Skip to content
2000
image of Role of Calmodulin in Neurodegeneration and Neuroprotection

Abstract

Intracellular calcium (Ca2+) levels are critical in maintaining cellular activities and are tightly regulated. Neuronal degeneration and regeneration rely on calcium-binding proteins. Calmodulin (CaM) is a calcium sensor and the primary regulator of receptors and ion channels that maintain calcium homeostasis. The calmodulin binding domains are present in proteins that serve as risk factors and biomarkers associated with Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Amyotrophic Lateral Sclerosis, and other neurodegenerative diseases, suggesting calmodulin ligands as emerging therapeutic targets for treatment. Inhibiting CaM to develop new therapies has drawbacks, as CaM is a ubiquitous molecule involved in many regulatory pathways. Recently, new strategies for disrupting CaM interactions with its targets have shown promising approaches to treatment.

The structures of human CaM, its binding proteins, and inhibitors are well studied, with particular emphasis on the conservation of CaM amino acid sequences and the ability to bind protein fragments of high sequence variability, which exhibit common characteristics of amphipathic helices carrying basic amino acids.

In this review, we discuss structural characteristics of CaM and its ligands in the context of transcriptional regulation. Specific binding of CaM to (1) basic region/helix-loop-helix/leucine zipper and (2) helix-turn-helix high mobility group box containing Sox families of transcription factors highlights common features of CaM binding sequences, which suggest their regulatory functions. We describe key proteins involved in neurodegeneration and transcription factors subject to calmodulin regulation that are candidates for the development of new approaches to treating neuronal diseases.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575403663250812115441
2025-08-21
2025-09-03
Loading full text...

Full text loading...

References

  1. Lisek M. Tomczak J. Boczek T. Zylinska L. Calcium-associated proteins in neuroregeneration. Biomolecules 2024 14 2 183 10.3390/biom14020183 38397420
    [Google Scholar]
  2. O’Day D.H. The complex interplay between toxic hallmark proteins, calmodulin-binding proteins, ion channels, and receptors involved in calcium dyshomeostasis in neurodegeneration. Biomolecules 2024 14 2 173 10.3390/biom14020173 38397410
    [Google Scholar]
  3. O’Day D.H. Calmodulin binding domains in critical risk proteins involved in neurodegeneration. Curr. Issues Mol. Biol. 2022 44 11 5802 5814 10.3390/cimb44110394 36421678
    [Google Scholar]
  4. Morris V.S. Richards E.M.B. Morris R. Dart C. Helassa N. Structure–function diversity of calcium-binding proteins (CaBPs): Key roles in cell signalling and disease. Cells 2025 14 3 152 10.3390/cells14030152 39936944
    [Google Scholar]
  5. Luo Y. Yu X. Ma C. Luo J. Yang W. Identification of a novel EF-loop in the N-terminus of TRPM2 channel involved in calcium sensitivity. Front. Pharmacol. 2018 9 581 10.3389/fphar.2018.00581 29915540
    [Google Scholar]
  6. Li T. Kim D. Lee J. NADPH oxidase gene, FgNoxD, plays a critical role in development and virulence in Fusarium graminearum. Front. Microbiol. 2022 13 822682 10.3389/fmicb.2022.822682 35308369
    [Google Scholar]
  7. Grant B.M.M. Enomoto M. Ikura M. Marshall C.B. A non-canonical calmodulin target motif comprising a polybasic region and lipidated terminal residue regulates localization. Int. J. Mol. Sci. 2020 21 8 2751 10.3390/ijms21082751 32326637
    [Google Scholar]
  8. Hall B.E. Prochazkova M. Sapio M.R. Minetos P. Kurochkina N. Binukumar B.K. Amin N.D. Terse A. Joseph J. Raithel S.J. Mannes A.J. Pant H.C. Chung M.K. Iadarola M.J. Kulkarni A.B. Phosphorylation of the transient receptor potential ankyrin 1 by Cyclin-dependent Kinase 5 affects Chemo-nociception. Sci. Rep. 2018 8 1 1177 10.1038/s41598‑018‑19532‑6 29352128
    [Google Scholar]
  9. Kurochkina N. Sapio M.R. Iadarola M.J. Hall B.E. Kulkarni A.B. Multiprotein assemblies, phosphorylation and dephosphorylation in neuronal cytoskeleton. bioRxiv 2023 2023.06.21.545989
    [Google Scholar]
  10. Yamauchi E. Nakatsu T. Matsubara M. Kato H. Taniguchi H. Crystal structure of a MARCKS peptide containing the calmodulin-binding domain in complex with Ca2+-calmodulin. Nat. Struct. Mol. Biol. 2003 10 3 226 231 10.1038/nsb900 12577052
    [Google Scholar]
  11. Larsson G. Schleucher J. Onions J. Hermann S. Grundström T. Wijmenga S.S. Backbone dynamics of a symmetric calmodulin dimer in complex with the calmodulin-binding domain of the basic-helix-loop-helix transcription factor SEF2-1/E2-2: A highly dynamic complex. Biophys. J. 2005 89 2 1214 1226 10.1529/biophysj.104.055780 15894636
    [Google Scholar]
  12. Hoeflich K.P. Ikura M. Calmodulin in action: Diversity in target recognition and activation mechanisms. Cell 2002 108 6 739 742 10.1016/S0092‑8674(02)00682‑7 11955428
    [Google Scholar]
  13. Hussey J.W. DeMarco E. DiSilvestre D. Brohus M. Busuioc A.O. Iversen E.D. Jensen H.H. Nyegaard M. Overgaard M.T. Ben-Johny M. Dick I.E. Voltage gated calcium channel dysregulation may contribute to neurological symptoms in calmodulinopathies. bioRxiv 2024 2024.12.02.626503
    [Google Scholar]
  14. Pullara F. Forsmann M.C. General I.J. Ayoob J.C. Furbee E. Castro S.L. Hu X. Greenamyre J.T. Di Maio R. NADPH oxidase 2 activity disrupts Calmodulin/CaMKIIα complex via redox modifications of CaMKIIα-contained Cys30 and Cys289: Implications in Parkinson’s disease. Redox Biol. 2024 75 103254 10.1016/j.redox.2024.103254 38968922
    [Google Scholar]
  15. Kawasaki H. Nakayama S. Kretsinger R.H. Classification and evolution of EF-hand proteins. Biometals 1998 11 4 277 295 10.1023/A:1009282307967 10191494
    [Google Scholar]
  16. Johnson C.N. Calcium modulation of cardiac sodium channels. J. Physiol. 2020 598 14 2835 2846 10.1113/JP277553 30707447
    [Google Scholar]
  17. Klus N.J. Kapadia K. McDonald P. Roy A. Frankowski K.J. Muma N.A. Aubé J. Discovery of sultam-containing small-molecule disruptors of the huntingtin–calmodulin protein–protein interaction. Med. Chem. Res. 2020 29 7 1187 1198 10.1007/s00044‑020‑02583‑8 33642842
    [Google Scholar]
  18. Dudek N.L. Dai Y. Muma N.A. Neuroprotective effects of calmodulin peptide 76-121aa: Disruption of calmodulin binding to mutant huntingtin. Brain Pathol. 2010 20 1 176 189 10.1111/j.1750‑3639.2008.00258.x 19338577
    [Google Scholar]
  19. Su J. Wei J. Zhang B. Wang X. Tang L. Yuan Y. Sun X. Qi S. Yang J. Xue Y. Liu Y. Liu Y. Sun X. Hao L. A calmodulin-derived peptide TI-16 inhibits Alzheimer’s disease progression by decreasing Aβ burden and restoring calcium dyshomeostasis. Bioorg. Chem. 2025 160 108502 10.1016/j.bioorg.2025.108502 40280012
    [Google Scholar]
  20. Bao J. Sharp A.H. Wagster M.V. Becher M. Schilling G. Ross C.A. Dawson V.L. Dawson T.M. Expansion of polyglutamine repeat in huntingtin leads to abnormal protein interactions involving calmodulin. Proc. Natl. Acad. Sci. USA 1996 93 10 5037 5042 10.1073/pnas.93.10.5037 8643525
    [Google Scholar]
  21. Guo Q. Bin Huang Cheng J. Seefelder M. Engler T. Pfeifer G. Oeckl P. Otto M. Moser F. Maurer M. Pautsch A. Baumeister W. Fernández-Busnadiego R. Kochanek S. The cryo-electron microscopy structure of huntingtin. Nature 2018 555 7694 117 120 10.1038/nature25502 29466333
    [Google Scholar]
  22. Bagherpoor Helabad M. Matlahov I. Kumar R. Daldrop J.O. Jain G. Weingarth M. van der Wel P.C.A. Miettinen M.S. Integrative determination of atomic structure of mutant huntingtin exon 1 fibrils implicated in Huntington disease. Nat. Commun. 2024 15 1 10793 10.1038/s41467‑024‑55062‑8 39737997
    [Google Scholar]
  23. Valor L.M. Guiretti D. Lopez-Atalaya J.P. Barco A. Genomic landscape of transcriptional and epigenetic dysregulation in early onset polyglutamine disease. J. Neurosci. 2013 33 25 10471 10482 10.1523/JNEUROSCI.0670‑13.2013 23785159
    [Google Scholar]
  24. Portillo-Ledesma S. Hang M. Schlick T. Regulation of genome architecture in Huntington’s disease. Biochemistry 2025 64 9 2100 2115 10.1021/acs.biochem.5c00029 40287840
    [Google Scholar]
  25. Cookson M.R. α-Synuclein and neuronal cell death. Mol. Neurodegener. 2009 4 1 9 10.1186/1750‑1326‑4‑9 19193223
    [Google Scholar]
  26. Gai W.P. Yuan H.X. Li X.Q. Power J.T.H. Blumbergs P.C. Jensen P.H. In situ and in vitro study of colocalization and segregation of alpha-synuclein, ubiquitin, and lipids in Lewy bodies. Exp. Neurol. 2000 166 2 324 333 10.1006/exnr.2000.7527 11085897
    [Google Scholar]
  27. Martinez J. Moeller I. Erdjument-Bromage H. Tempst P. Lauring B. Parkinson’s disease-associated alpha-synuclein is a calmodulin substrate. J. Biol. Chem. 2003 278 19 17379 17387 10.1074/jbc.M209020200 12610000
    [Google Scholar]
  28. Gruschus J.M. Yap T.L. Pistolesi S. Maltsev A.S. Lee J.C. NMR structure of calmodulin complexed to an N-terminally acetylated α-synuclein peptide. Biochemistry 2013 52 20 3436 3445 10.1021/bi400199p 23607618
    [Google Scholar]
  29. Kowalski A. Betzer C. Larsen S.T. Gregersen E. Newcombe E.A. Bermejo M.C. Bendtsen V.W. Diemer J. Ernstsen C.V. Jain S. Bou A.E. Langkilde A.E. Nejsum L.N. Klipp E. Edwards R. Kragelund B.B. Jensen P.H. Nissen P. Monomeric α‐synuclein activates the plasma membrane calcium pump. EMBO J. 2023 42 23 111122 10.15252/embj.2022111122 37916890
    [Google Scholar]
  30. Ebadi M. Sharma S.K. Peroxynitrite and mitochondrial dysfunction in the pathogenesis of Parkinson’s disease. Antioxid. Redox Signal. 2003 5 3 319 335 10.1089/152308603322110896 12880486
    [Google Scholar]
  31. Bohush A. Leśniak W. Weis S. Filipek A. Calmodulin and its binding proteins in Parkinson’s disease. Int. J. Mol. Sci. 2021 22 6 3016 10.3390/ijms22063016 33809535
    [Google Scholar]
  32. Lee Y.C. Wolff J. Calmodulin binds to both microtubule-associated protein 2 and tau proteins. J. Biol. Chem. 1984 259 2 1226 1230 10.1016/S0021‑9258(17)43592‑7 6420403
    [Google Scholar]
  33. Li L.J. Sun X.Y. Huang Y.R. Lu S. Xu Y.M. Yang J. Xie X.X. Zhu J. Niu X.Y. Wang D. Liang S.Y. Du X.Y. Hou S.J. Yu X.L. Liu R.T. Neuronal double-stranded DNA accumulation induced by DNase II deficiency drives tau phosphorylation and neurodegeneration. Transl. Neurodegener. 2024 13 1 39 10.1186/s40035‑024‑00427‑8 39095921
    [Google Scholar]
  34. Franco R. Aguinaga D. Reyes I. Canela E.I. Lillo J. Tarutani A. Hasegawa M. del Ser-Badia A. del Rio J.A. Kreutz M.R. Saura C.A. Navarro G. N-Methyl-D-aspartate receptor link to the map kinase pathway in cortical and hippocampal neurons and microglia is dependent on calcium sensors and is blocked by α-Synuclein, Tau, and Phospho-Tau in non-transgenic and transgenic APPSw,Ind Mice. Front. Mol. Neurosci. 2018 11 273 10.3389/fnmol.2018.00273 30233307
    [Google Scholar]
  35. Farinelli M. Heitz F.D. Grewe B.F. Tyagarajan S.K. Helmchen F. Mansuy I.M. Selective regulation of NR2B by protein phosphatase-1 for the control of the NMDA receptor in neuroprotection. PLoS One 2012 7 3 34047 10.1371/journal.pone.0034047 22479519
    [Google Scholar]
  36. Li L. Sengupta A. Haque N. Grundke-Iqbal I. Iqbal K. Memantine inhibits and reverses the Alzheimer type abnormal hyperphosphorylation of tau and associated neurodegeneration. FEBS Lett. 2004 566 1-3 261 269 10.1016/j.febslet.2004.04.047 15147906
    [Google Scholar]
  37. Kurochkina N. Bhaskar M. Yadav S.P. Pant H.C. Phosphorylation, dephosphorylation, and multiprotein assemblies regulate dynamic behavior of neuronal cytoskeleton: A mini-review. Front. Mol. Neurosci. 2018 11 373 10.3389/fnmol.2018.00373 30349458
    [Google Scholar]
  38. He L. Hou Z. Qi R.Z. Calmodulin binding and Cdk5 phosphorylation of p35 regulate its effect on microtubules. J. Biol. Chem. 2008 283 19 13252 13260 10.1074/jbc.M706937200 18326489
    [Google Scholar]
  39. Huber R.J. Catalano A. O’Day D.H. Cyclin-dependent kinase 5 is a calmodulin-binding protein that associates with puromycin-sensitive aminopeptidase in the nucleus of Dictyostelium. Biochim. Biophys. Acta Mol. Cell Res. 2013 1833 1 11 20 10.1016/j.bbamcr.2012.10.005 23063531
    [Google Scholar]
  40. Takahashi M. Nakabayashi T. Mita N. Jin X. Aikawa Y. Sasamoto K. Miyoshi G. Miyata M. Inoue T. Ohshima T. Involvement of Cdk5 activating subunit p35 in synaptic plasticity in excitatory and inhibitory neurons. Mol. Brain 2022 15 1 37 10.1186/s13041‑022‑00922‑x 35484559
    [Google Scholar]
  41. Larsen M.E. Rumian N.L. Quillinan N. Bayer K.U. CaMKII mechanisms that promote pathological LTP impairments. Curr. Opin. Neurobiol. 2025 92 102961 10.1016/j.conb.2024.102961 40164520
    [Google Scholar]
  42. Moriguchi S. Yabuki Y. Fukunaga K. Reduced calcium/calmodulin‐dependent protein kinase II activity in the hippocampus is associated with impaired cognitive function in MPTP‐treated mice. J. Neurochem. 2012 120 4 541 551 10.1111/j.1471‑4159.2011.07608.x 22136399
    [Google Scholar]
  43. Schumacher A.M. Schavocky J.P. Velentza A.V. Mirzoeva S. Watterson D.M. A calmodulin-regulated protein kinase linked to neuron survival is a substrate for the calmodulin-regulated death-associated protein kinase. Biochemistry 2004 43 25 8116 8124 10.1021/bi049589v 15209507
    [Google Scholar]
  44. Chen L. Song M. Yao C. Calcineurin in development and disease. Genes Dis. 2022 9 4 915 927 10.1016/j.gendis.2021.03.002 35685477
    [Google Scholar]
  45. Reese L.C. Taglialatela G. A role for calcineurin in Alzheimer’s disease. Curr. Neuropharmacol. 2011 9 4 685 692 10.2174/157015911798376316 22654726
    [Google Scholar]
  46. Lonze B.E. Ginty D.D. Function and regulation of CREB family transcription factors in the nervous system. Neuron 2002 35 4 605 623 10.1016/S0896‑6273(02)00828‑0 12194863
    [Google Scholar]
  47. Tao X. Finkbeiner S. Shaywitz AJ. Greenberg ME. Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 1998 20 4 709 726 10.1016/s0896‑6273(00)81010‑7 9581763
    [Google Scholar]
  48. Huang EJ. Reichardt LF. Trk receptors: Roles in neuronal signal transduction. Annu Rev Biochem 2003 72 609 642 10.1146/annurev.biochem.72.121801.161629 12676795
    [Google Scholar]
  49. Bister K. Discovery of oncogenes: The advent of molecular cancer research. Proc. Natl. Acad. Sci. USA 2015 112 50 15259 15260 10.1073/pnas.1521145112 26644573
    [Google Scholar]
  50. Raffeiner P. Schraffl A. Schwarz T. Röck R. Ledolter K. Hartl M. Konrat R. Stefan E. Bister K. Calcium-dependent binding of Myc to calmodulin. Oncotarget 2017 8 2 3327 3343 10.18632/oncotarget.13759 27926480
    [Google Scholar]
  51. Nair S.K. Burley S.K. X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors. Cell 2003 112 2 193 205 10.1016/S0092‑8674(02)01284‑9 12553908
    [Google Scholar]
  52. Kurokawa H. Motohashi H. Sueno S. Kimura M. Takagawa H. Kanno Y. Yamamoto M. Tanaka T. Structural basis of alternative DNA recognition by Maf transcription factors. Mol. Cell. Biol. 2009 29 23 6232 6244 10.1128/MCB.00708‑09 19797082
    [Google Scholar]
  53. Kim M. Wende H. Walcher J. Kühnemund J. Cheret C. Kempa S. McShane E. Selbach M. Lewin G.R. Birchmeier C. Maf links Neuregulin1 signaling to cholesterol synthesis in myelinating Schwann cells. Genes Dev. 2018 32 9-10 645 657 10.1101/gad.310490.117 29748249
    [Google Scholar]
  54. Berridge M.J. Bootman M.D. Roderick H.L. Calcium signalling: Dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 2003 4 7 517 529 10.1038/nrm1155 12838335
    [Google Scholar]
  55. Morgan J.I. Curran T. Calcium as a modulator of the immediate-early gene cascade in neurons. Cell Calcium 1988 9 5-6 303 311 10.1016/0143‑4160(88)90011‑5 3147142
    [Google Scholar]
  56. Saarikettu J. Sveshnikova N. Grundström T. Calcium/calmodulin inhibition of transcriptional activity of E-proteins by prevention of their binding to DNA. J. Biol. Chem. 2004 279 39 41004 41011 10.1074/jbc.M408120200 15280352
    [Google Scholar]
  57. Onions J. Hermann S. Grundström T. A novel type of calmodulin interaction in the inhibition of basic helix-loop-helix transcription factors. Biochemistry 2000 39 15 4366 4374 10.1021/bi992533u 10757985
    [Google Scholar]
  58. Michael A.K. Stoos L. Crosby P. Eggers N. Nie X.Y. Makasheva K. Minnich M. Healy K.L. Weiss J. Kempf G. Cavadini S. Kater L. Seebacher J. Vecchia L. Chakraborty D. Isbel L. Grand R.S. Andersch F. Fribourgh J.L. Schübeler D. Zuber J. Liu A.C. Becker P.B. Fierz B. Partch C.L. Menet J.S. Thomä N.H. Cooperation between bHLH transcription factors and histones for DNA access. Nature 2023 619 7969 385 393 10.1038/s41586‑023‑06282‑3 37407816
    [Google Scholar]
  59. Donovan B.T. Chen H. Eek P. Meng Z. Jipa C. Tan S. Bai L. Poirier M.G. Basic helix-loop-helix pioneer factors interact with the histone octamer to invade nucleosomes and generate nucleosome-depleted regions. Mol. Cell 2023 83 8 1251 1263.e6 10.1016/j.molcel.2023.03.006 36996811
    [Google Scholar]
  60. Harley V.R. Lovell-Badge R. Goodfellow P.N. Hextall P.J. The HMG box of SRY is a calmodulin binding domain. FEBS Lett. 1996 391 1-2 24 28 10.1016/0014‑5793(96)00694‑1 8706923
    [Google Scholar]
  61. Murphy F.V. IV Sweet R.M. Churchill M.E. The structure of a chromosomal high mobility group protein-DNA complex reveals sequence-neutral mechanisms important for non-sequence-specific DNA recognition. EMBO J. 1999 18 23 6610 6618 10.1093/emboj/18.23.6610 10581235
    [Google Scholar]
  62. Reményi A. Lins K. Nissen L.J. Reinbold R. Schöler H.R. Wilmanns M. Crystal structure of a POU/HMG/DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers. Genes Dev. 2003 17 16 2048 2059 10.1101/gad.269303 12923055
    [Google Scholar]
  63. Kaur G. Delluc-Clavieres A. Poon I.K.H. Forwood J.K. Glover D.J. Jans D.A. Calmodulin-dependent nuclear import of HMG-box family nuclear factors: Importance of the role of SRY in sex reversal. Biochem. J. 2010 430 1 39 48 10.1042/BJ20091758 20528776
    [Google Scholar]
  64. Sánchez-Giraldo R. Acosta-Reyes F.J. Malarkey C.S. Saperas N. Churchill M.E.A. Campos J.L. Two high-mobility group box domains act together to underwind and kink DNA. Acta Crystallogr. D Biol. Crystallogr. 2015 71 7 1423 1432 10.1107/S1399004715007452 26143914
    [Google Scholar]
  65. Hanover J.A. Love D.C. Prinz W.A. Calmodulin-driven nuclear entry: Trigger for sex determination and terminal differentiation. J. Biol. Chem. 2009 284 19 12593 12597 10.1074/jbc.R800076200 19126540
    [Google Scholar]
  66. Rudrabhatla P. Utreras E. Jaffe H. Kulkarni A.B. Regulation of Sox6 by cyclin dependent kinase 5 in brain. PLoS One 2014 9 3 89310 10.1371/journal.pone.0089310 24662752
    [Google Scholar]
  67. Wayman G.A. Lee Y.S. Tokumitsu H. Silva A. Soderling T.R. Calmodulin-kinases: Modulators of neuronal development and plasticity. Neuron 2008 59 6 914 931 10.1016/j.neuron.2008.08.021 18817731
    [Google Scholar]
  68. Espeso E.A. The CRaZy calcium cycle. Adv. Exp. Med. Biol. 2016 892 169 186 10.1007/978‑3‑319‑25304‑6_7 26721274
    [Google Scholar]
  69. Cacciotti A. Beccaccioli M. Reverberi M. The CRZ1 transcription factor in plant fungi: Regulation mechanism and impact on pathogenesis. Mol. Biol. Rep. 2024 51 1 647 10.1007/s11033‑024‑09593‑4 38727981
    [Google Scholar]
  70. Park H.S. Lee S.C. Cardenas M.E. Heitman J. Calcium-calmodulin-calcineurin signaling: A globally conserved virulence cascade in eukaryotic microbial pathogens. Cell Host Microbe 2019 26 4 453 462 10.1016/j.chom.2019.08.004 31600499
    [Google Scholar]
  71. Marsh A.P. Molecular mechanisms of proteinopathies across neurodegenerative disease: A review. Neurol. Res. Pract. 2019 1 1 35 10.1186/s42466‑019‑0039‑8 33324900
    [Google Scholar]
  72. Hauser D.N. Primiani C.T. Cookson M.R. The effects of variants in the parkin, PINK1, and DJ-1 genes along with evidence for their pathogenicity. Curr. Protein Pept. Sci. 2017 18 7 702 714 10.2174/1389203717666160311121954 26965687
    [Google Scholar]
  73. Kapadia K. Trojniak A.E. Guzmán Rodríguez K.B. Klus N.J. Huntley C. McDonald P. Roy A. Frankowski K.J. Aubé J. Muma N.A. Small-molecule disruptors of mutant huntingtin–calmodulin protein–protein interaction attenuate deleterious effects of mutant Huntingtin. ACS Chem. Neurosci. 2022 13 15 2315 2337 10.1021/acschemneuro.2c00305 35833925
    [Google Scholar]
  74. Dolmetsch R.E. Lewis R.S. Goodnow C.C. Healy J.I. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 1997 386 6627 855 858 10.1038/386855a0 9126747
    [Google Scholar]
  75. Mehta S. Aye-Han N.N. Ganesan A. Oldach L. Gorshkov K. Zhang J. Calmodulin-controlled spatial decoding of oscillatory Ca2+ signals by calcineurin. eLife 2014 3 03765 10.7554/eLife.03765 25056880
    [Google Scholar]
  76. Soriano F.X. Hardingham G.E. Compartmentalized NMDA receptor signalling to survival and death. J. Physiol. 2007 584 2 381 387 10.1113/jphysiol.2007.138875 17690142
    [Google Scholar]
  77. Kaufman A.M. Milnerwood A.J. Sepers M.D. Coquinco A. She K. Wang L. Lee H. Craig A.M. Cynader M. Raymond L.A. Opposing roles of synaptic and extrasynaptic NMDA receptor signaling in cocultured striatal and cortical neurons. J. Neurosci. 2012 32 12 3992 4003 10.1523/JNEUROSCI.4129‑11.2012 22442066
    [Google Scholar]
  78. Sepers M.D. Raymond L.A. Mechanisms of synaptic dysfunction and excitotoxicity in Huntington’s disease. Drug Discov. Today 2014 19 7 990 996 10.1016/j.drudis.2014.02.006 24603212
    [Google Scholar]
  79. Nassrallah W.B. Cheng J. Mackay J.P. Hogg P.W. Raymond L.A. Mechanisms of synapse‐to‐nucleus calcium signalling in striatal neurons and impairments in Huntington’s disease. J. Neurochem. 2024 168 9 2671 2689 10.1111/jnc.16132 38770573
    [Google Scholar]
  80. Lim D. Tapella L. Dematteis G. Talmon M. Genazzani A.A. Calcineurin signalling in astrocytes: From pathology to physiology and control of neuronal functions. Neurochem. Res. 2023 48 4 1077 1090 10.1007/s11064‑022‑03744‑4 36083398
    [Google Scholar]
  81. Woitecki A.M.H. Müller J.A. van Loo K.M.J. Sowade R.F. Becker A.J. Schoch S. Identification of synaptotagmin 10 as effector of NPAS4-mediated protection from excitotoxic neurodegeneration. J. Neurosci. 2016 36 9 2561 2570 10.1523/JNEUROSCI.2027‑15.2016 26936998
    [Google Scholar]
  82. Pérez-Domper P. Gradari S. Trejo J.L. The growth factors cascade and the dendrito-/synapto-genesis versus cell survival in adult hippocampal neurogenesis: The chicken or the egg. Ageing Res. Rev. 2013 12 3 777 785 10.1016/j.arr.2013.06.001 23777808
    [Google Scholar]
  83. O’Day D.H. Huber R.J. Calmodulin binding proteins and neuroinflammation in multiple neurodegenerative diseases. BMC Neurosci. 2022 23 1 10 10.1186/s12868‑022‑00695‑y 35246032
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575403663250812115441
Loading
/content/journals/mrmc/10.2174/0113895575403663250812115441
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: neuroprotection ; Calcium ; transcription factors ; amyloid beta ; calmodulin ; neurodegeneration
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test