Skip to content
2000
Volume 25, Issue 13
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Intracellular calcium (Ca2+) levels are critical in maintaining cellular activities and are tightly regulated. Neuronal degeneration and regeneration rely on calcium-binding proteins. Calmodulin (CaM) is a calcium sensor and the primary regulator of receptors and ion channels that maintain calcium homeostasis. The calmodulin binding domains are present in proteins that serve as risk factors and biomarkers associated with Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Amyotrophic Lateral Sclerosis, and other neurodegenerative diseases, suggesting calmodulin ligands as emerging therapeutic targets for treatment. Inhibiting CaM to develop new therapies has drawbacks, as CaM is a ubiquitous molecule involved in many regulatory pathways. Recently, new strategies for disrupting CaM interactions with its targets have shown promising approaches to treatment.

The structures of human CaM, its binding proteins, and inhibitors are well studied, with particular emphasis on the conservation of CaM amino acid sequences and the ability to bind protein fragments of high sequence variability, which exhibit common characteristics of amphipathic helices carrying basic amino acids.

In this review, we discuss structural characteristics of CaM and its ligands in the context of transcriptional regulation. Specific binding of CaM to (1) basic region/helix-loop-helix/leucine zipper and (2) helix-turn-helix high mobility group box containing Sox families of transcription factors highlights common features of CaM binding sequences, which suggest their regulatory functions. We describe key proteins involved in neurodegeneration and transcription factors subject to calmodulin regulation that are candidates for the development of new approaches to treating neuronal diseases.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575403663250812115441
2025-08-21
2026-01-02
Loading full text...

Full text loading...

References

  1. LisekM. TomczakJ. BoczekT. ZylinskaL. Calcium-associated proteins in neuroregeneration.Biomolecules202414218310.3390/biom14020183 38397420
    [Google Scholar]
  2. O’DayD.H. The complex interplay between toxic hallmark proteins, calmodulin-binding proteins, ion channels, and receptors involved in calcium dyshomeostasis in neurodegeneration.Biomolecules202414217310.3390/biom14020173 38397410
    [Google Scholar]
  3. O’DayD.H. Calmodulin binding domains in critical risk proteins involved in neurodegeneration.Curr. Issues Mol. Biol.202244115802581410.3390/cimb44110394 36421678
    [Google Scholar]
  4. MorrisV.S. RichardsE.M.B. MorrisR. DartC. HelassaN. Structure–function diversity of calcium-binding proteins (CaBPs): Key roles in cell signalling and disease.Cells202514315210.3390/cells14030152 39936944
    [Google Scholar]
  5. LuoY. YuX. MaC. LuoJ. YangW. Identification of a novel EF-loop in the N-terminus of TRPM2 channel involved in calcium sensitivity.Front. Pharmacol.2018958110.3389/fphar.2018.00581 29915540
    [Google Scholar]
  6. LiT. KimD. LeeJ. NADPH oxidase gene, FgNoxD, plays a critical role in development and virulence in Fusarium graminearum.Front. Microbiol.20221382268210.3389/fmicb.2022.822682 35308369
    [Google Scholar]
  7. GrantB.M.M. EnomotoM. IkuraM. MarshallC.B. A non-canonical calmodulin target motif comprising a polybasic region and lipidated terminal residue regulates localization.Int. J. Mol. Sci.2020218275110.3390/ijms21082751 32326637
    [Google Scholar]
  8. HallB.E. ProchazkovaM. SapioM.R. MinetosP. KurochkinaN. BinukumarB.K. AminN.D. TerseA. JosephJ. RaithelS.J. MannesA.J. PantH.C. ChungM.K. IadarolaM.J. KulkarniA.B. Phosphorylation of the transient receptor potential ankyrin 1 by Cyclin-dependent Kinase 5 affects Chemo-nociception.Sci. Rep.201881117710.1038/s41598‑018‑19532‑6 29352128
    [Google Scholar]
  9. KurochkinaN. SapioM.R. IadarolaM.J. HallB.E. KulkarniA.B. Multiprotein assemblies, phosphorylation and dephosphorylation in neuronal cytoskeleton.bioRxiv20232023.06.21.545989
    [Google Scholar]
  10. YamauchiE. NakatsuT. MatsubaraM. KatoH. TaniguchiH. Crystal structure of a MARCKS peptide containing the calmodulin-binding domain in complex with Ca2+-calmodulin.Nat. Struct. Mol. Biol.200310322623110.1038/nsb900 12577052
    [Google Scholar]
  11. LarssonG. SchleucherJ. OnionsJ. HermannS. GrundströmT. WijmengaS.S. Backbone dynamics of a symmetric calmodulin dimer in complex with the calmodulin-binding domain of the basic-helix-loop-helix transcription factor SEF2-1/E2-2: A highly dynamic complex.Biophys. J.20058921214122610.1529/biophysj.104.055780 15894636
    [Google Scholar]
  12. HoeflichK.P. IkuraM. Calmodulin in action: Diversity in target recognition and activation mechanisms.Cell2002108673974210.1016/S0092‑8674(02)00682‑7 11955428
    [Google Scholar]
  13. HusseyJ.W. DeMarcoE. DiSilvestreD. BrohusM. BusuiocA.O. IversenE.D. JensenH.H. NyegaardM. OvergaardM.T. Ben-JohnyM. DickI.E. Voltage gated calcium channel dysregulation may contribute to neurological symptoms in calmodulinopathies.bioRxiv20242024.12.02.626503
    [Google Scholar]
  14. PullaraF. ForsmannM.C. GeneralI.J. AyoobJ.C. FurbeeE. CastroS.L. HuX. GreenamyreJ.T. Di MaioR. NADPH oxidase 2 activity disrupts Calmodulin/CaMKIIα complex via redox modifications of CaMKIIα-contained Cys30 and Cys289: Implications in Parkinson’s disease.Redox Biol.20247510325410.1016/j.redox.2024.103254 38968922
    [Google Scholar]
  15. KawasakiH. NakayamaS. KretsingerR.H. Classification and evolution of EF-hand proteins.Biometals199811427729510.1023/A:1009282307967 10191494
    [Google Scholar]
  16. JohnsonC.N. Calcium modulation of cardiac sodium channels.J. Physiol.2020598142835284610.1113/JP277553 30707447
    [Google Scholar]
  17. KlusN.J. KapadiaK. McDonaldP. RoyA. FrankowskiK.J. MumaN.A. AubéJ. Discovery of sultam-containing small-molecule disruptors of the huntingtin–calmodulin protein–protein interaction.Med. Chem. Res.20202971187119810.1007/s00044‑020‑02583‑8 33642842
    [Google Scholar]
  18. DudekN.L. DaiY. MumaN.A. Neuroprotective effects of calmodulin peptide 76-121aa: Disruption of calmodulin binding to mutant huntingtin.Brain Pathol.201020117618910.1111/j.1750‑3639.2008.00258.x 19338577
    [Google Scholar]
  19. SuJ. WeiJ. ZhangB. WangX. TangL. YuanY. SunX. QiS. YangJ. XueY. LiuY. LiuY. SunX. HaoL. A calmodulin-derived peptide TI-16 inhibits Alzheimer’s disease progression by decreasing Aβ burden and restoring calcium dyshomeostasis.Bioorg. Chem.202516010850210.1016/j.bioorg.2025.108502 40280012
    [Google Scholar]
  20. BaoJ. SharpA.H. WagsterM.V. BecherM. SchillingG. RossC.A. DawsonV.L. DawsonT.M. Expansion of polyglutamine repeat in huntingtin leads to abnormal protein interactions involving calmodulin.Proc. Natl. Acad. Sci. USA199693105037504210.1073/pnas.93.10.5037 8643525
    [Google Scholar]
  21. Guo, Q.; Bin Huang, ; Cheng, J.; Seefelder, M.; Engler, T.; Pfeifer, G.; Oeckl, P.; Otto, M.; Moser, F.; Maurer, M.; Pautsch, A.; Baumeister, W.; Fernández-Busnadiego, R.; Kochanek, S. The cryo-electron microscopy structure of huntingtin.Nature2018555769411712010.1038/nature25502 29466333
    [Google Scholar]
  22. Bagherpoor HelabadM. MatlahovI. KumarR. DaldropJ.O. JainG. WeingarthM. van der WelP.C.A. MiettinenM.S. Integrative determination of atomic structure of mutant huntingtin exon 1 fibrils implicated in Huntington disease.Nat. Commun.20241511079310.1038/s41467‑024‑55062‑8 39737997
    [Google Scholar]
  23. ValorL.M. GuirettiD. Lopez-AtalayaJ.P. BarcoA. Genomic landscape of transcriptional and epigenetic dysregulation in early onset polyglutamine disease.J. Neurosci.20133325104711048210.1523/JNEUROSCI.0670‑13.2013 23785159
    [Google Scholar]
  24. Portillo-LedesmaS. HangM. SchlickT. Regulation of genome architecture in Huntington’s disease.Biochemistry20256492100211510.1021/acs.biochem.5c00029 40287840
    [Google Scholar]
  25. CooksonM.R. α-Synuclein and neuronal cell death.Mol. Neurodegener.200941910.1186/1750‑1326‑4‑9 19193223
    [Google Scholar]
  26. GaiW.P. YuanH.X. LiX.Q. PowerJ.T.H. BlumbergsP.C. JensenP.H. In situ and in vitro study of colocalization and segregation of alpha-synuclein, ubiquitin, and lipids in Lewy bodies.Exp. Neurol.2000166232433310.1006/exnr.2000.7527 11085897
    [Google Scholar]
  27. MartinezJ. MoellerI. Erdjument-BromageH. TempstP. LauringB. Parkinson’s disease-associated alpha-synuclein is a calmodulin substrate.J. Biol. Chem.200327819173791738710.1074/jbc.M209020200 12610000
    [Google Scholar]
  28. GruschusJ.M. YapT.L. PistolesiS. MaltsevA.S. LeeJ.C. NMR structure of calmodulin complexed to an N-terminally acetylated α-synuclein peptide.Biochemistry201352203436344510.1021/bi400199p 23607618
    [Google Scholar]
  29. KowalskiA. BetzerC. LarsenS.T. GregersenE. NewcombeE.A. BermejoM.C. BendtsenV.W. DiemerJ. ErnstsenC.V. JainS. BouA.E. LangkildeA.E. NejsumL.N. KlippE. EdwardsR. KragelundB.B. JensenP.H. NissenP. Monomeric α‐synuclein activates the plasma membrane calcium pump.EMBO J.2023422311112210.15252/embj.2022111122 37916890
    [Google Scholar]
  30. EbadiM. SharmaS.K. Peroxynitrite and mitochondrial dysfunction in the pathogenesis of Parkinson’s disease.Antioxid. Redox Signal.20035331933510.1089/152308603322110896 12880486
    [Google Scholar]
  31. BohushA. LeśniakW. WeisS. FilipekA. Calmodulin and its binding proteins in Parkinson’s disease.Int. J. Mol. Sci.2021226301610.3390/ijms22063016 33809535
    [Google Scholar]
  32. LeeY.C. WolffJ. Calmodulin binds to both microtubule-associated protein 2 and tau proteins.J. Biol. Chem.198425921226123010.1016/S0021‑9258(17)43592‑7 6420403
    [Google Scholar]
  33. LiL.J. SunX.Y. HuangY.R. LuS. XuY.M. YangJ. XieX.X. ZhuJ. NiuX.Y. WangD. LiangS.Y. DuX.Y. HouS.J. YuX.L. LiuR.T. Neuronal double-stranded DNA accumulation induced by DNase II deficiency drives tau phosphorylation and neurodegeneration.Transl. Neurodegener.20241313910.1186/s40035‑024‑00427‑8 39095921
    [Google Scholar]
  34. FrancoR. AguinagaD. ReyesI. CanelaE.I. LilloJ. TarutaniA. HasegawaM. del Ser-BadiaA. del RioJ.A. KreutzM.R. SauraC.A. NavarroG. N-Methyl-D-aspartate receptor link to the map kinase pathway in cortical and hippocampal neurons and microglia is dependent on calcium sensors and is blocked by α-Synuclein, Tau, and Phospho-Tau in non-transgenic and transgenic APPSw, Ind Mice.Front. Mol. Neurosci.20181127310.3389/fnmol.2018.00273 30233307
    [Google Scholar]
  35. FarinelliM. HeitzF.D. GreweB.F. TyagarajanS.K. HelmchenF. MansuyI.M. Selective regulation of NR2B by protein phosphatase-1 for the control of the NMDA receptor in neuroprotection.PLoS One2012733404710.1371/journal.pone.0034047 22479519
    [Google Scholar]
  36. LiL. SenguptaA. HaqueN. Grundke-IqbalI. IqbalK. Memantine inhibits and reverses the Alzheimer type abnormal hyperphosphorylation of tau and associated neurodegeneration.FEBS Lett.20045661-326126910.1016/j.febslet.2004.04.047 15147906
    [Google Scholar]
  37. KurochkinaN. BhaskarM. YadavS.P. PantH.C. Phosphorylation, dephosphorylation, and multiprotein assemblies regulate dynamic behavior of neuronal cytoskeleton: A mini-review.Front. Mol. Neurosci.20181137310.3389/fnmol.2018.00373 30349458
    [Google Scholar]
  38. HeL. HouZ. QiR.Z. Calmodulin binding and Cdk5 phosphorylation of p35 regulate its effect on microtubules.J. Biol. Chem.200828319132521326010.1074/jbc.M706937200 18326489
    [Google Scholar]
  39. HuberR.J. CatalanoA. O’DayD.H. Cyclin-dependent kinase 5 is a calmodulin-binding protein that associates with puromycin-sensitive aminopeptidase in the nucleus of Dictyostelium.Biochim. Biophys. Acta Mol. Cell Res.201318331112010.1016/j.bbamcr.2012.10.005 23063531
    [Google Scholar]
  40. TakahashiM. NakabayashiT. MitaN. JinX. AikawaY. SasamotoK. MiyoshiG. MiyataM. InoueT. OhshimaT. Involvement of Cdk5 activating subunit p35 in synaptic plasticity in excitatory and inhibitory neurons.Mol. Brain20221513710.1186/s13041‑022‑00922‑x 35484559
    [Google Scholar]
  41. LarsenM.E. RumianN.L. QuillinanN. BayerK.U. CaMKII mechanisms that promote pathological LTP impairments.Curr. Opin. Neurobiol.20259210296110.1016/j.conb.2024.102961 40164520
    [Google Scholar]
  42. MoriguchiS. YabukiY. FukunagaK. Reduced calcium/calmodulin‐dependent protein kinase II activity in the hippocampus is associated with impaired cognitive function in MPTP‐treated mice.J. Neurochem.2012120454155110.1111/j.1471‑4159.2011.07608.x 22136399
    [Google Scholar]
  43. SchumacherA.M. SchavockyJ.P. VelentzaA.V. MirzoevaS. WattersonD.M. A calmodulin-regulated protein kinase linked to neuron survival is a substrate for the calmodulin-regulated death-associated protein kinase.Biochemistry200443258116812410.1021/bi049589v 15209507
    [Google Scholar]
  44. ChenL. SongM. YaoC. Calcineurin in development and disease.Genes Dis.20229491592710.1016/j.gendis.2021.03.002 35685477
    [Google Scholar]
  45. ReeseL.C. TaglialatelaG. A role for calcineurin in Alzheimer’s disease.Curr. Neuropharmacol.20119468569210.2174/157015911798376316 22654726
    [Google Scholar]
  46. LonzeB.E. GintyD.D. Function and regulation of CREB family transcription factors in the nervous system.Neuron200235460562310.1016/S0896‑6273(02)00828‑0 12194863
    [Google Scholar]
  47. TaoX. FinkbeinerS. ShaywitzA.J. GreenbergM.E. Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism.Neuron199820470972610.1016/s0896‑6273(00)81010‑7 9581763
    [Google Scholar]
  48. HuangE.J. ReichardtL.F. Trk receptors: Roles in neuronal signal transduction.Annu. Rev. Biochem.20037260964210.1146/annurev.biochem.72.121801.161629 12676795
    [Google Scholar]
  49. BisterK. Discovery of oncogenes: The advent of molecular cancer research.Proc. Natl. Acad. Sci. USA201511250152591526010.1073/pnas.1521145112 26644573
    [Google Scholar]
  50. RaffeinerP. SchrafflA. SchwarzT. RöckR. LedolterK. HartlM. KonratR. StefanE. BisterK. Calcium-dependent binding of Myc to calmodulin.Oncotarget2017823327334310.18632/oncotarget.13759 27926480
    [Google Scholar]
  51. NairS.K. BurleyS.K. X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors.Cell2003112219320510.1016/S0092‑8674(02)01284‑9 12553908
    [Google Scholar]
  52. KurokawaH. MotohashiH. SuenoS. KimuraM. TakagawaH. KannoY. YamamotoM. TanakaT. Structural basis of alternative DNA recognition by Maf transcription factors.Mol. Cell. Biol.200929236232624410.1128/MCB.00708‑09 19797082
    [Google Scholar]
  53. KimM. WendeH. WalcherJ. KühnemundJ. CheretC. KempaS. McShaneE. SelbachM. LewinG.R. BirchmeierC. Maf links Neuregulin1 signaling to cholesterol synthesis in myelinating Schwann cells.Genes Dev.2018329-1064565710.1101/gad.310490.117 29748249
    [Google Scholar]
  54. BerridgeM.J. BootmanM.D. RoderickH.L. Calcium signalling: Dynamics, homeostasis and remodelling.Nat. Rev. Mol. Cell Biol.20034751752910.1038/nrm1155 12838335
    [Google Scholar]
  55. MorganJ.I. CurranT. Calcium as a modulator of the immediate-early gene cascade in neurons.Cell Calcium198895-630331110.1016/0143‑4160(88)90011‑5 3147142
    [Google Scholar]
  56. SaarikettuJ. SveshnikovaN. GrundströmT. Calcium/calmodulin inhibition of transcriptional activity of E-proteins by prevention of their binding to DNA.J. Biol. Chem.200427939410044101110.1074/jbc.M408120200 15280352
    [Google Scholar]
  57. OnionsJ. HermannS. GrundströmT. A novel type of calmodulin interaction in the inhibition of basic helix-loop-helix transcription factors.Biochemistry200039154366437410.1021/bi992533u 10757985
    [Google Scholar]
  58. MichaelA.K. StoosL. CrosbyP. EggersN. NieX.Y. MakashevaK. MinnichM. HealyK.L. WeissJ. KempfG. CavadiniS. KaterL. SeebacherJ. VecchiaL. ChakrabortyD. IsbelL. GrandR.S. AnderschF. FribourghJ.L. SchübelerD. ZuberJ. LiuA.C. BeckerP.B. FierzB. PartchC.L. MenetJ.S. ThomäN.H. Cooperation between bHLH transcription factors and histones for DNA access.Nature2023619796938539310.1038/s41586‑023‑06282‑3 37407816
    [Google Scholar]
  59. DonovanB.T. ChenH. EekP. MengZ. JipaC. TanS. BaiL. PoirierM.G. Basic helix-loop-helix pioneer factors interact with the histone octamer to invade nucleosomes and generate nucleosome-depleted regions.Mol. Cell202383812511263.e610.1016/j.molcel.2023.03.006 36996811
    [Google Scholar]
  60. HarleyV.R. Lovell-BadgeR. GoodfellowP.N. HextallP.J. The HMG box of SRY is a calmodulin binding domain.FEBS Lett.19963911-2242810.1016/0014‑5793(96)00694‑1 8706923
    [Google Scholar]
  61. MurphyF.V. SweetR.M. ChurchillM.E. The structure of a chromosomal high mobility group protein-DNA complex reveals sequence-neutral mechanisms important for non-sequence-specific DNA recognition.EMBO J.199918236610661810.1093/emboj/18.23.6610 10581235
    [Google Scholar]
  62. ReményiA. LinsK. NissenL.J. ReinboldR. SchölerH.R. WilmannsM. Crystal structure of a POU/HMG/DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers.Genes Dev.200317162048205910.1101/gad.269303 12923055
    [Google Scholar]
  63. KaurG. Delluc-ClavieresA. PoonI.K.H. ForwoodJ.K. GloverD.J. JansD.A. Calmodulin-dependent nuclear import of HMG-box family nuclear factors: Importance of the role of SRY in sex reversal.Biochem. J.20104301394810.1042/BJ20091758 20528776
    [Google Scholar]
  64. Sánchez-GiraldoR. Acosta-ReyesF.J. MalarkeyC.S. SaperasN. ChurchillM.E.A. CamposJ.L. Two high-mobility group box domains act together to underwind and kink DNA.Acta Crystallogr. D Biol. Crystallogr.20157171423143210.1107/S1399004715007452 26143914
    [Google Scholar]
  65. HanoverJ.A. LoveD.C. PrinzW.A. Calmodulin-driven nuclear entry: Trigger for sex determination and terminal differentiation.J. Biol. Chem.200928419125931259710.1074/jbc.R800076200 19126540
    [Google Scholar]
  66. RudrabhatlaP. UtrerasE. JaffeH. KulkarniA.B. Regulation of Sox6 by cyclin dependent kinase 5 in brain.PLoS One2014938931010.1371/journal.pone.0089310 24662752
    [Google Scholar]
  67. WaymanG.A. LeeY.S. TokumitsuH. SilvaA. SoderlingT.R. Calmodulin-kinases: Modulators of neuronal development and plasticity.Neuron200859691493110.1016/j.neuron.2008.08.021 18817731
    [Google Scholar]
  68. EspesoE.A. The CRaZy calcium cycle.Adv. Exp. Med. Biol.201689216918610.1007/978‑3‑319‑25304‑6_7 26721274
    [Google Scholar]
  69. CacciottiA. BeccaccioliM. ReverberiM. The CRZ1 transcription factor in plant fungi: Regulation mechanism and impact on pathogenesis.Mol. Biol. Rep.202451164710.1007/s11033‑024‑09593‑4 38727981
    [Google Scholar]
  70. ParkH.S. LeeS.C. CardenasM.E. HeitmanJ. Calcium-calmodulin-calcineurin signaling: A globally conserved virulence cascade in eukaryotic microbial pathogens.Cell Host Microbe201926445346210.1016/j.chom.2019.08.004 31600499
    [Google Scholar]
  71. MarshA.P. Molecular mechanisms of proteinopathies across neurodegenerative disease: A review.Neurol. Res. Pract.2019113510.1186/s42466‑019‑0039‑8 33324900
    [Google Scholar]
  72. HauserD.N. PrimianiC.T. CooksonM.R. The effects of variants in the parkin, PINK1, and DJ-1 genes along with evidence for their pathogenicity.Curr. Protein Pept. Sci.201718770271410.2174/1389203717666160311121954 26965687
    [Google Scholar]
  73. KapadiaK. TrojniakA.E. Guzmán RodríguezK.B. KlusN.J. HuntleyC. McDonaldP. RoyA. FrankowskiK.J. AubéJ. MumaN.A. Small-molecule disruptors of mutant huntingtin–calmodulin protein–protein interaction attenuate deleterious effects of mutant Huntingtin.ACS Chem. Neurosci.202213152315233710.1021/acschemneuro.2c00305 35833925
    [Google Scholar]
  74. DolmetschR.E. LewisR.S. GoodnowC.C. HealyJ.I. Differential activation of transcription factors induced by Ca2+ response amplitude and duration.Nature1997386662785585810.1038/386855a0 9126747
    [Google Scholar]
  75. MehtaS. Aye-HanN.N. GanesanA. OldachL. GorshkovK. ZhangJ. Calmodulin-controlled spatial decoding of oscillatory Ca2+ signals by calcineurin.eLife201430376510.7554/eLife.03765 25056880
    [Google Scholar]
  76. SorianoF.X. HardinghamG.E. Compartmentalized NMDA receptor signalling to survival and death.J. Physiol.2007584238138710.1113/jphysiol.2007.138875 17690142
    [Google Scholar]
  77. KaufmanA.M. MilnerwoodA.J. SepersM.D. CoquincoA. SheK. WangL. LeeH. CraigA.M. CynaderM. RaymondL.A. Opposing roles of synaptic and extrasynaptic NMDA receptor signaling in cocultured striatal and cortical neurons.J. Neurosci.201232123992400310.1523/JNEUROSCI.4129‑11.2012 22442066
    [Google Scholar]
  78. SepersM.D. RaymondL.A. Mechanisms of synaptic dysfunction and excitotoxicity in Huntington’s disease.Drug Discov. Today201419799099610.1016/j.drudis.2014.02.006 24603212
    [Google Scholar]
  79. NassrallahW.B. ChengJ. MackayJ.P. HoggP.W. RaymondL.A. Mechanisms of synapse‐to‐nucleus calcium signalling in striatal neurons and impairments in Huntington’s disease.J. Neurochem.202416892671268910.1111/jnc.16132 38770573
    [Google Scholar]
  80. LimD. TapellaL. DematteisG. TalmonM. GenazzaniA.A. Calcineurin signalling in astrocytes: From pathology to physiology and control of neuronal functions.Neurochem. Res.20234841077109010.1007/s11064‑022‑03744‑4 36083398
    [Google Scholar]
  81. WoiteckiA.M.H. MüllerJ.A. van LooK.M.J. SowadeR.F. BeckerA.J. SchochS. Identification of synaptotagmin 10 as effector of NPAS4-mediated protection from excitotoxic neurodegeneration.J. Neurosci.20163692561257010.1523/JNEUROSCI.2027‑15.2016 26936998
    [Google Scholar]
  82. Pérez-DomperP. GradariS. TrejoJ.L. The growth factors cascade and the dendrito-/synapto-genesis versus cell survival in adult hippocampal neurogenesis: The chicken or the egg.Ageing Res. Rev.201312377778510.1016/j.arr.2013.06.001 23777808
    [Google Scholar]
  83. O’DayD.H. HuberR.J. Calmodulin binding proteins and neuroinflammation in multiple neurodegenerative diseases.BMC Neurosci.20222311010.1186/s12868‑022‑00695‑y 35246032
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575403663250812115441
Loading
/content/journals/mrmc/10.2174/0113895575403663250812115441
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test