Skip to content
2000
image of Biomimetic Magnetic Nanovesicles (“Magnetic Liposomes”): Current Synthesis Approaches and Biomedical Applications

Abstract

Magnetic liposomes (MLs) are hybrid nanovesicles that combine the biocompatibility of lipid bilayers with the remote controllability of superparamagnetic nanoparticles. To the best of our knowledge, no prior review has systematically covered the literature on MLs published between 2020 and 2024, with a special focus on continuous‐flow microfluidic synthesis. Here, we consolidate and critically assess recent advances in MLs’ structural design, highlight remaining challenges, and propose future directions for clinical translation. MLs, as one of the types of biomimetic magnetic nanovesicles, are considered promising nanocarriers for biomedical applications. These applications include active drug targeting to specific tissues, magnetic resonance imaging, magnetic hyperthermia, controlled release, and other applications. This review aims to comprehensively classify current knowledge on the main structural types of MLs and their traditional (batch) and modern (continuous‐flow) synthesis methods. The current advantages and potential challenges of microfluidics-based MLs synthesis are described. Detailed information on the variants of microfluidics-based techniques is provided, along with examples and potential biomedical applications. For the main aspects of MLs synthesis and applications, schematic illustrations are provided. Finally, an outlook on the perspectives of further MLs development and applications is presented.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575408099250918013809
2025-09-24
2025-10-19
Loading full text...

Full text loading...

References

  1. Ebrahimi F. Kumari A. Ghadami S. Al Abdullah S. Dellinger K. The potential for extracellular vesicles in nanomedicine: A review of recent advancements and challenges ahead. Adv. Biol. 2025 9 8 2400623 10.1002/adbi.202400623 39739455
    [Google Scholar]
  2. Yu B. Lee R.J. Lee L.J. Microfluidic methods for production of liposomes. Methods Enzymol. 2009 465 C 129 141 10.1016/S0076‑6879(09)65007‑2 19913165
    [Google Scholar]
  3. Fattahi H. Laurent S. Liu F. Arsalani N. Elst L.V. Muller R.N. Magnetoliposomes as multimodal contrast agents for molecular imaging and cancer nanotheragnostics. Nanomedicine 2011 6 3 529 544 10.2217/nnm.11.14 21542690
    [Google Scholar]
  4. van Swaay D. deMello A. Microfluidic methods for forming liposomes. Lab Chip 2013 13 5 752 767 10.1039/c2lc41121k 23291662
    [Google Scholar]
  5. Heidarli E. Dadashzadeh S. Haeri A. State of the art of stimuli-responsive liposomes for cancer therapy. Iran. J. Pharm. Res. 2017 16 4 1273 1304 10.22037/ijpr.2017.2164 29552041
    [Google Scholar]
  6. Gareev K.G. Grouzdev D.S. Koziaeva V.V. Sitkov N.O. Gao H. Zimina T.M. Shevtsov M. Biomimetic nanomaterials: Diversity, technology, and biomedical applications. Nanomaterials 2022 12 14 2485 10.3390/nano12142485 35889709
    [Google Scholar]
  7. Abu Lila A.S. Ishida T. Liposomal delivery systems: Design optimization and current applications. Biol. Pharm. Bull. 2017 40 1 1 10 10.1248/bpb.b16‑00624 28049940
    [Google Scholar]
  8. Zangabad P.S. Mirkiani S. Shahsavari S. Masoudi B. Masroor M. Hamed H. Jafari Z. Taghipour Y.D. Hashemi H. Karimi M. Hamblin M.R. Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications. Nanotechnol. Rev. 2018 7 1 95 122 10.1515/ntrev‑2017‑0154 29404233
    [Google Scholar]
  9. Beltrán-Gracia E. López-Camacho A. Higuera-Ciapara I. Velázquez-Fernández J.B. Vallejo-Cardona A.A. Nanomedicine review: Clinical developments in liposomal applications. Cancer Nanotechnol. 2019 10 1 11 10.1186/s12645‑019‑0055‑y
    [Google Scholar]
  10. Monnier C.A. Burnand D. Rothen-Rutishauser B. Lattuada M. Petri-Fink A. Magnetoliposomes: Opportunities and challenges. Eur. J. Nanomed. 2014 6 4 201 215 10.1515/ejnm‑2014‑0042
    [Google Scholar]
  11. Kamiya K. Development of artificial cell models using microfluidic technology and synthetic biology. Micromachines 2020 11 6 559 10.3390/mi11060559 32486297
    [Google Scholar]
  12. Seo H. Lee H. Recent developments in microfluidic synthesis of artificial cell-like polymersomes and liposomes for functional bioreactors. Biomicrofluidics 2021 15 2 021301 10.1063/5.0048441 33833845
    [Google Scholar]
  13. Godase S.S. Kulkarni N.S. Dhole S.N. A comprehensive review on Novel Lipid- Based nano drug delivery. Adv. Pharm. Bull. 2023 14 1 34 47 10.34172/apb.2024.012 38585464
    [Google Scholar]
  14. Bi H. Xue J. Jiang H. Gao S. Yang D. Fang Y. Shi K. Current developments in drug delivery with thermosensitive liposomes. Asian J. Pharm. Sci. 2019 14 4 365 379 10.1016/j.ajps.2018.07.006 32104466
    [Google Scholar]
  15. Fu M. Han X. Chen B. Guo L. Zhong L. Hu P. Pan Y. Qiu M. Cao P. Chen, J. Cancer treatment: From traditional Chinese herbal medicine to the liposome delivery system. Acta. Materia Med. 2022 1 4 486 506 10.15212/AMM‑2022‑0035
    [Google Scholar]
  16. Franco M.S. Gomes E.R. Roque M.C. Oliveira M.C. Triggered drug release from liposomes: Exploiting the outer and inner tumor environment. Front. Oncol. 2021 11 March 623760 10.3389/fonc.2021.623760 33796461
    [Google Scholar]
  17. Ashrafizadeh M. Delfi M. Zarrabi A. Bigham A. Sharifi E. Rabiee N. Paiva-Santos A.C. Kumar A.P. Tan S.C. Hushmandi K. Ren J. Zare E.N. Makvandi P. Stimuli-responsive liposomal nanoformulations in cancer therapy: Pre-clinical & clinical approaches. J. Control. Release 2022 351 January 50 80 10.1016/j.jconrel.2022.08.001 35934254
    [Google Scholar]
  18. Tomitaka A. Takemura Y. Huang Z. Roy U. Nair M. Magnetoliposomes in controlled-release drug delivery systems. Crit. Rev. Biomed. Eng. 2019 47 6 495 505 10.1615/CritRevBiomedEng.2020033002 32421974
    [Google Scholar]
  19. Li L. Zhang X. Pi C. Yang H. Zheng X. Zhao L. Wei Y. Review of curcumin physicochemical targeting delivery system. Int. J. Nanomedicine 2020 15 9799 9821 10.2147/IJN.S276201 33324053
    [Google Scholar]
  20. Anik M.I. Hossain M.K. Hossain I. Mahfuz A.M.U.B. Rahman M.T. Ahmed I. Recent progress of magnetic nanoparticles in biomedical applications: A review. Nano Select 2021 2 6 1146 1186 10.1002/nano.202000162
    [Google Scholar]
  21. Azimizonuzi H. Ghayourvahdat A. Ahmed M.H. Kareem R.A. Zrzor A.J. Mansoor A.S. Athab Z.H. Kalavi S. A state-of-the-art review of the recent advances of theranostic liposome hybrid nanoparticles in cancer treatment and diagnosis. Cancer Cell Int. 2025 25 1 26 10.1186/s12935‑024‑03610‑z 39871316
    [Google Scholar]
  22. Veloso S.R.S. Andrade R.G.D. Castanheira E.M.S. Magnetoliposomes: Recent advances in the field of controlled drug delivery. Expert Opin. Drug Deliv. 2021 18 10 1323 1334 10.1080/17425247.2021.1915983 33836636
    [Google Scholar]
  23. Sun X. Tan A. Boyd B.J. Magnetically‐activated lipid nanocarriers in biomedical applications: A review of current status and perspective. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2023 15 3 1863 10.1002/wnan.1863 36428234
    [Google Scholar]
  24. Selim M.M. El-Safty S. Tounsi A. Shenashen M. A review of magnetic nanoparticles used in nanomedicine. APL Mater. 2024 12 1 010601 10.1063/5.0191034
    [Google Scholar]
  25. Shahsavari S. Rad M.B. Hajiaghajani A. Rostami M. Hakimian F. Jafarzadeh S. Hasany M. Collingwood J.F. Aliakbari F. Fouladiha H. Bardania H. Otzen D.E. Morshedi D. Magnetoresponsive liposomes applications in nanomedicine: A comprehensive review. Biomed. Pharmacother. 2024 181 117665 10.1016/j.biopha.2024.117665 39541790
    [Google Scholar]
  26. Izadiyan Z. Misran M. Kalantari K. Webster T. Kia P. Basrowi N. Rasouli E. Shameli K. Advancements in liposomal nanomedicines: Innovative formulations, therapeutic applications, and future directions in precision medicine. Int. J. Nanomedicine 2025 20 January 1213 1262 10.2147/IJN.S488961 39911259
    [Google Scholar]
  27. Wang S. Chen Y. Guo J. Huang Q. Liposomes for tumor targeted therapy: A review. Int. J. Mol. Sci. 2023 24 3 2643 10.3390/ijms24032643 36768966
    [Google Scholar]
  28. Vreeland W.N. Microfluidic manufacturing of liposomes. Microfluidics in Pharmaceutical Sciences AAPS Introductions in the Pharmaceutical Sciences Lamprou W.N. Weaver W.N. Springer: Cham 2024 14 49 76 10.1007/978‑3‑031‑60717‑2_3
    [Google Scholar]
  29. Zhang G. Sun J. Lipid in chips: A brief review of liposomes formation by microfluidics. Int. J. Nanomedicine 2021 16 7391 7416 10.2147/IJN.S331639 34764647
    [Google Scholar]
  30. Andra V.V.S.N.L. Pammi S.V.N. Bhatraju L.V.K.P. Ruddaraju L.K. A comprehensive review on novel liposomal methodologies, commercial formulations, clinical trials and patents. Bionanoscience 2022 12 1 274 291 10.1007/s12668‑022‑00941‑x 35096502
    [Google Scholar]
  31. Thébault C.J. Ramniceanu G. Boumati S. Michel A. Seguin J. Larrat B. Mignet N. Ménager C. Doan B.T. Theranostic MRI liposomes for magnetic targeting and ultrasound triggered release of the antivascular CA4P. J. Control. Release 2020 322 February 137 148 10.1016/j.jconrel.2020.03.003 32145266
    [Google Scholar]
  32. Ziyu W. Wang L. Zhang D. Li Y.T. Zhang J. A study on the preparation and characterization of plasmid DNA and drug-containing magnetic nanoliposomes for the treatment of tumors. Int. J. Nanomedicine 2011 6 871 875 10.2147/IJN.S16485 21720500
    [Google Scholar]
  33. Lizoňová D. Frei S. Balouch M. Zadražil A. Štěpánek F. Multilobed magnetic liposomes enable remotely controlled collection, transport, and delivery of membrane-soluble cargos to vesicles and cells. ACS Appl. Bio Mater. 2021 4 6 4833 4840 10.1021/acsabm.1c00106 35007032
    [Google Scholar]
  34. Komissarova L.K. Marnautov N.A. Tatikolov A.S. Goloshchapov A.N. Kuznetsov A.A. Kuznetsov O.A. The development of the optimal method of obtaining magnetic liposomes carrying rubomycin. AIP Conf. Proc. 2019 2063 January 040028 10.1063/1.5087360
    [Google Scholar]
  35. Curcio A. Perez J.E. Prévéral S. Fromain A. Genevois C. Michel A. Van de Walle A. Lalatonne Y. Faivre D. Ménager C. Wilhelm C. The role of tumor model in magnetic targeting of magnetosomes and ultramagnetic liposomes. Sci. Rep. 2023 13 1 2278 10.1038/s41598‑023‑28914‑4 36755030
    [Google Scholar]
  36. Gharib A. Faezizadeh Z. Mesbah-Namin S.A.R. Saravani R. Preparation, characterization and in vitro efficacy of magnetic nanoliposomes containing the artemisinin and transferrin. Daru 2014 22 1 44 10.1186/2008‑2231‑22‑44 24887240
    [Google Scholar]
  37. Theodosiou M. Sakellis E. Boukos N. Kusigerski V. Kalska-Szostko B. Efthimiadou E. Iron oxide nanoflowers encapsulated in thermosensitive fluorescent liposomes for hyperthermia treatment of lung adenocarcinoma. Sci. Rep. 2022 12 1 8697 10.1038/s41598‑022‑12687‑3 35610309
    [Google Scholar]
  38. Joniec A. Sek S. Krysinski P. Magnetoliposomes as potential carriers of doxorubicin to tumours. Chemistry 2016 22 49 17715 17724 10.1002/chem.201602809 27786376
    [Google Scholar]
  39. T S A.; Lu, Y.J.; Chen, J.P. Optimization of the preparation of magnetic liposomes for the combined use of magnetic hyperthermia and photothermia in dual magneto-photothermal cancer therapy. Int. J. Mol. Sci. 2020 21 15 5187 10.3390/ijms21155187 32707876
    [Google Scholar]
  40. Zharkov M.N. Gerasimov M.V. Trushina D.B. Khmelenin D.N. Gromova E.V. Yakobson D.E. Pyataev M.A. Two types of magnetite-containing liposomes for magnetocontrolled drug release. J. Phys. Conf. Ser. 2019 1389 1 012070 10.1088/1742‑6596/1389/1/012070
    [Google Scholar]
  41. Conde A.J. Batalla M. Cerda B. Mykhaylyk O. Plank C. Podhajcer O. Cabaleiro J.M. Madrid R.E. Policastro L. Continuous flow generation of magnetoliposomes in a low-cost portable microfluidic platform. Lab Chip 2014 14 23 4506 4512 10.1039/C4LC00839A 25257193
    [Google Scholar]
  42. Zhao M. Chang J. Fu X. Liang C. Liang S. Yan R. Li A. Nano-sized cationic polymeric magnetic liposomes significantly improves drug delivery to the brain in rats. J. Drug Target. 2012 20 5 416 421 10.3109/1061186X.2011.651726 22519867
    [Google Scholar]
  43. Shirmardi Shaghasemi B. Virk M.M. Reimhult E. Optimization of magneto-thermally controlled release kinetics by tuning of magnetoliposome composition and structure. Sci. Rep. 2017 7 1 7474 10.1038/s41598‑017‑06980‑9 28784989
    [Google Scholar]
  44. Liu Y. Quan X. Li J. Huo J. Li X. Zhao Z. Li S. Wan J. Li J. Liu S. Wang T. Zhang X. Guan B. Wen R. Zhao Z. Wang C. Bai C. Liposomes embedded with PEGylated iron oxide nanoparticles enable ferroptosis and combination therapy in cancer. Natl. Sci. Rev. 2023 10 1 nwac167 10.1093/nsr/nwac167 36684514
    [Google Scholar]
  45. Korolev D.V. Shulmeyster G.A. Istomina M.S. Nikiforov A.I. Aleksandrov I.V. Semenov V.G. Galagudza M.M. Indocyanine green-containing magnetic liposomes for constant magnetic field-guided targeted delivery and theranostics. Magnetochemistry 2022 8 10 127 10.3390/magnetochemistry8100127
    [Google Scholar]
  46. Kiwada H. Sato J. Yamada S. Kato Y. Feasibility of magnetic liposomes as a targeting device for drugs. Chem. Pharm. Bull. 1986 34 10 4253 4258 10.1248/cpb.34.4253 3829157
    [Google Scholar]
  47. Rodrigues A.R.O. Gomes I.T. Almeida B.G. Araújo J.P. Castanheira E.M.S. Coutinho P.J.G. Magnetic liposomes based on nickel ferrite nanoparticles for biomedical applications. Physiol. Chem. Phys. 2015 17 27 18011 18021 10.1039/C5CP01894C 26095537
    [Google Scholar]
  48. Luo Y. Yang W. Abuduaini A. Aisa H.A. Preparation of magnetic nanoliposomes of sesquiterpene‐rich fraction from Cichorium glandulosum and its tissue distribution in mice. Evid. Based Complement. Alternat. Med. 2018 2018 1 8549519 10.1155/2018/8549519 30420898
    [Google Scholar]
  49. Rodrigues A.R.O. Santos L.C.A. Macedo D.O. Rio I.S.R. Pires A. Pereira A.M. Arújo J.P. Castanheira E.M.S. Coutinho P.J.G. Plasmonic/magnetic liposomes based on nanoparticles with multicore-shell architecture for chemo/thermotherapy. J. Phys. Conf. Ser. 2022 2407 1 012051 10.1088/1742‑6596/2407/1/012051
    [Google Scholar]
  50. García-Jimeno S. Estelrich J. Callejas-Fernández J. Roldán-Vargas S. Reversible and irreversible aggregation of magnetic liposomes. Nanoscale 2017 9 39 15131 15143 10.1039/C7NR05301K 28972615
    [Google Scholar]
  51. Gharib A. Faezizadeh Z. Mesbah-Namin S.A. Saravani R. Experimental treatment of breast cancer-bearing BALB/c mice by artemisinin and transferrin-loaded magnetic nanoliposomes. Pharmacogn. Mag. 2015 11 42 117 10.4103/0973‑1296.157710 26109756
    [Google Scholar]
  52. He Y. Zhang L. Song C. Zhu D. Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy. Int. J. Nanomedicine 2014 9 1 4055 4066 10.2147/IJN.S61880 25187709
    [Google Scholar]
  53. Zhu Z. Wang L. Jia Y. Duan S. Li S. Jiang L. Lin X. Yan F. Hou C. Hu C. Di B. Magnetic liposomes infused with GPCR-expressing cell membrane for targeted extraction using minimum organic solvent: An investigative study of trace THC in sewage. Anal. Chem. 2023 95 34 12613 12622 10.1021/acs.analchem.2c05397 37583350
    [Google Scholar]
  54. Amstad E. Kohlbrecher J. Müller E. Schweizer T. Textor M. Reimhult E. Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes. Nano Lett. 2011 11 4 1664 1670 10.1021/nl2001499 21351741
    [Google Scholar]
  55. Vlasova K.Y. Piroyan A. Le-Deygen I.M. Vishwasrao H.M. Ramsey J.D. Klyachko N.L. Golovin Y.I. Rudakovskaya P.G. Kireev I.I. Kabanov A.V. Sokolsky-Papkov M. Magnetic liposome design for drug release systems responsive to super-low frequency alternating current magnetic field (AC MF). J. Colloid Interface Sci. 2019 552 689 700 10.1016/j.jcis.2019.05.071 31176052
    [Google Scholar]
  56. Zhu H. He Y. Huang S. Tian J. Wang L. Hao J. Xie B. Ling J. Chlorin e6-loaded sonosensitive magnetic nanoliposomes conjugated with the magnetic field for enhancing anti-tumor effect of sonodynamic therapy. Pharm. Dev. Technol. 2020 25 10 1249 1259 10.1080/10837450.2020.1810274 32811263
    [Google Scholar]
  57. Zhao Z. Zhao Y. Chen C. Xie C. GLUT1-mediated magnetic liposomes for targeting bone metastatic breast cancer. Eur. J. Gynaecol. Oncol. 2023 44 98 105 10.22514/ejgo.2023.012
    [Google Scholar]
  58. Cardellini J. Surpi A. Muzzi B. Pacciani V. Innocenti C. Sangregorio C. Dediu V.A. Montis C. Berti D. Magnetic–plasmonic nanoscale liposomes with tunable optical and magnetic properties for combined multimodal imaging and drug delivery. ACS Appl. Nano Mater. 2024 7 4 3668 3678 10.1021/acsanm.3c05100
    [Google Scholar]
  59. Shen S. Huang D. Cao J. Chen Y. Zhang X. Guo S. Ma W. Qi X. Ge Y. Wu L. Magnetic liposomes for light-sensitive drug delivery and combined photothermal–chemotherapy of tumors. J. Mater. Chem. B Mater. Biol. Med. 2019 7 7 1096 1106 10.1039/C8TB02684J 32254777
    [Google Scholar]
  60. Zhu Y. Yang D. Guo T. Lin M. Use of S2.2/DOX magnetic nanoliposomes in MR molecule imaging and targeted thermochemotherapy for breast cancer in vitro. Technol. Cancer Res. Treat. 2023 22 15330338231194498 10.1177/15330338231194498 37563954
    [Google Scholar]
  61. Nakayama Y. Mustapić M. Ebrahimian H. Wagner P. Kim J.H. Hossain M.S.A. Horvat J. Martinac B. Magnetic nanoparticles for “smart liposomes”. Eur. Biophys. J. 2015 44 8 647 654 10.1007/s00249‑015‑1059‑0 26184724
    [Google Scholar]
  62. Arias F.J. De Las Heras S. Magnetorheological liposomes. An alternative approach for drug delivery driven by mutual magnetic dipole–dipole interaction. J. Magn Mater. 2022 564 P2 170152 10.1016/j.jmmm.2022.170152
    [Google Scholar]
  63. Béalle G. Di Corato R. Kolosnjaj-Tabi J. Dupuis V. Clément O. Gazeau F. Wilhelm C. Ménager C. Ultra magnetic liposomes for MR imaging, targeting, and hyperthermia. Langmuir 2012 28 32 11834 11842 10.1021/la3024716 22799267
    [Google Scholar]
  64. Cifuentes J. Cifuentes-Almanza S. Ruiz Puentes P. Quezada V. González Barrios A.F. Calderón-Peláez M.A. Velandia-Romero M.L. Rafat M. Muñoz-Camargo C. Albarracín S.L. Cruz J.C. Multifunctional magnetoliposomes as drug delivery vehicles for the potential treatment of Parkinson’s disease. Front. Bioeng. Biotechnol. 2023 11 May 1181842 10.3389/fbioe.2023.1181842 37214285
    [Google Scholar]
  65. Dai M. Wu C. Fang H.M. Li L. Yan J.B. Zeng D.L. Zou T. Thermo-responsive magnetic liposomes for hyperthermia-triggered local drug delivery. J. Microencapsul. 2017 34 4 408 415 10.1080/02652048.2017.1339738 28590788
    [Google Scholar]
  66. Gogoi M. Jaiswal M.K. Sarma H.D. Bahadur D. Banerjee R. Biocompatibility and therapeutic evaluation of magnetic liposomes designed for self-controlled cancer hyperthermia and chemotherapy. Integr. Biol. 2017 9 6 555 565 10.1039/C6IB00234J 28513646
    [Google Scholar]
  67. Jin Z. Cho S. Ko S.Y. Park J.O. Park S. Controlled drug releasing of doxorubicin loaded magnetic nanoliposome using nir irradiation. 2016 13th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI) Xi'an, China 19-22 August 2016 10.1109/URAI.2016.7734085
    [Google Scholar]
  68. Kubo T. Sugita T. Shimose S. Nitta Y. Ikuta Y. Murakami T. Targeted delivery of anticancer drugs with intravenously administered magnetic liposomes in osteosarcoma-bearing hamsters. Int. J. Oncol. 2000 17 2 309 315 10.3892/ijo.17.2.309 10891540
    [Google Scholar]
  69. Kubo T. Sugita T. Shimose S. Nitta Y. Ikuta Y. Murakami T. Targeted systemic chemotherapy using magnetic liposomes with incorporated adriamycin for osteosarcoma in hamsters. Int. J. Oncol. 2001 18 1 121 125 10.3892/ijo.18.1.121 11115548
    [Google Scholar]
  70. Kuznetsov A.A. Filippov V.I. Alyautdin R.N. Torshina N.L. Kuznetsov O.A. Application of magnetic liposomes for magnetically guided transport of muscle relaxants and anti-cancer photodynamic drugs. J. Magn. Mater. 2001 225 1-2 95 100 10.1016/S0304‑8853(00)01235‑X
    [Google Scholar]
  71. Kono Y. Preparation of magnetized mesenchymal stem cells using magnetic liposomes to enhance their retention in targeted tissue —evaluation of retention and anti-inflammatory efficiency in skeletal muscle—. Yakugaku Zasshi 2022 142 11 1145 1151 10.1248/yakushi.22‑00132 36328443
    [Google Scholar]
  72. Petrichenko O. Ērglis K. Cēbers A. Plotniece A. Pajuste K. Béalle G. Ménager C. Dubois E. Perzynski R. Bilayer properties of giant magnetic liposomes formed by cationic pyridine amphiphile and probed by active deformation under magnetic forces. Eur. Phys. J. E 2013 36 1 9 10.1140/epje/i2013‑13009‑0 23359032
    [Google Scholar]
  73. Kuai J.H. Wang Q. Zhang A.J. Zhang J.Y. Chen Z.F. Wu K.K. Hu X.Z. Epidermal growth factor receptor-targeted immune magnetic liposomes capture circulating colorectal tumor cells efficiently. World J. Gastroenterol. 2018 24 3 351 359 10.3748/wjg.v24.i3.351 29391757
    [Google Scholar]
  74. Liu Y. Yang F. Yuan C. Li M. Wang T. Chen B. Jin J. Zhao P. Tong J. Luo S. Gu N. Magnetic nanoliposomes as in situ microbubble bombers for multimodality image-guided cancer theranostics. ACS Nano 2017 11 2 1509 1519 10.1021/acsnano.6b06815 28045496
    [Google Scholar]
  75. Liu Y. Li J. Chen H. Cai Y. Sheng T. Wang P. Li Z. Yang F. Gu N. Magnet-activatable nanoliposomes as intracellular bubble microreactors to enhance drug delivery efficacy and burst cancer cells. Nanoscale 2019 11 40 18854 18865 10.1039/C9NR07021D 31596307
    [Google Scholar]
  76. Lu Y.J. Chuang E.Y. Cheng Y.H. Anilkumar T.S. Chen H.A. Chen J.P. Thermosensitive magnetic liposomes for alternating magnetic field-inducible drug delivery in dual targeted brain tumor chemotherapy. Chem. Eng. J. 2019 373 373 720 733 10.1016/j.cej.2019.05.055
    [Google Scholar]
  77. Nuñez-Magos L. Lira-Escobedo J. Rodríguez-López R. Muñoz-Navia M. Castillo-Rivera F. Viveros-Méndez P.X. Araujo E. Encinas A. Saucedo-Anaya S.A. Aranda-Espinoza S. Effects of DC magnetic fields on magnetoliposomes. Front. Mol. Biosci. 2021 8 September 703417 10.3389/fmolb.2021.703417 34589517
    [Google Scholar]
  78. Pakdaman Goli P. Bikhof Torbati M. Parivar K. Akbarzadeh Khiavi A. Yousefi M. Liu Y. Yang F. Yuan C. Li M. Wang T. Chen B. Jin J. Zhao P. Tong J. Luo S. Gu N. Zizzari A. Carbone L. Cesaria M. Bianco M. Perrone E. Rendina F. Arima V. Continuous flow scalable production of injectable size-monodisperse nanoliposomes in easy-fabrication milli-fluidic reactors. Process Biochem. 2021 110 April 116481 10.1016/j.procbio.2021.08.007
    [Google Scholar]
  79. Peng Z. Wang C. Fang E. Lu X. Wang G. Tong Q. Co-delivery of doxorubicin and SATB1 shRNA by thermosensitive magnetic cationic liposomes for gastric cancer therapy. PLoS One 2014 9 3 92924 10.1371/journal.pone.0092924 24675979
    [Google Scholar]
  80. Rivière C. Martina M.S. Tomita Y. Wilhelm C. Tran Dinh A. Ménager C. Pinard E. Lesieur S. Gazeau F. Seylaz J. Magnetic targeting of nanometric magnetic fluid loaded liposomes to specific brain intravascular areas: A dynamic imaging study in mice. Radiology 2007 244 2 439 448 10.1148/radiol.2442060912 17562813
    [Google Scholar]
  81. Rogozhnikov D. Babenyshev A.V. Kovaleva A.Y. Yakovtseva M.N. Lunin A.V. Lyfanov D.A. Nikitin M.P. Synthesis of fluorescent and magnetic liposomes and their application for optical detection of migrating cancer cells. 2020 International Conference Laser Optics (ICLO) November 2020 10.1109/ICLO48556.2020.9285456
    [Google Scholar]
  82. Hardiansyah A. Huang L.Y. Yang M.C. Liu T.Y. Tsai S.C. Yang C.Y. Kuo C.Y. Chan T.Y. Zou H.M. Lian W.N. Lin C.H. Magnetic liposomes for colorectal cancer cells therapy by high-frequency magnetic field treatment. Nanoscale Res. Lett. 2014 9 1 497 10.1186/1556‑276X‑9‑497 25246875
    [Google Scholar]
  83. Hakke V. Sonawane S. Anandan S. Sonawane S. Ashokkumar M. Process intensification approach using microreactors for synthesizing nanomaterials—a critical review. Nanomaterials 2021 11 1 98 10.3390/nano11010098 33406661
    [Google Scholar]
  84. Arduino I. Di Fonte R. Sommonte F. Lopedota A. Porcelli L. Li J. Serrati S. Bártolo R. Santos H.A. Iacobazzi R.M. Azzariti A. Denora N. Fabrication of biomimetic hybrid liposomes via microfluidic technology: Homotypic targeting and antitumor efficacy studies in glioma cells. Int. J. Nanomedicine 2024 19 December 13217 13233 10.2147/IJN.S489872 39679250
    [Google Scholar]
  85. Kuribayashi K. Tresset G. Coquet P. Fujita H. Takeuchi S. Electroformation of giant liposomes in microfluidic channels. Meas. Sci. Technol. 2006 17 12 3121 3126 10.1088/0957‑0233/17/12/S01
    [Google Scholar]
  86. Pourabdollah Vardi̇n A. Yesiloz G. Nanoscale liposome synthesis for drug delivery applications via ultrafast acoustofluidic micromixing. Hittite J. Sci. Eng. 2023 10 3 237 241 10.17350/HJSE19030000312
    [Google Scholar]
  87. Aranguren A. Torres C.E. Muñoz-Camargo C. Osma J.F. Cruz J.C. Synthesis of nanoscale liposomes via low-cost microfluidic systems. Micromachines 2020 11 12 1050 10.3390/mi11121050 33260732
    [Google Scholar]
  88. Lv S. Jing R. Liu X. Shi H. Shi Y. Wang X. Zhao X. Cao K. Lv Z. One-step microfluidic fabrication of multi-responsive liposomes for targeted delivery of doxorubicin synergism with photothermal effect. Int. J. Nanomedicine 2021 16 7759 7772 10.2147/IJN.S329621 34848958
    [Google Scholar]
  89. Pittiu A. Pannuzzo M. Casula L. Pireddu R. Valenti D. Cardia M.C. Lai F. Rosa A. Sinico C. Schlich M. Production of liposomes by microfluidics: The impact of post-manufacturing dilution on drug encapsulation and lipid loss. Int. J. Pharm. 2024 664 August 124641 10.1016/j.ijpharm.2024.124641 39191334
    [Google Scholar]
  90. Torres C.E. Cifuentes J. Gómez S.C. Quezada V. Giraldo K.A. Puentes P.R. Rueda-Gensini L. Serna J.A. Muñoz-Camargo C. Reyes L.H. Osma J.F. Cruz J.C. Microfluidic synthesis and purification of magnetoliposomes for potential applications in the gastrointestinal delivery of difficult-to-transport drugs. Pharmaceutics 2022 14 2 315 10.3390/pharmaceutics14020315 35214047
    [Google Scholar]
  91. Akiyama R. Murakami Y. Inoue K. Orita Y. Shimoyama Y. Fabrication of PEGylated liposome in microfluidic flow process using supercritical CO2. J. Nanopart. Res. 2022 24 12 257 10.1007/s11051‑022‑05635‑9
    [Google Scholar]
  92. Han J.Y. La Fiandra J.N. DeVoe D.L. Microfluidic vortex focusing for high throughput synthesis of size-tunable liposomes. Nat. Commun. 2022 13 1 6997 10.1038/s41467‑022‑34750‑3 36384946
    [Google Scholar]
  93. Hood R.R. DeVoe D.L. Andar A. Swaan P.W. Omiatek D.M. Vreeland W.N. Microfluidic synthesis of PEGylated liposomes. Microsystems Meas Instrum. 2012 1–4 1 4 10.1109/MAMNA.2012.6195094
    [Google Scholar]
  94. Ran R. Middelberg A.P.J. Zhao C.X. Microfluidic synthesis of multifunctional liposomes for tumour targeting. Colloids Surf. B Biointerfaces 2016 148 402 410 10.1016/j.colsurfb.2016.09.016 27639490
    [Google Scholar]
  95. Shan H. Sun X. Liu X. Sun Q. He Y. Chen Z. Lin Q. Jiang Z. Chen X. Chen Z. Zhao S. One‐step formation of targeted liposomes in a versatile microfluidic mixing device. Small 2023 19 7 2205498 10.1002/smll.202205498 36449632
    [Google Scholar]
  96. Agam M. Paul V. Abdelgawad M. Husseini G. Targeted liposomes production in a microfluidic chip. IEEE International Conference on Nano/Molecular Medicine and Engineering, NANOMED IEEE, November 2021 53 56 10.1109/NANOMED54179.2021.9766644
    [Google Scholar]
  97. Aghaei H. Solaimany Nazar A.R. Continuous production of the nanoscale liposome in a double flow-focusing microfluidic device. Ind. Eng. Chem. Res. 2019 58 51 23032 23045 10.1021/acs.iecr.9b04079
    [Google Scholar]
  98. Forbes N. Hussain M.T. Briuglia M.L. Edwards D.P. Horst J.H. Szita N. Perrie Y. Rapid and scale-independent microfluidic manufacture of liposomes entrapping protein incorporating in-line purification and at-line size monitoring. Int. J. Pharm. 2019 556 556 68 81 10.1016/j.ijpharm.2018.11.060 30503269
    [Google Scholar]
  99. Di Francesco V. Boso D.P. Moore T.L. Schrefler B.A. Decuzzi P. Machine learning instructed microfluidic synthesis of curcumin-loaded liposomes. Biomed. Microdevices 2023 25 3 29 10.1007/s10544‑023‑00671‑1 37542568
    [Google Scholar]
  100. Dimov N. Kastner E. Hussain M. Perrie Y. Szita N. Formation and purification of tailored liposomes for drug delivery using a module-based micro continuous-flow system. Sci. Rep. 2017 7 1 12045 10.1038/s41598‑017‑11533‑1 28935923
    [Google Scholar]
  101. Joshi S. Hussain M.T. Roces C.B. Anderluzzi G. Kastner E. Salmaso S. Kirby D.J. Perrie Y. Microfluidics based manufacture of liposomes simultaneously entrapping hydrophilic and lipophilic drugs. Int. J. Pharm. 2016 514 1 160 168 10.1016/j.ijpharm.2016.09.027 27863660
    [Google Scholar]
  102. Yanar F. Kimpton H. Cristaldi D.A. Mosayyebi A. Carugo D. Zhang X. Synthesis and characterization of liposomes encapsulating silver nanoprisms obtained by millifluidic-based production for drug delivery. Mater. Res. Express 2023 10 8 085008 10.1088/2053‑1591/acf192
    [Google Scholar]
  103. Bottaro E. Nastruzzi C. “Off-the-shelf” microfluidic devices for the production of liposomes for drug delivery. Mater. Sci. Eng. C 2016 64 29 33 10.1016/j.msec.2016.03.056 27127025
    [Google Scholar]
  104. Jahn A. Lucas F. Wepf R.A. Dittrich P.S. Freezing continuous-flow self-assembly in a microfluidic device: Toward imaging of liposome formation. Langmuir 2013 29 5 1717 1723 10.1021/la303675g 23289615
    [Google Scholar]
  105. Jahn A. Vreeland W.N. DeVoe D.L. Locascio L.E. Gaitan M. Microfluidic directed formation of liposomes of controlled size. Langmuir 2007 23 11 6289 6293 10.1021/la070051a 17451256
    [Google Scholar]
  106. Carugo D. Bottaro E. Owen J. Stride E. Nastruzzi C. Liposome production by microfluidics: Potential and limiting factors. Sci. Rep. 2016 6 1 25876 10.1038/srep25876 27194474
    [Google Scholar]
  107. Hood R.R. DeVoe D.L. High‐throughput continuous flow production of nanoscale liposomes by microfluidic vertical flow focusing. Small 2015 11 43 5790 5799 10.1002/smll.201501345 26395346
    [Google Scholar]
  108. Cheung C.C.L. Ma G. Ruiz A. Al-Jamal W.T. Microfluidic production of lysolipid-containing temperature-sensitive liposomes. J. Vis. Exp. 2020 2020 157 1 11 10.3791/60907 32202528
    [Google Scholar]
  109. Kastner E. Verma V. Lowry D. Perrie Y. Microfluidic-controlled manufacture of liposomes for the solubilisation of a poorly water soluble drug. Int. J. Pharm. 2015 485 1-2 122 130 10.1016/j.ijpharm.2015.02.063 25725309
    [Google Scholar]
  110. Cinquerrui S. Mancuso F. Vladisavljević G.T. Bakker S.E. Malik D.J. Nanoencapsulation of bacteriophages in liposomes prepared using microfluidic hydrodynamic flow focusing. Front. Microbiol. 2018 9 SEP 2172 10.3389/fmicb.2018.02172 30258426
    [Google Scholar]
  111. Ballacchino G. Weaver E. Mathew E. Dorati R. Genta I. Conti B. Lamprou D.A. Manufacturing of 3D-printed microfluidic devices for the synthesis of drug-loaded liposomal formulations. Int. J. Mol. Sci. 2021 22 15 8064 10.3390/ijms22158064 34360832
    [Google Scholar]
  112. Deshpande S. Dekker C. On-chip microfluidic production of cell-sized liposomes. Nat. Protoc. 2018 13 5 856 874 10.1038/nprot.2017.160 29599442
    [Google Scholar]
  113. Rao L. Cai B. Bu L.L. Liao Q.Q. Guo S.S. Zhao X.Z. Dong W.F. Liu W. Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. ACS Nano 2017 11 4 3496 3505 10.1021/acsnano.7b00133 28272874
    [Google Scholar]
  114. Habault D. Dery A. Leng J. Lecommandoux S. Le Meins J.F. Sandre O. Droplet microfluidics to prepare magnetic polymer vesicles and to confine the heat in magnetic hyperthermia. IEEE Trans. Magn. 2013 49 1 182 190 10.1109/TMAG.2012.2221688
    [Google Scholar]
  115. Écija-Arenas Á. Román-Pizarro V. Fernández-Romero J.M. Luminescence continuous flow system for monitoring the efficiency of hybrid liposomes separation using multiphase density gradient centrifugation. Talanta 2021 222 121532 121532 10.1016/j.talanta.2020.121532 33167240
    [Google Scholar]
  116. Davies R.T. Kim D. Park J. Formation of liposomes using a 3D flow focusing microfluidic device with spatially patterned wettability by corona discharge. J. Micromech. Microeng. 2012 22 5 055003 10.1088/0960‑1317/22/5/055003
    [Google Scholar]
  117. Hood R.R. DeVoe D.L. Atencia J. Vreeland W.N. Omiatek D.M. A facile route to the synthesis of monodisperse nanoscale liposomes using 3D microfluidic hydrodynamic focusing in a concentric capillary array. Lab Chip 2014 14 14 2403 2409 10.1039/C4LC00334A 24825622
    [Google Scholar]
  118. Huang X. Caddell R. Yu B. Xu S. Theobald B. Lee L.J. Lee R.J. Ultrasound-enhanced microfluidic synthesis of liposomes. Anticancer Res. 2010 30 2 463 466 10.1158/0008‑5472.CAN‑09‑2501 20332455
    [Google Scholar]
  119. Ji J. Kawano R. Microfluidic generation of cell-sized liposomes using a budding strategy. ChemRxiv 2024 10.26434/chemrxiv‑2024‑4gnff‑v2
    [Google Scholar]
  120. Matsuura-Sawada Y. Maeki M. Uno S. Wada K. Tokeshi M. Controlling lamellarity and physicochemical properties of liposomes prepared using a microfluidic device. Biomater. Sci. 2023 11 7 2419 2426 10.1039/D2BM01703B 36752548
    [Google Scholar]
  121. Ota A. Mochizuki A. Sou K. Takeoka S. Evaluation of a static mixer as a new microfluidic method for liposome formulation. Front. Bioeng. Biotechnol. 2023 11 August 1229829 10.3389/fbioe.2023.1229829 37675402
    [Google Scholar]
  122. Maroń E. Krysiński P. Chudy M. Perspective chapter: Magnetoliposomes - a recent development as recent advances in the field of controlled release drug delivery. Liposomes - Recent Advances, New Perspectives and Applications IntechOpen: United Kingdom 2022
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575408099250918013809
Loading
/content/journals/mrmc/10.2174/0113895575408099250918013809
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test