Skip to content
2000
image of Luteolin for the Treatment of Organ Fibrosis: A Mini Review

Abstract

Luteolin is a naturally occurring flavonoid that exhibits significant potential in mitigating organ fibrosis. This review consolidates evidence from studies demonstrating the antifibrotic effects of luteolin in hepatic, renal, cardiac, pulmonary, dermal, subretinal, and pancreatic fibrosis. Mechanistically, luteolin targets key pathways that drive fibrosis, including the TGF-β/Smad, STAT3, NF-κB, and AMPK signaling pathways, while suppressing oxidative stress, inflammation, and fibroblast activation. In hepatic fibrosis, luteolin inhibits hepatic stellate cell activation, reduces collagen synthesis, and counteracts ferroptosis by modulating the SLC7A11 and GPX4 pathways. Renal fibrosis is alleviated through the regulation of the SIRT1/FOXO3 and AMPK/NLRP3/TGF-β pathways, thereby attenuating ECM accumulation and inflammation. Cardiac benefits arise from luteolin’s modulation of NO-cGMP, AKT/GSK-3, and Nrf2/NF-κB axes, improving myocardial function. Pulmonary fibrosis models highlight the ability of luteolin to inhibit TGF-β1-induced Smad3 phosphorylation and inflammatory cytokine release. Additionally, luteolin demonstrates efficacy in skin and subretinal fibrosis by targeting TGF-β/Smad and YAP/TAZ pathways. Toxicology and pharmacokinetic studies indicate favorable safety profiles. Despite promising preclinical outcomes, clinical data remain scarce. The multi-target engagement, low toxicity, and broad bioactivity of luteolin position it as a compelling candidate for antifibrotic therapy. Further clinical research is warranted to translate these findings into therapeutic applications for fibrotic disorders.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575408729250811073556
2025-08-21
2025-09-05
Loading full text...

Full text loading...

References

  1. Rockey D.C. Bell P.D. Hill J.A. Fibrosis--a common pathway to organ injury and failure. N Engl J Med 2015 372 12 1138 1149 10.1056/NEJMra1300575 25785971
    [Google Scholar]
  2. Weiskirchen R. Weiskirchen S. Tacke F. Organ and tissue fibrosis: Molecular signals, cellular mechanisms and translational implications. Mol Aspects Med 2019 65 2 15 10.1016/j.mam.2018.06.003 29958900
    [Google Scholar]
  3. Wynn T.A. Cellular and molecular mechanisms of fibrosis. J Pathol 2008 214 2 199 210 10.1002/path.2277 18161745
    [Google Scholar]
  4. Wynn T.A. Ramalingam T.R. Mechanisms of fibrosis: Therapeutic translation for fibrotic disease. Nat Med 2012 18 7 1028 1040 10.1038/nm.2807 22772564
    [Google Scholar]
  5. Henderson N.C. Rieder F. Wynn T.A. Fibrosis: From mechanisms to medicines. Nature 2020 587 7835 555 566 10.1038/s41586‑020‑2938‑9 33239795
    [Google Scholar]
  6. Franklin T.J. Therapeutic approaches to organ fibrosis. Int J Biochem Cell Biol 1997 29 1 79 89 10.1016/S1357‑2725(96)00121‑5 9076943
    [Google Scholar]
  7. Zhu M. Sun Y. Su Y. Guan W. Wang Y. Han J. Wang S. Yang B. Wang Q. Kuang H. Luteolin: A promising multifunctional natural flavonoid for human diseases. Phytother Res 2024 38 7 3417 3443 10.1002/ptr.8217 38666435
    [Google Scholar]
  8. Batudeligen Han Z. Chen H. Narisu Xu Y. Anda Han G. Luteolin alleviates liver fibrosis in rat hepatic stellate cell HSC-T6: A proteomic analysis. Drug Des Devel Ther 2023 17 1819 1829 10.2147/DDDT.S402864 37360572
    [Google Scholar]
  9. Chen C.Y. Peng W.H. Wu L.C. Wu C.C. Hsu S.L. Luteolin ameliorates experimental lung fibrosis both in vivo and in vitro: Implications for therapy of lung fibrosis. J Agric Food Chem 2010 58 22 11653 11661 10.1021/jf1031668 20958047
    [Google Scholar]
  10. Wang T. Pan D. Zhang Y. Li D. Zhang Y. Xu T. Luo Y. Ma Y. Luteolin antagonizes angiotensin II-dependent proliferation and collagen synthesis of cultured rat cardiac fibroblasts. Curr Pharm Biotechnol 2015 16 5 430 439 10.2174/1389201015666141110142402 25382303
    [Google Scholar]
  11. Huang R. Zeng J. Yu X. Shi Y. Song N. Zhang J. Wang P. Luo M. Ma Y. Xiao C. Wang L. Du G. Cai H. Yang W. Luteolin alleviates diabetic nephropathy fibrosis involving AMPK/NLRP3/TGF-β pathway. Diabetes Metab Syndr Obes 2024 17 2855 2867 10.2147/DMSO.S450094 39100967
    [Google Scholar]
  12. Yang X. Li Q. Liu W. Zong C. Wei L. Shi Y. Han Z. Mesenchymal stromal cells in hepatic fibrosis/cirrhosis: From pathogenesis to treatment. Cell Mol Immunol 2023 20 6 583 599 10.1038/s41423‑023‑00983‑5 36823236
    [Google Scholar]
  13. Friedman S.L. Pinzani M. Hepatic fibrosis 2022: Unmet needs and a blueprint for the future. Hepatology 2022 75 2 473 488 10.1002/hep.32285 34923653
    [Google Scholar]
  14. Higashi T. Friedman S.L. Hoshida Y. Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev 2017 121 27 42 10.1016/j.addr.2017.05.007 28506744
    [Google Scholar]
  15. Zhang M. Serna-Salas S. Damba T. Borghesan M. Demaria M. Moshage H. Hepatic stellate cell senescence in liver fibrosis: Characteristics, mechanisms and perspectives. Mech Ageing Dev 2021 199 111572 10.1016/j.mad.2021.111572 34536446
    [Google Scholar]
  16. Kwon E.Y. Choi M.S. Luteolin targets the toll-like receptor signaling pathway in prevention of hepatic and adipocyte fibrosis and insulin resistance in diet-induced obese mice. Nutrients 2018 10 10 1415 10.3390/nu10101415 30282902
    [Google Scholar]
  17. Zhao W. Liang C. Chen Z. Pang R. Zhao B. Chen Z. [Luteolin inhibits proliferation and collagen synthesis of hepatic stellate cells]. Zhonghua Gan Zang Bing Za Zhi 2002 10 3 204 206 12113680
    [Google Scholar]
  18. Li J. Li X. Xu W. Wang S. Hu Z. Zhang Q. Deng X. Wang J. Zhang J. Guo C. Antifibrotic effects of luteolin on hepatic stellate cells and liver fibrosis by targeting AKT/ mTOR /p70S6K and TGFβ/Smad signalling pathways. Liver Int 2015 35 4 1222 1233 10.1111/liv.12638 25040634
    [Google Scholar]
  19. Chen J. Ge J. Chen W. Zhao Y. Song T. Fu K. Li X. Zheng Y. UPLC-Q-TOF-MS based investigation into the bioactive compounds and molecular mechanisms of lamiophlomis herba against hepatic fibrosis. Phytomedicine 2023 121 155085 10.1016/j.phymed.2023.155085 37757709
    [Google Scholar]
  20. Zhao J. Qi Y.F. Yu Y.R. STAT3: A key regulator in liver fibrosis. Ann Hepatol 2021 21 100224 10.1016/j.aohep.2020.06.010 32702499
    [Google Scholar]
  21. Cummins C.B. Wang X. Nunez Lopez O. Graham G. Tie H.Y. Zhou J. Radhakrishnan R.S. Luteolin-mediated inhibition of hepatic stellate cell activation via suppression of the STAT3 pathway. Int J Mol Sci 2018 19 6 1567 10.3390/ijms19061567 29795016
    [Google Scholar]
  22. Xu F. Liu C. Zhou D. Zhang L. TGF-β/SMAD Pathway and its regulation in hepatic fibrosis. J Histochem Cytochem 2016 64 3 157 167 10.1369/0022155415627681 26747705
    [Google Scholar]
  23. Siapoush S. Rezaei R. Alavifard H. Hatami B. Zali M.R. Vosough M. Lorzadeh S. Łos M.J. Baghaei K. Ghavami S. Therapeutic implications of targeting autophagy and TGF-β crosstalk for the treatment of liver fibrosis. Life Sci 2023 329 121894 10.1016/j.lfs.2023.121894 37380126
    [Google Scholar]
  24. Domitrović R. Jakovac H. Tomac J. Šain I. Liver fibrosis in mice induced by carbon tetrachloride and its reversion by luteolin. Toxicol Appl Pharmacol 2009 241 3 311 321 10.1016/j.taap.2009.09.001 19747501
    [Google Scholar]
  25. Pan Q. Luo Y. Xia Q. He K. Ferroptosis and liver fibrosis. Int J Med Sci 2021 18 15 3361 3366 10.7150/ijms.62903 34522161
    [Google Scholar]
  26. Chen J. Li X. Ge C. Min J. Wang F. The multifaceted role of ferroptosis in liver disease. Cell Death Differ 2022 29 3 467 480 10.1038/s41418‑022‑00941‑0 35075250
    [Google Scholar]
  27. Han Z Batudeligen Chen H Narisu Anda Xu Y Xue L Luteolin attenuates CCl4-induced hepatic injury by inhibiting ferroptosis via SLC7A11. BMC Complement Med Ther 2024 24 1 193 10.1186/s12906‑024‑04486‑2 38755566 PMC11100030
    [Google Scholar]
  28. Czaja A.J. Hepatic inflammation and progressive liver fibrosis in chronic liver disease. World J Gastroenterol 2014 20 10 2515 2532 10.3748/wjg.v20.i10.2515 24627588
    [Google Scholar]
  29. Koyama Y. Brenner D.A. Liver inflammation and fibrosis. J Clin Invest 2017 127 1 55 64 10.1172/JCI88881 28045404
    [Google Scholar]
  30. Hammerich L. Tacke F. Hepatic inflammatory responses in liver fibrosis. Nat Rev Gastroenterol Hepatol 2023 20 10 633 646 10.1038/s41575‑023‑00807‑x 37400694
    [Google Scholar]
  31. Gao Y. Shi W. Yao H. Ai Y. Li R. Wang Z. Liu T. Dai W. Xiao X. Zhao J. Niu M. Bai Z. An integrative pharmacology based analysis of refined liuweiwuling against liver injury: A novel component combination and hepaprotective mechanism. Front Pharmacol 2021 12 747010 10.3389/fphar.2021.747010 34630116
    [Google Scholar]
  32. Ashour A.A. El-Kamel A.H. Mehanna R.A. Mourad G. Heikal L.A. Luteolin-loaded exosomes derived from bone marrow mesenchymal stem cells: A promising therapy for liver fibrosis. Drug Deliv 2022 29 1 3270 3280 10.1080/10717544.2022.2142700 36330597
    [Google Scholar]
  33. Schwabe R.F. Tabas I. Pajvani U.B. Mechanisms of fibrosis development in nonalcoholic steatohepatitis. Gastroenterology 2020 158 7 1913 1928 10.1053/j.gastro.2019.11.311 32044315
    [Google Scholar]
  34. Schuppan D. Surabattula R. Wang X.Y. Determinants of fibrosis progression and regression in NASH. J Hepatol 2018 68 2 238 250 10.1016/j.jhep.2017.11.012 29154966
    [Google Scholar]
  35. Naiki-Ito A [The roles of gap junctional intercellular communication in non-alcoholic steatohepatitis (NASH) and liver fibrosis]. Nihon Yakurigaku Zasshi 2021 156 3 152 156 10.1254/fpj.20100 33952843
    [Google Scholar]
  36. Sagawa H. Naiki-Ito A. Kato H. Naiki T. Yamashita Y. Suzuki S. Sato S. Shiomi K. Kato A. Kuno T. Matsuo Y. Kimura M. Takeyama H. Takahashi S. Connexin 32 and luteolin play protective roles in non-alcoholic steatohepatitis development and its related hepatocarcinogenesis in rats. Carcinogenesis 2015 36 12 bgv143 10.1093/carcin/bgv143 26494227
    [Google Scholar]
  37. Liu B. Nguyen P.L. Yu H. Li X. Wang H. Nguyen T.G.B. Sahoo P.K. Sur M. Reddy J. Sillman S. Kachman S.D. Altartouri B. Lu G. Natarajan S.K. Pattabiraman M. Yu J. Honey vesicle-like nanoparticles protect aged liver from non-alcoholic steatohepatitis. Acta Pharm Sin B 2024 14 8 3661 3679 10.1016/j.apsb.2024.05.002 39220874
    [Google Scholar]
  38. Rayego-Mateos S. Valdivielso J.M. New therapeutic targets in chronic kidney disease progression and renal fibrosis. Expert Opin Ther Targets 2020 24 7 655 670 10.1080/14728222.2020.1762173 32338087
    [Google Scholar]
  39. Nastase M.V. Zeng-Brouwers J. Wygrecka M. Schaefer L. Targeting renal fibrosis: Mechanisms and drug delivery systems. Adv Drug Deliv Rev 2018 129 295 307 10.1016/j.addr.2017.12.019 29288033
    [Google Scholar]
  40. Humphreys BD Mechanisms of renal fibrosis. Annu Rev Physiol 2018 80 309 326 10.1146/annurev‑physiol‑022516‑034227 29068765
    [Google Scholar]
  41. Gu Y.Y. Liu X.S. Huang X.R. Yu X.Q. Lan H.Y. TGF-β in renal fibrosis: Triumphs and challenges. Future Med Chem 2020 12 9 853 866 10.4155/fmc‑2020‑0005 32233802
    [Google Scholar]
  42. Meng X. Nikolic-Paterson D.J. Lan H.Y. TGF-β: The master regulator of fibrosis. Nat Rev Nephrol 2016 12 6 325 338 10.1038/nrneph.2016.48 27108839
    [Google Scholar]
  43. Rahman M.D.H. Biswas P. Dey D. Hannan M.A. Sahabuddin M. Araf Y. Kwon Y. Emran T.B. Ali M.S. Uddin M.J. An in-silico identification of potential flavonoids against kidney fibrosis targeting TGFβR-1. Life 2022 12 11 1764 10.3390/life12111764 36362919
    [Google Scholar]
  44. Hoffmann N. Peters J. Functions of the (pro)renin receptor (Atp6ap2) at molecular and system levels: Pathological implications in hypertension, renal and brain development, inflammation, and fibrosis. Pharmacol Res 2021 173 105922 10.1016/j.phrs.2021.105922 34607004
    [Google Scholar]
  45. Lv L.L. Liu B.C. Role of non-classical renin-angiotensin system axis in renal fibrosis. Front Physiol 2015 6 117 10.3389/fphys.2015.00117 25954204
    [Google Scholar]
  46. Song N Tu H Li Y Xiong W Zhang L Liu H Ding W Long M Ren D Zhong J Inhibitory potential of shen-shuai-ling formulation on renal interstitial fibrosis via upregulation of PLZF. Evid Based Complement Altern Med 2022 2022 5967804 10.1155/2022/5967804 35399631
    [Google Scholar]
  47. Black L.M. Lever J.M. Agarwal A. Renal inflammation and fibrosis: A double-edged sword. J Histochem Cytochem 2019 67 9 663 681 10.1369/0022155419852932 31116067
    [Google Scholar]
  48. Zhou W. Sha Y. Zeng J. Zhang X. Zhang A. Ge X. Computational systems pharmacology, molecular docking and experiments reveal the protective mechanism of li-da-qian mixture in the treatment of glomerulonephritis. J Inflamm Res 2021 14 6939 6958 10.2147/JIR.S338055 34949932
    [Google Scholar]
  49. Tanaka T. A mechanistic link between renal ischemia and fibrosis. Med Mol Morphol 2017 50 1 1 8 10.1007/s00795‑016‑0146‑3 27438710
    [Google Scholar]
  50. Li F. Wei R. Huang M. Chen J. Li P. Ma Y. Chen X. Luteolin can ameliorate renal interstitial fibrosis-induced renal anaemia through the SIRT1/FOXO3 pathway. Food Funct 2022 13 22 11896 11914 10.1039/D2FO02477B 36321482
    [Google Scholar]
  51. Calle P. Hotter G. Macrophage phenotype and fibrosis in diabetic nephropathy. Int J Mol Sci 2020 21 8 2806 10.3390/ijms21082806 32316547
    [Google Scholar]
  52. Mohandes S. Doke T. Hu H. Mukhi D. Dhillon P. Susztak K. Molecular pathways that drive diabetic kidney disease. J Clin Invest 2023 133 4 e165654 10.1172/JCI165654 36787250
    [Google Scholar]
  53. Zhang M. He L. Liu J. Zhou L. Luteolin attenuates diabetic nephropathy through suppressing inflammatory response and oxidative stress by inhibiting STAT3 pathway. Exp Clin Endocrinol Diabetes 2021 129 10 729 739 10.1055/a‑0998‑7985 31896157
    [Google Scholar]
  54. Xiong C. Wu Q. Fang M. Li H. Chen B. Chi T. Protective effects of luteolin on nephrotoxicity induced by long-term hyperglycaemia in rats. J Int Med Res 2020 48 4 0300060520903642 10.1177/0300060520903642 32242458
    [Google Scholar]
  55. Ding J Wang Y Wang Z Hu S Li Z Le C Huang J Xu X Huang J Qiu P Luteolin ameliorates methamphetamine-induced podocyte pathology by inhibiting tau phosphorylation in mice. Evid Based Complement Alternat Med 2022 2022 5909926 10.1155/2022/5909926 35368760
    [Google Scholar]
  56. Ye Z. Yang S. Chen L. Yu W. Xia Y. Li B. Zhou X. Cheng F. Luteolin alleviated calcium oxalate crystal induced kidney injury by inhibiting Nr4a1-mediated ferroptosis. Phytomedicine 2025 136 156302 10.1016/j.phymed.2024.156302 39662099
    [Google Scholar]
  57. Frangogiannis N.G. Cardiac fibrosis. Cardiovasc Res 2021 117 6 1450 1488 10.1093/cvr/cvaa324 33135058
    [Google Scholar]
  58. Kong P. Christia P. Frangogiannis N.G. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci 2014 71 4 549 574 10.1007/s00018‑013‑1349‑6 23649149
    [Google Scholar]
  59. Maruyama K. Imanaka-Yoshida K. The pathogenesis of cardiac fibrosis: A review of recent progress. Int J Mol Sci 2022 23 5 2617 10.3390/ijms23052617 35269759
    [Google Scholar]
  60. Purnomo Y. Piccart Y. Coenen T. Prihadi J. Lijnen P. Oxidative stress and transforming growth factor-β1-induced cardiac fibrosis. Cardiovasc Hematol Disord Drug Targets 2013 13 2 165 172 10.2174/1871529X11313020010 23988004
    [Google Scholar]
  61. Nakayama A. Morita H. Nakao T. Yamaguchi T. Sumida T. Ikeda Y. Kumagai H. Motozawa Y. Takahashi T. Imaizumi A. Hashimoto T. Nagai R. Komuro I. A food-derived flavonoid luteolin protects against angiotens in ii-induced cardiac remodeling. PLoS One 2015 10 9 e0137106 10.1371/journal.pone.0137106 26327560
    [Google Scholar]
  62. González A. Schelbert E.B. Díez J. Butler J. Myocardial interstitial fibrosis in heart failure. J Am Coll Cardiol 2018 71 15 1696 1706 10.1016/j.jacc.2018.02.021 29650126
    [Google Scholar]
  63. Ravassa S. López B. Treibel T.A. San José G. Losada-Fuentenebro B. Tapia L. Bayés-Genís A. Díez J. González A. Cardiac fibrosis in heart failure: Focus on non-invasive diagnosis and emerging therapeutic strategies. Mol Aspects Med 2023 93 101194 10.1016/j.mam.2023.101194 37384998
    [Google Scholar]
  64. Hu W Xu T Wu P Pan D Chen J Chen J Zhang B Zhu H Li D Luteolin improves cardiac dysfunction in heart failure rats by regulating sarcoplasmic reticulum Ca2+-ATPase 2a. Sci Rep 2017 7 41017 10.1038/srep41017 28112209
    [Google Scholar]
  65. Wang Z. Shi W. Wu T. Peng T. Wang X. Liu S. Yang Z. Wang J. Li P.L. Tian R. Hong Y. Yang H. Bai L. Hu Y. Cheng X. Li H. Zhang X.J. She Z.G. A high-throughput drug screening identifies luteolin as a therapeutic candidate for pathological cardiac hypertrophy and heart failure. Front Cardiovasc Med 2023 10 1130635 10.3389/fcvm.2023.1130635 36998980
    [Google Scholar]
  66. Ridwan M Dimiati H Syukri M Lesmana R Potential molecular mechanism underlying cardiac fibrosis in diabetes mellitus: A narrative review. Egypt Heart J 2023 75 1 46 10.1186/s43044‑023‑00376‑z 37306727
    [Google Scholar]
  67. Ritchie R.H. Abel E.D. Basic mechanisms of diabetic heart disease. Circ Res 2020 126 11 1501 1525 10.1161/CIRCRESAHA.120.315913 32437308
    [Google Scholar]
  68. Russo I. Frangogiannis N.G. Diabetes-associated cardiac fibrosis: Cellular effectors, molecular mechanisms and therapeutic opportunities. J Mol Cell Cardiol 2016 90 84 93 10.1016/j.yjmcc.2015.12.011 26705059
    [Google Scholar]
  69. Li X. Rekep M. Tian J. Wu Q. Chen M. Yang S. Zhang L. Zhang G. Qin Y. Yu X. Xue Q. Liu Y. Luteolin attenuates diabetic myocardial hypertrophy by inhibiting proteasome activity. Pharmacology 2023 108 1 47 60 10.1159/000527201 36423586
    [Google Scholar]
  70. Xiao C. Chen M.Y. Han Y.P. Liu L.J. Yan J.L. Qian L.B. The protection of luteolin against diabetic cardiomyopathy in rats is related to reversing JNK-suppressed autophagy. Food Funct 2023 14 6 2740 2749 10.1039/D2FO03871D 36852907
    [Google Scholar]
  71. Li L. Luo W. Qian Y. Zhu W. Qian J. Li J. Jin Y. Xu X. Liang G. Luteolin protects against diabetic cardiomyopathy by inhibiting NF-κB-mediated inflammation and activating the Nrf2-mediated antioxidant responses. Phytomedicine 2019 59 152774 10.1016/j.phymed.2018.11.034
    [Google Scholar]
  72. Abu-Elsaad N. El-Karef A. The falconoid luteolin mitigates the myocardial inflammatory response induced by high-carbohydrate/high-fat diet in wistar rats. Inflammation 2018 41 1 221 231 10.1007/s10753‑017‑0680‑8 29047036
    [Google Scholar]
  73. Noble P.W. Barkauskas C.E. Jiang D. Pulmonary fibrosis: Patterns and perpetrators. J Clin Invest 2012 122 8 2756 2762 10.1172/JCI60323 22850886
    [Google Scholar]
  74. Koudstaal T. Funke-Chambour M. Kreuter M. Molyneaux P.L. Wijsenbeek M.S. Pulmonary fibrosis: From pathogenesis to clinical decision-making. Trends Mol Med 2023 29 12 1076 1087 10.1016/j.molmed.2023.08.010 37716906
    [Google Scholar]
  75. Thannickal V.J. Toews G.B. White E.S. Lynch J.P. Martinez F.J. Mechanisms of pulmonary fibrosis. Annu Rev Med 2004 55 1 395 417 10.1146/annurev.med.55.091902.103810 14746528
    [Google Scholar]
  76. Yan L. Jiang M.Y. Fan X.S. Research into the anti-pulmonary fibrosis mechanism of Renshen Pingfei formula based on network pharmacology, metabolomics, and verification of AMPK/PPAR-γ pathway of active ingredients. J Ethnopharmacol 2023 317 116773 10.1016/j.jep.2023.116773 37308028
    [Google Scholar]
  77. Ren X. Yang T. Zhang K. Liu Y. Wang C. Wu L. Zhang J. Cyclodextrin MOFs modified dry powder inhalers quadruple bioavailability of luteolin to ameliorate fibrosing interstitial lung disease. Int J Pharm 2023 645 123405 10.1016/j.ijpharm.2023.123405 37703957
    [Google Scholar]
  78. Richeldi L. Collard H.R. Jones M.G. Idiopathic pulmonary fibrosis. Lancet 2017 389 10082 1941 1952 10.1016/S0140‑6736(17)30866‑8 28365056
    [Google Scholar]
  79. Moss B.J. Ryter S.W. Rosas I.O. Pathogenic mechanisms underlying idiopathic pulmonary fibrosis. Annu Rev Pathol 2022 17 1 515 546 10.1146/annurev‑pathol‑042320‑030240 34813355
    [Google Scholar]
  80. Spagnolo P. Kropski J.A. Jones M.G. Lee J.S. Rossi G. Karampitsakos T. Maher T.M. Tzouvelekis A. Ryerson C.J. Idiopathic pulmonary fibrosis: Disease mechanisms and drug development. Pharmacol Ther 2021 222 107798 10.1016/j.pharmthera.2020.107798 33359599
    [Google Scholar]
  81. Pan B. Wu F. Lu S. Lu W. Cao J. Cheng F. Ou M. Chen Y. Zhang F. Wu G. Mei L. Luteolin‐loaded hyaluronidase nanoparticles with deep tissue penetration capability for idiopathic pulmonary fibrosis treatment. Small Methods 2024 2400980 10.1002/smtd.202400980 39370583
    [Google Scholar]
  82. Fashner Julia Gastroesophageal reflux disease: A general overview. HCA Healthc J Med 2020 1 4 10.36518/2689‑0216.1042
    [Google Scholar]
  83. Allaix M.E. Rebecchi F. Morino M. Schlottmann F. Patti M.G. Gastroesophageal reflux and idiopathic pulmonary fibrosis. World J Surg 2017 41 7 1691 1697 10.1007/s00268‑017‑3956‑0 28258461
    [Google Scholar]
  84. Bédard Méthot D. Leblanc É. Lacasse Y. Meta-analysis of gastroesophageal reflux disease and idiopathic pulmonary fibrosis. Chest 2019 155 1 33 43 10.1016/j.chest.2018.07.038 30120950
    [Google Scholar]
  85. Zhu J. Zhou D. Yu M. Li Y. Appraising the causal role of smoking in idiopathic pulmonary fibrosis: A Mendelian randomization study. Thorax 2024 79 2 179 181 10.1136/thorax‑2023‑220012 37217291
    [Google Scholar]
  86. Bellou V. Belbasis L. Evangelou E. Tobacco smoking and risk for pulmonary fibrosis. Chest 2021 160 3 983 993 10.1016/j.chest.2021.04.035 33905677
    [Google Scholar]
  87. Sudhakaran G. Sreekutty A.R. Subramaniyan S. Madesh S. Priya P.S. Pachaiappan R. Hatamleh A.A. Al-Dosary M.A. Arockiaraj J. Skeletal and neurological risks demonstrated in zebrafish due to second-hand cigarette smoke and the neutralization of luteolin. Tissue Cell 2023 85 102259 10.1016/j.tice.2023.102259 37922675
    [Google Scholar]
  88. Talbott H.E. Mascharak S. Griffin M. Wan D.C. Longaker M.T. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell 2022 29 8 1161 1180 10.1016/j.stem.2022.07.006 35931028
    [Google Scholar]
  89. Griffin M.F. desJardins-Park H.E. Mascharak S. Borrelli M.R. Longaker M.T. Understanding the impact of fibroblast heterogeneity on skin fibrosis. Dis Model Mech 2020 13 6 dmm044164 10.1242/dmm.044164 32541065
    [Google Scholar]
  90. Zhang Y. Wang J. Zhou S. Xie Z. Wang C. Gao Y. Zhou J. Zhang X. Li Q. Flavones hydroxylated at 5, 7, 3′ and 4′ ameliorate skin fibrosis via inhibiting activin receptor-like kinase 5 kinase activity. Cell Death Dis 2019 10 2 124 10.1038/s41419‑019‑1333‑7 30741930
    [Google Scholar]
  91. Ekstein S.F. Wyles S.P. Moran S.L. Meves A. Keloids: A review of therapeutic management. Int J Dermatol 2021 60 6 661 671 10.1111/ijd.15159 32905614
    [Google Scholar]
  92. Andrews J.P. Marttala J. Macarak E. Rosenbloom J. Uitto J. Keloids: The paradigm of skin fibrosis — pathomechanisms and treatment. Matrix Biol 2016 51 37 46 10.1016/j.matbio.2016.01.013 26844756
    [Google Scholar]
  93. Zhang X. Liu W. Wei S. Luteolin affects keloid fibroblast proliferation and apoptosis by regulating FRAT1 gene expression. Cell Mol Biol 2020 66 3 185 190 10.14715//cmb/2020.66.3.30 32538769
    [Google Scholar]
  94. Liu D. Zhang C. Zhang J. Xu G.T. Zhang J. Molecular pathogenesis of subretinal fibrosis in neovascular AMD focusing on epithelial-mesenchymal transformation of retinal pigment epithelium. Neurobiol Dis 2023 185 106250 10.1016/j.nbd.2023.106250 37536385
    [Google Scholar]
  95. Zhang C. Zhang Y. Hu X. Zhao Z. Chen Z. Wang X. Zhang Z. Jin H. Zhang J. Luteolin inhibits subretinal fibrosis and epithelial-mesenchymal transition in laser-induced mouse model via suppression of Smad2/3 and YAP signaling. Phytomedicine 2023 116 154865 10.1016/j.phymed.2023.154865 37201365
    [Google Scholar]
  96. Murakami Y. Imaizumi T. Hashizume K. Tezuka Y. Oku Y. Nishiya N. Sanbe A. Kurosaka D. Inhibition of connective tissue growth factor expression in adult retinal pigment epithelial-19 cells by blocking yes-associated protein/transcriptional coactivator with pdz-binding motif activity. J Ocul Pharmacol Ther 2024 40 4 246 252 10.1089/jop.2023.0141 38517736
    [Google Scholar]
  97. Beyer G. Habtezion A. Werner J. Lerch M.M. Mayerle J. Chronic pancreatitis. Lancet 2020 396 10249 499 512 10.1016/S0140‑6736(20)31318‑0 32798493
    [Google Scholar]
  98. Singh V.K. Yadav D. Garg P.K. Diagnosis and management of chronic pancreatitis. JAMA 2019 322 24 2422 2434 10.1001/jama.2019.19411 31860051
    [Google Scholar]
  99. Yu Q. Zhu J. Sheng X. Xu L. Hu K. Chen G. Wu W. Cai W. Chen W. Yin G. Luteolin ameliorates experimental chronic pancreatitis induced by trinitrobenzenesulfonic acid in rats. Pancreas 2018 47 5 568 576 10.1097/MPA.0000000000001035 29595544
    [Google Scholar]
  100. Shi M. Chen Z. Gong H. Peng Z. Sun Q. Luo K. Wu B. Wen C. Lin W. Luteolin, a flavone ingredient: Anticancer mechanisms, combined medication strategy, pharmacokinetics, clinical trials, and pharmaceutical researches. Phytother Res 2024 38 2 880 911 10.1002/ptr.8066 38088265
    [Google Scholar]
  101. Yao C. Dai S. Wang C. Fu K. Wu R. Zhao X. Yao Y. Li Y. Luteolin as a potential hepatoprotective drug: Molecular mechanisms and treatment strategies. Biomed Pharmacother 2023 167 115464 10.1016/j.biopha.2023.115464 37713990
    [Google Scholar]
  102. Chen T. Li L.P. Lu X.Y. Jiang H.D. Zeng S. Absorption and excretion of luteolin and apigenin in rats after oral administration of Chrysanthemum morifolium extract. J Agric Food Chem 2007 55 2 273 277 10.1021/jf062088r 17227053
    [Google Scholar]
  103. Miyashita A. Ito J. Parida I.S. Syoji N. Fujii T. Takahashi H. Nakagawa K. Improving water dispersibility and bioavailability of luteolin using microemulsion system. Sci Rep 2022 12 1 11949 10.1038/s41598‑022‑16220‑4 35831358
    [Google Scholar]
  104. Dong X Lan W Yin X Yang C Wang W Ni J Simultaneous determination and pharmacokinetic study of quercetin, luteolin, and apigenin in rat plasma after oral administration of matricaria chamomilla l. extract by HPLC-UV. Evid Based Complement Alternat Med 2017 2017 8370584 10.1155/2017/8370584 28373891
    [Google Scholar]
  105. Shi F. Pan H. Lu Y. Ding L. An HPLC–MS/MS method for the simultaneous determination of luteolin and its major metabolites in rat plasma and its application to a pharmacokinetic study. J Sep Sci 2018 41 20 3830 3839 10.1002/jssc.201800585 30101558
    [Google Scholar]
  106. Ali F. Siddique Y.H. Bioavailability and pharmaco-therapeutic potential of luteolin in overcoming alzheimer’s disease. CNS Neurol Disord Drug Targets 2019 18 5 352 365 10.2174/1871527318666190319141835 30892166
    [Google Scholar]
  107. Wittemer S.M. Ploch M. Windeck T. Müller S.C. Drewelow B. Derendorf H. Veit M. Bioavailability and pharmacokinetics of caffeoylquinic acids and flavonoids after oral administration of Artichoke leaf extracts in humans. Phytomedicine 2005 12 1-2 28 38 10.1016/j.phymed.2003.11.002 15693705
    [Google Scholar]
  108. Kure A. Nakagawa K. Kondo M. Kato S. Kimura F. Watanabe A. Shoji N. Hatanaka S. Tsushida T. Miyazawa T. Metabolic fate of luteolin in rats: Its relationship to anti-inflammatory effect. J Agric Food Chem 2016 64 21 4246 4254 10.1021/acs.jafc.6b00964 27170112
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575408729250811073556
Loading
/content/journals/mrmc/10.2174/0113895575408729250811073556
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test