R. Tsoi L.C. Sharma S.B. Bauer T.M. Shadiow J. Corriere M.A. Obi A.T. Kunkel S.L. Levi B. Moore B.B. Gudjonsson J.E. Smith A.M. Gallagher K.A. Macrophage-specific inhibition of the histone demethylase JMJD3 decreases STING and pathologic inflammation in diabetic wound repair. Cell. Mol. Immunol. 2022 19 11 1251 1262 10.1038/s41423‑022‑00919‑5 36127466
    [Google Scholar]
  317. He Y. Yi X. Zhang Z. Luo H. Li R. Feng X. Fang Z.M. Zhu X.H. Cheng W. Jiang D.S. Zhao F. Wei X. JIB-04, a histone demethylase Jumonji C domain inhibitor, regulates phenotypic switching of vascular smooth muscle cells. Clin. Epigenetics 2022 14 1 101 10.1186/s13148‑022‑01321‑8 35964071
    [Google Scholar]
  318. Wu L. Yang B. Sun Y. Fan G. Ma L. Ma Y. Xiong X. Zhou H. Wang H. Zhang L. Yang B. Isoprenaline inhibits histone demethylase lsd1 to induce cardiac hypertrophy. Cardiovasc. Toxicol. 2025 25 1 34 47 10.1007/s12012‑024‑09937‑3 39521734
    [Google Scholar]
  319. Lazar A. Vlad M.L. Manea A. Manea S. Lysine-specific histone demethylase 1A mediates the up-regulation of NADPH oxidase expression in the kidney of diabetic mice. Atherosclerosis 2023 379 S161 10.1016/j.atherosclerosis.2023.06.546
    [Google Scholar]
  320. Dorna D. Grabowska A. Paluszczak J. Natural products modulating epigenetic mechanisms by affecting histone methylation/demethylation: Targeting cancer cells. Br. J. Pharmacol. 2023 ••• 293 37700551
    [Google Scholar]
  321. Zhang D.H. Zhang J.L. Huang Z. Wu L.M. Wang Z.M. Li Y.P. Tian X.Y. Kong L.Y. Yao R. Zhang Y.Z. Deubiquitinase ubiquitin‐specific protease 10 deficiency regulates sirt6 signaling and exacerbates cardiac hypertrophy. J. Am. Heart Assoc. 2020 9 22 017751 10.1161/JAHA.120.017751 33170082
    [Google Scholar]
  322. Xian Y. Ye J. Tang Y. Zhang N. Peng C. Huang W. He G. Deubiquitinases as novel therapeutic targets for diseases. MedComm 2024 5 12 70036 10.1002/mco2.70036 39678489
    [Google Scholar]
  323. Batkai S. Genschel C. Viereck J. Rump S. Bär C. Borchert T. Traxler D. Riesenhuber M. Spannbauer A. Lukovic D. Zlabinger K. Hašimbegović E. Winkler J. Garamvölgyi R. Neitzel S. Gyöngyösi M. Thum T. CDR132L improves systolic and diastolic function in a large animal model of chronic heart failure. Eur. Heart J. 2021 42 2 192 201 10.1093/eurheartj/ehaa791 33089304
    [Google Scholar]
  324. Täubel J. Hauke W. Rump S. Viereck J. Batkai S. Poetzsch J. Rode L. Weigt H. Genschel C. Lorch U. Theek C. Levin A.A. Bauersachs J. Solomon S.D. Thum T. Novel antisense therapy targeting microRNA-132 in patients with heart failure: Results of a first-in-human Phase 1b randomized, double-blind, placebo-controlled study. Eur. Heart J. 2021 42 2 178 188 10.1093/eurheartj/ehaa898 33245749
    [Google Scholar]
  325. Bellera N. Barba I. Rodríguez-Sinovas A. Ferret E. Asín M. Gonzalez-Alujas M. Pérez-Rodon J. Esteves M. Fonseca C. Torán N. Del Blanco G. Pérez A. Garcia-Dorado D. Single intracoronary injection of encapsulated antagomir‐92a promotes angiogenesis and prevents adverse infarct remodeling. J. Am. Heart Assoc. Cardiovasc. Cerebrovasc. Dis 2014 3 5 e000946 10.1161/JAHA.114.000946
    [Google Scholar]
  326. Sothivelr V. Hasan M.Y. Mohd Saffian S. Zainalabidin S. Ugusman A. Mahadi M.K. Revisiting miRNA-21 as a therapeutic strategy for myocardial infarction: A systematic review. J. Cardiovasc. Pharmacol. 2022 80 3 393 406 10.1097/FJC.0000000000001305 35767710
    [Google Scholar]
  327. Liu M.N. Luo G. Gao W.J. Yang S.J. Zhou H. miR-29 family: A potential therapeutic target for cardiovascular disease. Pharmacol. Res. 2021 166 105510 10.1016/j.phrs.2021.105510 33610720
    [Google Scholar]
  328. Wahlquist C. Jeong D. Rojas-Muñoz A. Kho C. Lee A. Mitsuyama S. van Mil A. Jin Park W. Sluijter J.P.G. Doevendans P.A.F. Hajjar R.J. Mercola M. Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature 2014 508 7497 531 535 10.1038/nature13073 24670661
    [Google Scholar]
  329. Tony H. Yu K. Qiutang Z. MicroRNA-208a silencing attenuates doxorubicin induced myocyte apoptosis and cardiac dysfunction. Oxid. Med. Cell. Longev. 2015 2015 597032 10.1155/2015/597032
    [Google Scholar]
  330. Qiu Y. Xu Q. Xie P. He C. Li Q. Yao X. Mao Y. Wu X. Zhang T. Epigenetic modifications and emerging therapeutic targets in cardiovascular aging and diseases. Pharmacol. Res. 2025 211 107546 10.1016/j.phrs.2024.107546 39674563
    [Google Scholar]
  331. Nepali K. Liou J.P. Sharma R. Sharma S. Thakur A. Singh A. Singh J. The role of epigenetic mechanisms in autoimmune, neurodegenerative, cardiovascular, and imprinting disorders. Mini Rev. Med. Chem. 2022 22 15 1977 2011 10.2174/1389557522666220217103441 35176978
    [Google Scholar]
  332. Ference B.A. Robinson J.G. Brook R.D. Catapano A.L. Chapman M.J. Neff D.R. Voros S. Giugliano R.P. Davey Smith G. Fazio S. Sabatine M.S. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N. Engl. J. Med. 2016 375 22 2144 2153 10.1056/NEJMoa1604304 27959767
    [Google Scholar]
  333. Schiattarella G.G. Sannino A. Toscano E. Cattaneo F. Trimarco B. Esposito G. Perrino C. Cardiovascular effects of histone deacetylase inhibitors epigenetic therapies: Systematic review of 62 studies and new hypotheses for future research. Int. J. Cardiol. 2016 219 396 403 10.1016/j.ijcard.2016.06.012 27362830
    [Google Scholar]
  334. Tang K. Jiao L.M. Qi Y.R. Wang T.C. Li Y.L. Xu J.L. Wang Z.W. Yu B. Liu H.M. Zhao W. Discovery of novel pyrazole-based kdm5b inhibitor TK-129 and its protective effects on myocardial remodeling and fibrosis. J. Med. Chem. 2022 65 19 12979 13000 10.1021/acs.jmedchem.2c00797 36112701
    [Google Scholar]
  335. Lam B. Roudier E. Considering the role of murine double minute 2 in the cardiovascular system? Front. Cell Dev. Biol. 2019 7 320 10.3389/fcell.2019.00320 31921839
    [Google Scholar]
  336. Zhu H. Gao H. Ji Y. Zhou Q. Du Z. Tian L. Jiang Y. Yao K. Zhou Z. Targeting p53–MDM2 interaction by small-molecule inhibitors: Learning from MDM2 inhibitors in clinical trials. J. Hematol. Oncol. 2022 15 1 91 10.1186/s13045‑022‑01314‑3 35831864
    [Google Scholar]
  337. Fuster J. MacLauchlan S. Zuriaga M. Polackal M. Ostriker A. Chakraborty R. Wu C-L. Sano S. Muralidharan S. Rius C. Vuong J. Jacob S. Muralidhar V. Robertson A. Cooper M. Andrés V. Hirschi K. Martin K. Walsh K. Clonal hematopoiesis associated with tet2 deficiency accelerates atherosclerosis development in mice. Science 2017 355 842 847
    [Google Scholar]
  338. Cobo I. Tanaka T.N. Chandra Mangalhara K. Lana A. Yeang C. Han C. Schlachetzki J. Challcombe J. Fixsen B.R. Sakai M. Li R.Z. Fields H. Mokry M. Tsai R.G. Bejar R. Prange K. de Winther M. Shadel G.S. Glass C.K. DNA methyltransferase 3 alpha and TET methylcytosine dioxygenase 2 restrain mitochondrial DNA-mediated interferon signaling in macrophages. Immunity 2022 55 8 1386 1401.e10 10.1016/j.immuni.2022.06.022 35931086
    [Google Scholar]
  339. Ardiana M. Fadila A.N. Zuhra Z. Kusuma N.M. Surya Erlangga Rurus M.E. Oceandy D. Non-coding RNA therapeutics in cardiovascular diseases and risk factors: Systematic review. Noncoding RNA Res. 2023 8 4 487 506 10.1016/j.ncrna.2023.06.002 37483458
    [Google Scholar]
  340. Silva J. da Costa Martins P.A. Non-coding RNAs in the therapeutic landscape of pathological cardiac hypertrophy. Cells 2022 11 11 1805 10.3390/cells11111805 35681500
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575406970250919065317
Loading
/content/journals/mrmc/10.2174/0113895575406970250919065317
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test