Skip to content
2000
image of Recent Advances in the Therapeutic Prospective of Heterocyclic Derivatives as COX-2 Inhibitors (2019-Present)

Abstract

Inflammation is a key contributor to the pathophysiology of various chronic diseases, including cancer, arthritis, cardiovascular disorders, chronic wounds, and gastrointestinal conditions, many of which rank among the leading causes of mortality worldwide, according to the WHO. The prevalence of chronic inflammation-related diseases is projected to rise steadily over the next 30 years, with an estimated three out of five individuals dying daily as a result of such conditions. Consequently, there is a growing demand for the discovery of novel anti-inflammatory agents. Cyclooxygenases play a pivotal role in inflammatory processes, being responsible for the synthesis of prostaglandins.

COX-1 is constitutively expressed and primarily associated with “housekeeping” physiological functions, whereas COX-2 is an inducible isoform involved in inflammatory responses. Due to its role in inflammation and relatively favorable gastric safety profile compared to traditional NSAIDs, COX-2 inhibitors have emerged as a significant therapeutic target for inflammation-related disorders. However, the increased risk of stroke and heart attack associated with COX-2 inhibitors has led to the withdrawal of several approved COX-2-targeting drugs from the market. Consequently, the development of new COX-2 inhibitors with potent efficacy and minimal cardiovascular side effects is of critical importance. This review explores a range of oxygen- and nitrogen-containing heterocycles as potential anti-inflammatory agents, emphasizing their COX-2 inhibitory activity, structure–activity relationships, and interactions within the COX-2 active site, as reported in recent studies. The article covers research findings published from 2019 through the first quarter of 2025.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575385764250711091807
2025-08-05
2025-11-06
Loading full text...

Full text loading...

References

  1. Nair A. Thankachen R.U. Raj J. Gopi S. 1 - Inflammation, symptoms, benefits, reaction, and biochemistry. In:Inflammation and Natural Products. United States Academic Press 2021 1 19 10.1016/B978‑0‑12‑819218‑4.00003‑1
    [Google Scholar]
  2. Rang H.P. Dale M.M. Pharmacology. 5th ed Amsterdam, Netherlands Elsevier 2006 217 241
    [Google Scholar]
  3. Nathan C. Ding A. Nonresolving inflammation. Cell 2010 140 6 871 882 10.1016/j.cell.2010.02.029 20303877
    [Google Scholar]
  4. Grivennikov S.I. Greten F.R. Karin M. Immunity, inflammation, and cancer. Cell 2010 140 6 883 899 10.1016/j.cell.2010.01.025 20303878
    [Google Scholar]
  5. Hannoodee S. Nasuruddin D.N. Acute inflammatory response. StatPearls. Treasure Island, FL StatPearls Publishing 2025
    [Google Scholar]
  6. Serhan C.N. Gupta S.K. Perretti M. Godson C. Brennan E. Li Y. Soehnlein O. Shimizu T. Werz O. Chiurchiù V. Azzi A. Dubourdeau M. Gupta S.S. Schopohl P. Hoch M. Gjorgevikj D. Khan F.M. Brauer D. Tripathi A. Cesnulevicius K. Lescheid D. Schultz M. Sنrndahl, E.; Repsilber, D.; Kruse, R.; Sala, A.; Haeggstrِm, J.Z.; Levy, B.D.; Filep, J.G.; Wolkenhauer, O. The atlas of inflammation resolution (AIR). Mol. Aspects Med. 2020 74 100894 10.1016/j.mam.2020.100894 32893032
    [Google Scholar]
  7. Laveti D. Kumar M. Hemalatha R. Sistla R. Naidu V. Talla V. Verma V. Kaur N. Nagpal R. Anti-inflammatory treatments for chronic diseases: A review. Inflamm. Allergy Drug Targets 2013 12 5 349 361 10.2174/18715281113129990053 23876224
    [Google Scholar]
  8. Greten F.R. Grivennikov S.I. Inflammation and cancer: Triggers, mechanisms and consequences. Immunity 2019 51 1 27 41 10.1016/j.immuni.2019.06.025 31315034
    [Google Scholar]
  9. Duan L. Rao X. Sigdel K.R. Regulation of inflammation in autoimmune Disease. J. Immunol. Res. 2019 2019 1 2 10.1155/2019/7403796 30944837
    [Google Scholar]
  10. Alfaddagh A. Martin S.S. Leucker T.M. Michos E.D. Blaha M.J. Lowenstein C.J. Jones S.R. Toth P.P. Inflammation and cardiovascular disease: From mechanisms to therapeutics. Am J. Prev Cardiol. 2020 4 100130 10.1016/j.ajpc.2020.100130 34327481
    [Google Scholar]
  11. Bullock J. Rizvi S.A.A. Saleh A.M. Ahmed S.S. Do D.P. Ansari R.A. Ahmed J. Rheumatoid arthritis: A brief overview of the treatment. Med. Princ. Pract. 2018 27 6 501 507 10.1159/000493390 30173215
    [Google Scholar]
  12. Ricciotti E. FitzGerald G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 2011 31 5 986 1000 10.1161/ATVBAHA.110.207449 21508345
    [Google Scholar]
  13. Abdulkhaleq L.A. Assi M.A. Abdullah R. Zamri-Saad M. Taufiq-Yap Y.H. Hezmee M.N.M. The crucial roles of inflammatory mediators in inflammation: A review. Vet. World 2018 11 5 627 635 10.14202/vetworld.2018.627‑635 29915501
    [Google Scholar]
  14. Wautier J.L. Wautier M.P. Pro- and anti-inflammatory prostaglandins and cytokines in humans: a mini review. Int. J. Mol. Sci. 2023 24 11 9647 10.3390/ijms24119647 37298597
    [Google Scholar]
  15. Jiang X. Renkema H. Pennings B. Pecheritsyna S. Schoeman J.C. Hankemeier T. Smeitink J. Beyrath J. Mechanism of action and potential applications of selective inhibition of microsomal prostaglandin E synthase-1-mediated PGE2 biosynthesis by sonlicromanol’s metabolite KH176m. Sci. Rep. 2021 11 1 880 10.1038/s41598‑020‑79466‑w 33441600
    [Google Scholar]
  16. Patrignani P. Maenthaisong R. Tacconelli S. Cyclooxygenase-2: Biology of Prostanoid Biosynthesis and Metabolism; Hoboken, New Jersey 2012
    [Google Scholar]
  17. Hata A.N. Breyer R.M. Pharmacology and signaling of prostaglandin receptors: Multiple roles in inflammation and immune modulation. Pharmacol. Ther. 2004 103 2 147 166 10.1016/j.pharmthera.2004.06.003 15369681
    [Google Scholar]
  18. Ju Z. Li M. Xu J. Howell D.C. Li Z. Chen F.E. Recent development on COX-2 inhibitors as promising anti-inflammatory agents: The past 10 years. Acta Pharm. Sin. B 2022 12 6 2790 2807 10.1016/j.apsb.2022.01.002 35755295
    [Google Scholar]
  19. Chen L. Yang G. Grosser T. Prostanoids and inflammatory pain. Prostag Other Lipid Mediat 2013 104-105 58 66 10.1016/j.prostaglandins.2012.08.006 22981510
    [Google Scholar]
  20. Braune S. Küpper J.H. Jung F. Effect of prostanoids on human platelet function: An overview. Int. J. Mol. Sci. 2020 21 23 9020 10.3390/ijms21239020 33260972
    [Google Scholar]
  21. Smith W.L. DeWitt D.L. Garavito R.M. Cyclooxygenases: Structural, cellular, and molecular biology. Annu. Rev. Biochem. 2000 69 1 145 182 10.1146/annurev.biochem.69.1.145 10966456
    [Google Scholar]
  22. Dargahi L. Nasiraei-Moghadam S. Abdi A. Khalaj L. Moradi F. Ahmadiani A. Cyclooxygenase (COX)-1 activity precedes the COX-2 induction in A-induced neuroinflammation. J. Mol. Neurosci. 2011 45 1 10 21 10.1007/s12031‑010‑9401‑6 20549385
    [Google Scholar]
  23. Rouzer C.A. Marnett L.J. Structural and chemical biology of the interaction of cyclooxygenase with substrates and non-steroidal anti-inflammatory drugs. Chem. Rev. 2020 120 15 7592 7641 10.1021/acs.chemrev.0c00215 32609495
    [Google Scholar]
  24. Chahal S. Rani P. Kiran J. Sindhu J. Joshi G. Ganesan A. Kalyaanamoorthy S. Mayank; Kumar, P.; Singh, R.; Negi, A. Design and development of cox-ii inhibitors: Current scenario and future perspective. ACS Omega 2023 8 20 17446 17498 10.1021/acsomega.3c00692 37251190
    [Google Scholar]
  25. Zarghi A. Arfaei S. Selective COX-2 inhibitors: A review of their structure-activity relationships. Iran. J. Pharm. Res. 2011 10 4 655 683 [PMID: 24250402
    [Google Scholar]
  26. Wongrakpanich S. Wongrakpanich A. Melhado K. Rangaswami J. A comprehensive review of non-steroidal anti-inflammatory drug use in the elderly. Aging Dis. 2018 9 1 143 150 10.14336/AD.2017.0306 29392089
    [Google Scholar]
  27. Panchal N.K. Prince Sabina E. Non-steroidal anti-inflammatory drugs (NSAIDs): A current insight into its molecular mechanism eliciting organ toxicities. Food Chem. Toxicol. 2023 172 113598 10.1016/j.fct.2022.113598 36608735
    [Google Scholar]
  28. Bindu S. Mazumder S. Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol. 2020 180 114147 10.1016/j.bcp.2020.114147 32653589
    [Google Scholar]
  29. Sehajpal S. Prasad D.N. Singh R.K. Prodrugs of non-steroidal anti-inflammatory drugs (NSAIDs): A long march towards synthesis of safer NSAIDs. Mini Rev. Med. Chem. 2018 18 14 1199 1219 10.2174/1389557518666180330112416 29600762
    [Google Scholar]
  30. Vane J.R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat. New Biol. 1971 231 25 232 235 10.1038/newbio231232a0 5284360
    [Google Scholar]
  31. Patrignani P. Patrono C. Cyclooxygenase inhibitors: From pharmacology to clinical read-outs. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2015 1851 4 422 432 10.1016/j.bbalip.2014.09.016 25263946
    [Google Scholar]
  32. Sriuttha P. Sirichanchuen B. Permsuwan U. Hepatotoxicity of nonsteroidal anti-inflammatory drugs: A systematic review of randomized controlled trials. Int. J. Hepatol. 2018 2018 1 13 10.1155/2018/5253623 29568654
    [Google Scholar]
  33. McEvoy L. Carr D.F. Pirmohamed M. Pharmacogenomics of NSAID-induced upper gastrointestinal toxicity. Front. Pharmacol. 2021 12 684162 10.3389/fphar.2021.684162 34234675
    [Google Scholar]
  34. El-Malah A.A. Gineinah M.M. Deb P.K. Khayyat A.N. Bansal M. Venugopala K.N. Aljahdali A.S. Selective COX-2 inhibitors: Road from success to controversy and the quest for repurposing. Pharmaceuticals 2022 15 7 827 10.3390/ph15070827 35890126
    [Google Scholar]
  35. Sharma V. Bhatia P. Alam O. Javed Naim M. Nawaz F. Ahmad Sheikh A. Jha M. Recent advancement in the discovery and development of COX-2 inhibitors: Insight into biological activities and SAR studies (2008–2019). Bioorg. Chem. 2019 89 103007 10.1016/j.bioorg.2019.103007 31132600
    [Google Scholar]
  36. Stiller C.O. Hjemdahl P. Lessons from 20 years with COX inhibitors: Importance of dose–response considerations and fair play in comparative trials. J. Intern. Med. 2022 292 4 557 574 10.1111/joim.13505 35585779
    [Google Scholar]
  37. Elewa M. Shehda M. Hanna P.A. Said M.M. Ramadan S. Barakat A. Abdel Aziz Y.M. Development of a selective COX-2 inhibitor: From synthesis to enhanced efficacy via nano-formulation. RSC Advances 2024 14 45 32721 32732 10.1039/D4RA06295G 39429925
    [Google Scholar]
  38. Khalil N.A. Ahmed E.M. Tharwat T. Mahmoud Z. NSAIDs between past and present; a long journey towards an ideal COX-2 inhibitor lead. RSC Advances 2024 14 42 30647 30661 10.1039/D4RA04686B 39324041
    [Google Scholar]
  39. Shirakawa K. Takeno M. Kuma H. Terahara T. Yamaguchi S. Comparative evaluation of cyclooxygenase inhibition profiles across various nsaid forms and doses: Implications for efficacy and adverse effects. Pain Ther. 2025 14 1 329 338 10.1007/s40122‑024‑00687‑2 39688800
    [Google Scholar]
  40. Patrono C. Cardiovascular effects of cyclooxygenase inhibitors: A mechanistic and clinical perspective. Br. J. Clin. Pharmacol. 2016 82 4 957 964 10.1111/bcp.13048 27317138
    [Google Scholar]
  41. Justice E. Carruthers D.M. Cardiovascular risk and COX-2 inhibition in rheumatological practice. J. Hum. Hypertens. 2005 19 1 1 5 10.1038/sj.jhh.1001777 15385947
    [Google Scholar]
  42. Patrignani P. Tacconelli S. Capone M.L. Risk management profile of etoricoxib: An example of personalized medicine. Ther. Clin. Risk Manag. 2008 4 5 983 997 10.2147/TCRM.S3209 19209280
    [Google Scholar]
  43. Dawood D.H. Anwar M.M. Recent advances in the therapeutic insights of thiazole scaffolds as acetylcholinesterase inhibitors. Eur. J. Med. Chem. 2025 287 117331 10.1016/j.ejmech.2025.117331 39938408
    [Google Scholar]
  44. Kabir E. Uzzaman M. A review on biological and medicinal impact of heterocyclic compounds. Results Chem. 2022 4 100606 10.1016/j.rechem.2022.100606
    [Google Scholar]
  45. Zlatanova-Tenisheva H. Vladimirova S. Experimental screening for analgesic and anti-inflammatory effect of novel compounds with a pyrrole heterocycle. Pharmacia 2024 71 1 10 10.3897/pharmacia.71.e121943
    [Google Scholar]
  46. Noti V. Pontiki E. Hadjipavlou-Litina D. Development of novel pyrrole derivatives and their cinnamic hybrids as dual COX-2/LOX inhibitors. Molecules 2023 28 24 7958 10.3390/molecules28247958 38138448
    [Google Scholar]
  47. Saletti M. Maramai S. Reale A. Paolino M. Brogi S. Di Capua A. Cappelli A. Giorgi G. D’Avino D. Rossi A. Ghelardini C. Di Cesare Mannelli L. Sardella R. Carotti A. Woelkart G. Klِsch, B.; Bigogno, C.; Dondio, G.; Anzini, M. Novel analgesic/anti-inflammatory agents: 1,5-Diarylpyrrole nitrooxyethyl sulfides and related compounds as Cyclooxygenase-2 inhibitors containing a nitric oxide donor moiety endowed with vasorelaxant properties. Eur. J. Med. Chem. 2022 241 114615 10.1016/j.ejmech.2022.114615 35932568
    [Google Scholar]
  48. Ghoneim M.M. Abdelgawad M.A. Elkanzi N.A.A. Bakr R.B. Review of the recent advances of pyrazole derivatives as selective COX-2 inhibitors for treating inflammation. Mol. Divers. 2025 29 2 1789 1820 10.1007/s11030‑024‑10906‑9 39014146
    [Google Scholar]
  49. Osman E.O. Khalil N.A. Magdy A. El-Dash Y. New pyrazole–pyridazine hybrids as selective COX-2 inhibitors: Design, synthesis, molecular docking, in silico studies and investigation of their anti-inflammatory potential by evaluation of TNF-α IL-6, PGE-2 and NO in LPS-induced RAW264.7 macrophages. RSC Med. Chem. 2024 15 8 2692 2708 10.1039/D4MD00135D 39149111
    [Google Scholar]
  50. Rocha S. Silva J. Silva V.L.M. Silva A.M.S. Corvo M.L. Freitas M. Fernandes E. Pyrazoles have a multifaceted anti-inflammatory effect targeting prostaglandin E2, cyclooxygenases and leukocytes’ oxidative burst. Int. J. Biochem. Cell Biol. 2024 172 106599 10.1016/j.biocel.2024.106599 38797495
    [Google Scholar]
  51. Abdellatif K.R.A. Abdelall E.K.A. Lamie P.F. Labib M.B. Abdelhakeem M.M. Abdel-Fattah M.M. El-Nahaas E.S. Novel pyrazole-oxadiazole hybrids possessing methanesulphonyl pharmacophore with good gastric safety profile: Design, synthesis, cyclooxygenase inhibition, anti-inflammatory activity and histopathological studies. J. Mol. Struct. 2022 1266 133529 10.1016/j.molstruc.2022.133529
    [Google Scholar]
  52. Fadaly W.A.A. Zidan T.H. Kahk N.M. Mohamed F.E.A. Abdelhakeem M.M. Khalil R.G. Nemr M.T.M. New pyrazolyl-thiazolidinone/thiazole derivatives as celecoxib/dasatinib analogues with selective COX-2, HER-2 and EGFR inhibitory effects: Design, synthesis, anti-inflammatory/anti-proliferative activities, apoptosis, molecular modelling and ADME studies. J. Enzyme Inhib. Med. Chem. 2023 38 1 2281262 10.1080/14756366.2023.2281262 38010912
    [Google Scholar]
  53. Elgohary M.K. Abd El Hadi S.R. Abo-Ashour M.F. Abo-El Fetoh M.E. Afify H. Abdel-Aziz H.A. Abou-Seri S.M. Fragment merging approach for the design of thiazole/thiazolidine clubbed pyrazoline derivatives as anti-inflammatory agents: Synthesis, biopharmacological evaluation and molecular modeling studies. Bioorg. Chem. 2023 139 106724 10.1016/j.bioorg.2023.106724 37451146
    [Google Scholar]
  54. Fang S. Huang X. Cai F. Qiu G. Lin F. Cai X. Design, synthesis and molecular docking of novel D-ring substituted steroidal 4,5-dihydropyrazole thiazole derivatives that act as iNOS/COX-2 inhibitors with potent anti-inflammatory activity against LPS-induced RAW264.7 macrophage cells. J. Steroid Biochem. Mol. Biol. 2024 240 106478 10.1016/j.jsbmb.2024.106478 38430971
    [Google Scholar]
  55. Elgohary M.K. Abo-Ashour M.F. Abd El Hadi S.R. El Hassab M.A. Abo-El Fetoh M.E. Afify H. Abdel-Aziz H.A. Abou-Seri S.M. Novel anti-inflammatory agents featuring phenoxy acetic acid moiety as a pharmacophore for selective COX-2 inhibitors: Synthesis, biological evaluation, histopathological examination and molecular modeling investigation. Bioorg. Chem. 2024 152 107727 10.1016/j.bioorg.2024.107727 39167872
    [Google Scholar]
  56. Fadaly A.A. W.; A M M Elshaier, Y.; T M Nemr, M.; R A Abdellatif, K. Design, synthesis, modeling studies and biological evaluation of pyrazole derivatives linked to oxime and nitrate moieties as nitric oxide donor selective COX-2 and aromatase inhibitors with dual anti-inflammatory and anti-neoplastic activities. Bioorg. Chem. 2023 134 106428 10.1016/j.bioorg.2023.106428 36893546
    [Google Scholar]
  57. Shaker A.M.M. Shahin M.I. AboulMagd, A.M.; Abdel Aleem, S.A.; Abdel-Rahman, H.M.; Abou El Ella, D.A. Novel 1,3-diaryl pyrazole derivatives bearing methylsulfonyl moiety: Design, synthesis, molecular docking and dynamics, with dual activities as anti-inflammatory and anticancer agents through selectively targeting COX-2. Bioorg. Chem. 2022 129 106143 10.1016/j.bioorg.2022.106143 36191430
    [Google Scholar]
  58. Fadaly W.A.A. Nemr M.T.M. Kahk N.M. Discovery of novel pyrazole based Urea/Thiourea derivatives as multiple targeting VEGFR-2, EGFRWT, EGFRT790M tyrosine kinases and COX-2 Inhibitors, with anti-cancer and anti-inflammatory activities. Bioorg. Chem. 2024 147 107403 10.1016/j.bioorg.2024.107403 38691909
    [Google Scholar]
  59. Assali M. Abualhasan M. Sawaftah H. Hawash M. Mousa A. Synthesis, biological activity, and molecular modeling studies of pyrazole and triazole derivatives as selective COX-2 inhibitors. J. Chem. 2020 2020 1 14 10.1155/2020/6393428
    [Google Scholar]
  60. Deivasigamani P. Rubavathy S.M.E. Jayasankar N. Saravanan V. Thilagavathi R. Prakash M. Selvam C. Rajagopal R. Alfarhan A. Kathiravan M.K. Arokiyaraj S. Arockiaraj J. Dual anti-Inflammatory and anticancer activity of novel 1,5-diaryl pyrazole derivatives: Molecular modeling, synthesis, in vitro activity, and dynamics study. Biomedicines 2024 12 4 788 10.3390/biomedicines12040788 38672144
    [Google Scholar]
  61. El-Miligy M.M.M. Al-Kubeisi A.K. Bekhit M.G. El-Zemity S.R. Nassra R.A. Hazzaa A.A. Towards safer anti-inflammatory therapy: Synthesis of new thymol-pyrazole hybrids as dual COX-2/5-LOX inhibitors. J. Enzyme Inhib. Med. Chem. 2023 38 1 294 308 10.1080/14756366.2022.2147164
    [Google Scholar]
  62. Ragab M.A. Eldehna W.M. Nocentini A. Bonardi A. Okda H.E. Elgendy B. Ibrahim T.S. Abd-Alhaseeb M.M. Gratteri P. Supuran C.T. Al-Karmalawy A.A. Elagawany M. 4-(5-Amino-pyrazol-1-yl)benzenesulfonamide derivatives as novel multi-target anti-inflammatory agents endowed with inhibitory activity against COX-2, 5-LOX and carbonic anhydrase: Design, synthesis, and biological assessments. Eur. J. Med. Chem. 2023 250 115180 10.1016/j.ejmech.2023.115180 36796297
    [Google Scholar]
  63. Shabaan M.A. Kamal A.M. Faggal S.I. Elsahar A.E. Mohamed K.O. Synthesis and biological evaluation of pyrazolone analogues as potential antiinflammatory agents targeting cyclooxygenases and 5lipoxygenase. Arch. Pharm. 2020 353 4 1900308 10.1002/ardp.201900308 32031284
    [Google Scholar]
  64. Ayman R. Abusaif M.S. Radwan A.M. Elmetwally A.M. Ragab A. Development of novel pyrazole, imidazo[1,2-b]pyrazole, and pyrazolo[1,5-a]pyrimidine derivatives as a new class of COX-2 inhibitors with immunomodulatory potential. Eur. J. Med. Chem. 2023 249 115138 10.1016/j.ejmech.2023.115138 36696764
    [Google Scholar]
  65. Narasimhamurthy K.H. Swaroop T.R. Rangappa K.S. A review on progress of thiazole derivatives as potential anti-inflammatory agents. Eur J. Med. Chem. Rep 2024 12 100225 10.1016/j.ejmcr.2024.100225
    [Google Scholar]
  66. El-Miligy M.M.M. Al-Kubeisi A.K. Nassra R.A. El-Zemity S.R. Hazzaa A.A. Discovery of new thymol-3,4-disubstituted thiazole hybrids as dual COX-2/5-LOX inhibitors with in vivo proof. J. Enzyme Inhib. Med. Chem. 2024 39 1 2309171 10.1080/14756366.2024.2309171 38291670
    [Google Scholar]
  67. Hawash M. Jaradat, N.; Abualhasan, M.; Şükürolu, M.K.; Qaoud, M.T.; Kahraman, D.C.; Daraghmeh, H.; Maslamani, L.; Sawafta, M.; Ratrout, A.; Issa, L. Design, synthesis, molecular docking studies and biological evaluation of thiazole carboxamide derivatives as COX inhibitors. BMC Chem. 2023 17 1 11 10.1186/s13065‑023‑00924‑3 36879343
    [Google Scholar]
  68. Salk, B.N.; Osmaniye, D.; Levent, S.; اevik, U.A.; اavuşolu, B.K.; ضzkay, Y.; Kaplanckl Z.A. Design, synthesis and biological assessment of new selective COX-2 inhibitors including methyl sulfonyl moiety. Eur. J. Med. Chem. 2021 209 112918 10.1016/j.ejmech.2020.112918 33071054
    [Google Scholar]
  69. Hussein A.H.M. Khames A.A. El-Adasy A.B.A. Atalla A.A. Abdel-Rady M. Hassan M.I.A. Nemr M.T.M. Elshaier Y.A.A.M. Design, synthesis and biological evaluation of new 2-aminothiazole scaffolds as phosphodiesterase type 5 regulators and COX-1/COX-2 inhibitors. RSC Advances 2020 10 50 29723 29736 10.1039/D0RA05561A 35518254
    [Google Scholar]
  70. Kumar S. Sharma P.K. Dudhe R. Kumar N. Pyridine: Potential For Biological Activities. J. Chronother Drug Deliv 2011 2 71 78
    [Google Scholar]
  71. Dennis Bilavendran J. Manikandan A. Thangarasu P. Sivakumar K. Synthesis and discovery of pyrazolo-pyridine analogs as inflammation medications through pro- and anti-inflammatory cytokine and COX-2 inhibition assessments. Bioorg. Chem. 2020 94 103484 10.1016/j.bioorg.2019.103484 31796215
    [Google Scholar]
  72. Ismael A.S. Amin N.H. Elsaadi M.T. Ali M.R.A. Abdel-Rahman H.M. Design, synthesis and biological evaluation of new imidazo[1,2-a]pyridine derivatives as selective COX-2 inhibitors. J. Mol. Struct. 2022 1250 131652 10.1016/j.molstruc.2021.131652
    [Google Scholar]
  73. Movahed M.A. Abbasi F.K. Rajabi M. Abedi N. Naderi N. Daraei B. Zarghi A. Design, synthesis, and biological evaluation of new 2-(4-(methylsulfonyl)phenyl)-N-phenylimidazo[1,2-a]pyridin-3-amine as selective COX-2 inhibitors. Med. Chem. Res. 2023 32 5 856 868 10.1007/s00044‑023‑03041‑x 37056461
    [Google Scholar]
  74. Hassan M.S.A. Ahmed E.M. El-Malah A.A. Kassab A.E. Antiinflammatory activity of pyridazinones: A review. Arch. Pharm. 2022 355 8 2200067 10.1002/ardp.202200067 35532263
    [Google Scholar]
  75. Ahmed E.M. Hassan M.S.A. El-Malah A.A. Kassab A.E. New pyridazine derivatives as selective COX-2 inhibitors and potential anti-inflammatory agents; design, synthesis and biological evaluation. Bioorg. Chem. 2020 95 103497 10.1016/j.bioorg.2019.103497 31838289
    [Google Scholar]
  76. Khan A. Diwan A. Thabet H.K. Imran M. Bakht M.A. Discovery of novel pyridazine-based cyclooxygenase-2 inhibitors with a promising gastric safety profile. Molecules 2020 25 9 2002 10.3390/molecules25092002 32344801
    [Google Scholar]
  77. Badawi W.A. Rashed M. Nocentini A. Bonardi A. Abd-Alhaseeb M.M. Al-Rashood S.T. Veerakanellore G.B. Majrashi T.A. Elkaeed E.B. Elgendy B. Gratteri P. Supuran C.T. Eldehna W.M. Elagawany M. Identification of new 4-(6-oxopyridazin-1-yl)benzenesulfonamides as multi-target anti-inflammatory agents targeting carbonic anhydrase, COX-2 and 5-LOX enzymes: Synthesis, biological evaluations and modelling insights. J. Enzyme Inhib. Med. Chem. 2023 38 1 2201407 10.1080/14756366.2023.2201407 37078173
    [Google Scholar]
  78. Ewieda S.Y. Hassan R.A. Ahmed E.M. Abdou A.M. Hassan M.S.A. Synthesis, COX-2 inhibition, anti-inflammatory activity, molecular docking, and histopathological studies of new pyridazine derivatives. Bioorg. Chem. 2024 150 107623 10.1016/j.bioorg.2024.107623 39002251
    [Google Scholar]
  79. Rashid H. Martines M.A.U. Duarte A.P. Jorge J. Rasool S. Muhammad R. Ahmad N. Umar M.N. Research developments in the syntheses, anti-inflammatory activities and structure–activity relationships of pyrimidines. RSC Advances 2021 11 11 6060 6098 10.1039/D0RA10657G 35423143
    [Google Scholar]
  80. Alfayomy A.M. Abdel-Aziz S.A. Marzouk A.A. Shaykoon M.S.A. Narumi A. Konno H. Abou-Seri S.M. Ragab F.A.F. Design and synthesis of pyrimidine-5-carbonitrile hybrids as COX-2 inhibitors: Anti-inflammatory activity, ulcerogenic liability, histopathological and docking studies. Bioorg. Chem. 2021 108 104555 10.1016/j.bioorg.2020.104555 33376011
    [Google Scholar]
  81. AL-Ghulikah H.A.; El-Sebaey, S.A.; Bass, A.K.A.; El-Zoghbi, M.S. New pyrimidine-5-carbonitriles as COX-2 inhibitors: Design, synthesis, anticancer screening, molecular docking, and in silico adme profile studies. Molecules 2022 27 21 7485 10.3390/molecules27217485 36364312
    [Google Scholar]
  82. Abdel-Aziz S.A. Taher E.S. Lan P. El-Koussi N.A. Salem O.I.A. Gomaa H.A.M. Youssif B.G.M. New pyrimidine/thiazole hybrids endowed with analgesic, antiinflammatory, and lower cardiotoxic activities: Design, synthesis, and COX/sEH dual inhibition. Arch. Pharm. 2022 355 7 2200024 10.1002/ardp.202200024 35429006
    [Google Scholar]
  83. Fatima S. Zaki A. Madhav H. Khatoon B.S. Rahman A. Manhas M.W. Hoda N. Ali S.M. Design, synthesis, and biological evaluation of morpholinopyrimidine derivatives as anti-inflammatory agents. RSC Advances 2023 13 28 19119 19129 10.1039/D3RA01893H 37383684
    [Google Scholar]
  84. Alzahrani A.Y.A. Shehab W.S. Amer A.H. Assy M.G. Mouneir S.M. Abdelaziz M. Abdel Hamid A.M. Design, synthesis, pharmacological evaluation, and in silico studies of the activity of novel spiro pyrrolo[3,4- d]pyrimidine derivatives. RSC Advances 2024 14 2 995 1008 10.1039/D3RA07078F 38174254
    [Google Scholar]
  85. Al-Wahaibi L.H. Abdel-Rahman M.H. El-Adl K. Youssif B.G.M. Brنse, S.; Abdel-Aziz, S.A. New Diaryl-1,2,4-triazolo[3,4- a]pyrimidine Hybrids as Selective COX-2/sEH Dual Inhibitors with Potent Analgesic/Anti-inflammatory and Cardioprotective Properties. ACS Omega 2024 9 31 33494 33509 10.1021/acsomega.4c00870 39130606
    [Google Scholar]
  86. Kumar S. Ritika. A brief review of the biological potential of indole derivatives. Future J. Pharm. Sci. 2020 6 1 121 10.1186/s43094‑020‑00141‑y
    [Google Scholar]
  87. Bhatia R. Vyas A. El-Bahy S.M. Hessien M.M. Mersal G.A.M. Ibrahim M.M. Dogra R. Kumar B. Rationale design, synthesis, pharmacological and insilico investigation of indolefunctionalized isoxazoles as antiinflammatory agents. ChemistrySelect 2022 7 26 202200800 10.1002/slct.202200800
    [Google Scholar]
  88. Shaker A.M.M. Abdelall E.K.A. Abdellatif K.R.A. Abdel-Rahman H.M. Synthesis and biological evaluation of 2-(4-methylsulfonyl phenyl) indole derivatives: Multi-target compounds with dual antimicrobial and anti-inflammatory activities. BMC Chem. 2020 14 1 23 10.1186/s13065‑020‑00675‑5 32259135
    [Google Scholar]
  89. Philoppes J.N. Abdelgawad M.A. Abourehab M.A.S. Sebak M. Darwish A. M.; Lamie, P.F. Novel N-methylsulfonyl-indole derivatives: Biological activity and COX-2/5-LOX inhibitory effect with improved gastro protective profile and reduced cardio vascular risks. J. Enzyme Inhib. Med. Chem. 2023 38 1 246 266 10.1080/14756366.2022.2145283 36458373
    [Google Scholar]
  90. Kumar S. Kumar A. Agrawal A. Sahu J.K. Synthesis, in vivo biological assessment and molecular docking study of some newer indole derivatives as COX 1/2 inhibitors. J. Mol. Struct. 2021 1230 129831 10.1016/j.molstruc.2020.129831
    [Google Scholar]
  91. Kumari A. Singh R.K. Synthesis, molecular docking and biological evaluation of N substituted indole derivatives as potential antiinflammatory and antioxidant agents. Chem. Biodivers. 2022 19 9 202200290 10.1002/cbdv.202200290 35818885
    [Google Scholar]
  92. Wang H. Cui E. Li J. Ma X. Jiang X. Du S. Qian S. Du L. Design and synthesis of novel indole and indazole-piperazine pyrimidine derivatives with anti-inflammatory and neuroprotective activities for ischemic stroke treatment. Eur. J. Med. Chem. 2022 241 114597 10.1016/j.ejmech.2022.114597 35931005
    [Google Scholar]
  93. Abdellatif K.R.A. Abdelall E.K.A. Elshemy H.A.H. El-Nahass E.S. Abdel-Fattah M.M. Abdelgawad Y.Y.M. New indomethacin analogs as selective COX inhibitors: Synthesis, COX1/2 inhibitory activity, antiinflammatory, ulcerogenicity, histopathological, and docking studies. Arch. Pharm. 2021 354 4 2000328 10.1002/ardp.202000328 33314237
    [Google Scholar]
  94. Pan T. He M. Deng L. Li J. Fan Y. Hao X. Mu S. Design, synthesis, and evaluation of the COX-2 inhibitory activities of new 1,3-dihydro-2h-indolin-2-one derivatives. Molecules 2023 28 12 4668 10.3390/molecules28124668 37375225
    [Google Scholar]
  95. Alkorbi F. Alshareef S.A. Abdelaziz M.A. Omer N. Jame R. Alatawi I.S. Ali A.M. Omran O.A. Bakr R.B. Multicomponent reaction for synthesis, molecular docking, and anti-inflammatory evaluation of novel indole-thiazole hybrid derivatives. Mol. Divers. 2024 ••• 1 7 10.1007/s11030‑024‑10969‑8
    [Google Scholar]
  96. Akhtar W. Khan M.F. Verma G. Shaquiquzzaman M. Rizvi M.A. Mehdi S.H. Akhter M. Alam M.M. Therapeutic evolution of benzimidazole derivatives in the last quinquennial period. Eur. J. Med. Chem. 2017 126 705 753 10.1016/j.ejmech.2016.12.010 27951484
    [Google Scholar]
  97. Badawy M.A.S. Abdelall E.K.A. EL-Nahass, E.L.S.; Abdellatif, K.R.A.; Abdel-Rahman, H.M. Design, synthesis, biological assessment and in silico ADME prediction of new 2-(4-(methylsulfonyl) phenyl) benzimidazoles as selective cyclooxygenase-2 inhibitors. RSC Advances 2021 11 44 27659 27673 10.1039/D1RA04756F 35480694
    [Google Scholar]
  98. Nagesh K.M.J. Prashanth T. Khamees H.A. Khanum S.A. Synthesis, analgesic, anti-inflammatory, COX/5-LOX inhibition, ulcerogenic evaluation, and docking study of benzimidazole bearing indole and benzophenone analogs. J. Mol. Struct. 2022 1259 132741 10.1016/j.molstruc.2022.132741
    [Google Scholar]
  99. Elrayess R. Elrayess R. Ghareb N. Synthesis, molecular docking, and anti-inflammatory activities of some novel benzimidazole derivatives as potential cyclo-oxygenase-2 inhibitors. Egypt. J. Chem. 2024 67 255 266
    [Google Scholar]
  100. Maghraby M.T.E. Abou-Ghadir O.M.F. Abdel-Moty S.G. Ali A.Y. Salem O.I.A. Novel class of benzimidazole-thiazole hybrids: The privileged scaffolds of potent anti-inflammatory activity with dual inhibition of cyclooxygenase and 15-lipoxygenase enzymes. Bioorg. Med. Chem. 2020 28 7 115403 10.1016/j.bmc.2020.115403 32127262
    [Google Scholar]
  101. Irmak N.E. Saglk, B.N.; Celik, I.; Tahsin Sen, H.; Ozkay, Y.; Ayhan-Klcgil, G. Design, synthesis, molecular docking and molecular dynamic studies of novel benzimidazole–thiazole derivatives as potent and selective COX-2 inhibitors. New J. Chem. 2023 47 47 21620 21632 10.1039/D3NJ04438F
    [Google Scholar]
  102. Ali R. Siddiqui N. Biological aspects of emerging benzothiazoles: A short. Rev. J. Chem. 2013 2013 1 12
    [Google Scholar]
  103. Awaad S.S. Sarhan M.O. Mahmoud W.R. Nasr T. George R.F. Georgey H.H. New 2-aminobenzothiazole derivatives: Design, synthesis, anti-inflammatory and ulcerogenicity evaluation. J. Mol. Struct. 2023 1291 136042 10.1016/j.molstruc.2023.136042
    [Google Scholar]
  104. Malik S. Miana G.A. Ata A. Kanwal M. Maqsood S. Malik I. Kazmi Z. Synthesis, characterization, in-silico, and pharmacological evaluation of new 2-amino-6 trifluoromethoxy benzothiazole derivatives. Bioorg. Chem. 2023 130 106175 10.1016/j.bioorg.2022.106175 36410112
    [Google Scholar]
  105. Mishra A.K. Thajudeen K.Y. Singh M. Rasool G. Kumar A. Singh H. Sharma K. Mishra A. In-silico based Designing of benzo[d]thiazol-2-amine Derivatives as Analgesic and Anti-inflammatory Agents. Antiinflamm. Antiallergy Agents Med. Chem. 2024 23 4 230 260 10.2174/0118715230296273240725065839 39162282
    [Google Scholar]
  106. Zheng X.J. Li C.S. Cui M.Y. Song Z.W. Bai X.Q. Liang C.W. Wang H.Y. Zhang T.Y. Synthesis, biological evaluation of benzothiazole derivatives bearing a 1,3,4-oxadiazole moiety as potential anti-oxidant and anti-inflammatory agents. Bioorg. Med. Chem. Lett. 2020 30 13 127237 10.1016/j.bmcl.2020.127237 32386981
    [Google Scholar]
  107. Marella A. Tanwar O.P. Saha R. Ali M.R. Srivastava S. Akhter M. Shaquiquzzaman M. Alam M.M. Quinoline: A versatile heterocyclic. Saudi Pharm. J. 2013 21 1 1 12 10.1016/j.jsps.2012.03.002 23960814
    [Google Scholar]
  108. Ghanim A.M. Rezq S. Ibrahim T.S. Romero D.G. Kothayer H. Novel 1,2,4-triazine-quinoline hybrids: The privileged scaffolds as potent multi-target inhibitors of LPS-induced inflammatory response via dual COX-2 and 15-LOX inhibition. Eur. J. Med. Chem. 2021 219 113457 10.1016/j.ejmech.2021.113457 33892270
    [Google Scholar]
  109. Mohassab A.M. Hassan H.A. Abdelhamid D. Gouda A.M. Gomaa H.A.M. Youssif B.G.M. Radwan M.O. Fujita M. Otsuka M. Abdel-Aziz M. New quinoline/1,2,4-triazole hybrids as dual inhibitors of COX-2/5-LOX and inflammatory cytokines: Design, synthesis, and docking study. J. Mol. Struct. 2021 1244 130948 10.1016/j.molstruc.2021.130948
    [Google Scholar]
  110. Hegazy M.E. Taher E.S. Ghiaty A.H. Bayoumi A.H. Tailored quinoline hybrids as promising COX-2/15-LOX dual inhibitors endowed with diverse safety profile: Design, synthesis, SAR, and histopathological study. Bioorg. Chem. 2024 145 107244 10.1016/j.bioorg.2024.107244 38428284
    [Google Scholar]
  111. Zayed M.F. Medicinal chemistry of quinazolines as analgesic and anti-inflammatory agents. ChemEngineering 2022 6 6 94 10.3390/chemengineering6060094
    [Google Scholar]
  112. Sakr A. Rezq S. Ibrahim S.M. Soliman E. Baraka M.M. Romero D.G. Kothayer H. Design and synthesis of novel quinazolinones conjugated ibuprofen, indole acetamide, or thioacetohydrazide as selective COX-2 inhibitors: Anti-inflammatory, analgesic and anticancer activities. J. Enzyme Inhib. Med. Chem. 2021 36 1 1810 1828 10.1080/14756366.2021.1956912 34338135
    [Google Scholar]
  113. Shaaban M.A. Kamal A.M. Faggal S.I. Farag N.A. Aborehab N.M. Elsahar A.E. Mohamed K.O. Design, synthesis, and biological evaluation of new pyrazoloquinazoline derivatives as dual COX/5LOX inhibitors. Arch. Pharm. 2020 353 11 2000027 10.1002/ardp.202000027 32696514
    [Google Scholar]
  114. Krasovska N. Berest G. Belenichev I. Severina H. Nosulenko I. Voskoboinik O. Okovytyy S. Kovalenko S. 5+1-Heterocyclization as preparative approach for carboxy-containing triazolo[1,5-c]quinazolines with anti-inflammatory activity. Eur. J. Med. Chem. 2024 266 116137 10.1016/j.ejmech.2024.116137 38237343
    [Google Scholar]
  115. Suthar S.K. Chundawat N.S. Singh G.P. Padrَn, J.M.; Jhala, Y.K. Quinoxaline: A comprehension of current pharmacological advancement in medicinal chemistry. Eur J. Med. Chem. Rep 2022 5 100040 10.1016/j.ejmcr.2022.100040
    [Google Scholar]
  116. Desai S.R. Desai V.G. Pissurlenkar R.R. Design, synthesis and molecular docking studies of new azomethine derivatives as promising anti-inflammatory agents. Bioorg. Chem. 2022 120 105595 10.1016/j.bioorg.2021.105595 35074576
    [Google Scholar]
  117. Ahmed E.A. Mohamed M.F.A. Omran O.A. Novel quinoxaline derivatives as dual EGFR and COX-2 inhibitors: Synthesis, molecular docking and biological evaluation as potential anticancer and anti-inflammatory agents. RSC Advances 2022 12 39 25204 25216 10.1039/D2RA04498F 36199335
    [Google Scholar]
  118. Mohamed M.F.A. Ahmed E.A. Alshazly O. Omran O.A. Soomro R.A. Nafady A. Synthesis, anticancer and anti-inflammatory evaluation of novel quinoxaline-1,3,4-oxadiazole derivatives as EGFR and COX-2 inhibitors. J. Mol. Struct. 2025 1331 141651 10.1016/j.molstruc.2025.141651
    [Google Scholar]
  119. Miao Y. Hu Y. Yang J. Liu T. Sun J. Wang X. Natural source, bioactivity and synthesis of benzofuran derivatives. RSC Advances 2019 9 47 27510 27540 10.1039/C9RA04917G 35529241
    [Google Scholar]
  120. Olomola T.O. Mphahlele M.J. Gildenhuys S. Benzofuran-selenadiazole hybrids as novel α-glucosidase and cyclooxygenase-2 inhibitors with antioxidant and cytotoxic properties. Bioorg. Chem. 2020 100 103945 10.1016/j.bioorg.2020.103945 32450390
    [Google Scholar]
  121. Chen Y. Chen R. Yuan R. Huo L. Gao H. Zhuo Y. Chen X. Zhang C. Yang S. Discovery of new heterocyclic/benzofuran hybrids as potential anti-inflammatory agents: Design, synthesis, and evaluation of the inhibitory activity of their related inflammatory factors based on NF-κB and MAPK signaling pathways. Int. J. Mol. Sci. 2023 24 4 3575 10.3390/ijms24043575 36834992
    [Google Scholar]
  122. Ikram M. Shah I. Hussain H. Mughal E.U. Naeem N. Sadiq A. Nazir Y. Ali Shah S.W. Zahoor M. Ullah R. Ali E.A. Umar M.N. Synthesis, molecular docking evaluation for LOX and COX-2 inhibition and determination of in-vivo analgesic potentials of aurone derivatives. Heliyon 2024 10 9 29658 10.1016/j.heliyon.2024.e29658 38694111
    [Google Scholar]
  123. Gaspar A. Matos M.J. Garrido J. Uriarte E. Borges F. Chromone: A valid scaffold in medicinal chemistry. Chem. Rev. 2014 114 9 4960 4992 10.1021/cr400265z 24555663
    [Google Scholar]
  124. Venkateswararao E. Sharma V.K. Lee K.C. Roh E. Kim Y. Jung S.H. Design and synthesis of novel chromenone derivatives as interleukin-5 inhibitors. Bioorg. Med. Chem. 2013 21 9 2543 2550 10.1016/j.bmc.2013.02.037 23523388
    [Google Scholar]
  125. Hatnapure G.D. Keche A.P. Rodge A.H. Birajdar S.S. Tale R.H. Kamble V.M. Synthesis and biological evaluation of novel piperazine derivatives of flavone as potent anti-inflammatory and antimicrobial agent. Bioorg. Med. Chem. Lett. 2012 22 20 6385 6390 10.1016/j.bmcl.2012.08.071 22981334
    [Google Scholar]
  126. Elzahhar P.A. Orioli R. Hassan N.W. Gobbi S. Belluti F. Labib H.F. El-Yazbi A.F. Nassra R. Belal A.S.F. Bisi A. Chromone-based small molecules for multistep shutdown of arachidonate pathway: Simultaneous inhibition of COX-2, 15-LOX and mPGES-1 enzymes. Eur. J. Med. Chem. 2024 266 116138 10.1016/j.ejmech.2024.116138 38219658
    [Google Scholar]
  127. Sahni T. Sharma S. Verma D. Kaur P. Overview of coumarins and its derivatives: Synthesis and biological activity. Lett. Org. Chem. 2021 18 11 880 902 10.2174/1570178617999201006195742
    [Google Scholar]
  128. Alshibl H.M. Al-Abdullah E.S. Haiba M.E. Alkahtani H.M. Awad G.E.A. Mahmoud A.H. Ibrahim B.M.M. Bari A. Villinger A. Synthesis and evaluation of new coumarin derivatives as antioxidant, antimicrobial, and anti-inflammatory agents. Molecules 2020 25 14 3251 10.3390/molecules25143251
    [Google Scholar]
  129. Pawar V. Shastri L.A. Gudimani P. Joshi S. Kumbar V.M. Sunagar V. Rational design, synthesis and SAR study of novel warfarin analogous of 4-hydroxy coumarin-beta-aryl propanoic acid derivatives as potent anti-inflammatory agents. J. Mol. Struct. 2022 1254 132300 10.1016/j.molstruc.2021.132300
    [Google Scholar]
  130. AL-Duhaidahawi D.; AL-Zubaidy, H.F.S.; Al-Khafaji, K.; Al-Amiery, A. Synthesis, anti-inflammatory effects, molecular docking and molecular dynamics studies of 4-hydroxy coumarin derivatives as inhibitors of COX-II enzyme. J. Mol. Struct. 2022 1247 131377 10.1016/j.molstruc.2021.131377
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575385764250711091807
Loading
/content/journals/mrmc/10.2174/0113895575385764250711091807
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: heterocycles ; COX-2 ; NSAIDs ; arthritis ; docking study ; anti-inflammatory
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test