Skip to content
2000
Volume 25, Issue 18
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Magnetic liposomes (MLs) are hybrid nanovesicles that combine the biocompatibility of lipid bilayers with the remote controllability of superparamagnetic nanoparticles. To the best of our knowledge, no prior review has systematically covered the literature on MLs published between 2020 and 2024, with a special focus on continuous‐flow microfluidic synthesis. Here, we consolidate and critically assess recent advances in MLs’ structural design, highlight remaining challenges, and propose future directions for clinical translation. MLs, as one of the types of biomimetic magnetic nanovesicles, are considered promising nanocarriers for biomedical applications. These applications include active drug targeting to specific tissues, magnetic resonance imaging, magnetic hyperthermia, controlled release, and other applications. This review aims to comprehensively classify current knowledge on the main structural types of MLs and their traditional (batch) and modern (continuous‐flow) synthesis methods. The current advantages and potential challenges of microfluidics-based MLs synthesis are described. Detailed information on the variants of microfluidics-based techniques is provided, along with examples and potential biomedical applications. For the main aspects of MLs synthesis and applications, schematic illustrations are provided. Finally, an outlook on the perspectives of further MLs development and applications is presented.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575408099250918013809
2025-09-24
2026-01-01
Loading full text...

Full text loading...

References

  1. EbrahimiF. KumariA. GhadamiS. Al AbdullahS. DellingerK. The potential for extracellular vesicles in nanomedicine: A review of recent advancements and challenges ahead.Adv. Biol.202598240062310.1002/adbi.202400623 39739455
    [Google Scholar]
  2. YuB. LeeR.J. LeeL.J. Microfluidic methods for production of liposomes.Methods Enzymol2009465C12914110.1016/S0076‑6879(09)65007‑2 19913165
    [Google Scholar]
  3. FattahiH. LaurentS. LiuF. ArsalaniN. ElstL.V. MullerR.N. Magnetoliposomes as multimodal contrast agents for molecular imaging and cancer nanotheragnostics.Nanomedicine20116352954410.2217/nnm.11.14 21542690
    [Google Scholar]
  4. van SwaayD. deMelloA. Microfluidic methods for forming liposomes.Lab Chip201313575276710.1039/c2lc41121k 23291662
    [Google Scholar]
  5. HeidarliE. DadashzadehS. HaeriA. State of the art of stimuli-responsive liposomes for cancer therapy.Iran. J. Pharm. Res.20171641273130410.22037/ijpr.2017.2164 29552041
    [Google Scholar]
  6. GareevK.G. GrouzdevD.S. KoziaevaV.V. SitkovN.O. GaoH. ZiminaT.M. ShevtsovM. Biomimetic nanomaterials: Diversity, technology, and biomedical applications.Nanomaterials20221214248510.3390/nano12142485 35889709
    [Google Scholar]
  7. Abu LilaA.S. IshidaT. Liposomal delivery systems: Design optimization and current applications.Biol. Pharm. Bull.201740111010.1248/bpb.b16‑00624 28049940
    [Google Scholar]
  8. ZangabadP.S. MirkianiS. ShahsavariS. MasoudiB. MasroorM. HamedH. JafariZ. TaghipourY.D. HashemiH. KarimiM. HamblinM.R. Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications.Nanotechnol. Rev.2018719512210.1515/ntrev‑2017‑0154 29404233
    [Google Scholar]
  9. Beltrán-GraciaE. López-CamachoA. Higuera-CiaparaI. Velázquez-FernándezJ.B. Vallejo-CardonaA.A. Nanomedicine review: Clinical developments in liposomal applications.Cancer Nanotechnol.20191011110.1186/s12645‑019‑0055‑y
    [Google Scholar]
  10. MonnierC.A. BurnandD. Rothen-RutishauserB. LattuadaM. Petri-FinkA. Magnetoliposomes: Opportunities and challenges.Eur. J. Nanomed.20146420121510.1515/ejnm‑2014‑0042
    [Google Scholar]
  11. KamiyaK. Development of artificial cell models using microfluidic technology and synthetic biology.Micromachines202011655910.3390/mi11060559 32486297
    [Google Scholar]
  12. SeoH. LeeH. Recent developments in microfluidic synthesis of artificial cell-like polymersomes and liposomes for functional bioreactors.Biomicrofluidics202115202130110.1063/5.0048441 33833845
    [Google Scholar]
  13. GodaseS.S. KulkarniN.S. DholeS.N. A comprehensive review on Novel Lipid- Based nano drug delivery.Adv. Pharm. Bull.2023141344710.34172/apb.2024.012 38585464
    [Google Scholar]
  14. BiH. XueJ. JiangH. GaoS. YangD. FangY. ShiK. Current developments in drug delivery with thermosensitive liposomes.Asian J. Pharm. Sci.201914436537910.1016/j.ajps.2018.07.006 32104466
    [Google Scholar]
  15. FuM. HanX. ChenB. GuoL. ZhongL. HuP. PanY. QiuM. CaoP. Chen, J. Cancer treatment: From traditional Chinese herbal medicine to the liposome delivery system.Acta Materia Med.20221448650610.15212/AMM‑2022‑0035
    [Google Scholar]
  16. FrancoM.S. GomesE.R. RoqueM.C. OliveiraM.C. Triggered drug release from liposomes: Exploiting the outer and inner tumor environment.Front. Oncol.202111March62376010.3389/fonc.2021.623760 33796461
    [Google Scholar]
  17. AshrafizadehM. DelfiM. ZarrabiA. BighamA. SharifiE. RabieeN. Paiva-SantosA.C. KumarA.P. TanS.C. HushmandiK. RenJ. ZareE.N. MakvandiP. Stimuli-responsive liposomal nanoformulations in cancer therapy: Pre-clinical & clinical approaches.J. Control. Release2022351January508010.1016/j.jconrel.2022.08.001 35934254
    [Google Scholar]
  18. TomitakaA. TakemuraY. HuangZ. RoyU. NairM. Magnetoliposomes in controlled-release drug delivery systems.Crit. Rev. Biomed. Eng.201947649550510.1615/CritRevBiomedEng.2020033002 32421974
    [Google Scholar]
  19. LiL. ZhangX. PiC. YangH. ZhengX. ZhaoL. WeiY. Review of curcumin physicochemical targeting delivery system.Int. J. Nanomedicine2020159799982110.2147/IJN.S276201 33324053
    [Google Scholar]
  20. AnikM.I. HossainM.K. HossainI. MahfuzA.M.U.B. RahmanM.T. AhmedI. Recent progress of magnetic nanoparticles in biomedical applications: A review.Nano Select2021261146118610.1002/nano.202000162
    [Google Scholar]
  21. AzimizonuziH. GhayourvahdatA. AhmedM.H. KareemR.A. ZrzorA.J. MansoorA.S. AthabZ.H. KalaviS. A state-of-the-art review of the recent advances of theranostic liposome hybrid nanoparticles in cancer treatment and diagnosis.Cancer Cell Int.20252512610.1186/s12935‑024‑03610‑z 39871316
    [Google Scholar]
  22. VelosoS.R.S. AndradeR.G.D. CastanheiraE.M.S. Magnetoliposomes: Recent advances in the field of controlled drug delivery.Expert Opin. Drug Deliv.202118101323133410.1080/17425247.2021.1915983 33836636
    [Google Scholar]
  23. SunX. TanA. BoydB.J. Magnetically‐activated lipid nanocarriers in biomedical applications: A review of current status and perspective.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2023153186310.1002/wnan.1863 36428234
    [Google Scholar]
  24. SelimM.M. El-SaftyS. TounsiA. ShenashenM. A review of magnetic nanoparticles used in nanomedicine.APL Mater.202412101060110.1063/5.0191034
    [Google Scholar]
  25. ShahsavariS. RadM.B. HajiaghajaniA. RostamiM. HakimianF. JafarzadehS. HasanyM. CollingwoodJ.F. AliakbariF. FouladihaH. BardaniaH. OtzenD.E. MorshediD. Magnetoresponsive liposomes applications in nanomedicine: A comprehensive review.Biomed. Pharmacother.202418111766510.1016/j.biopha.2024.117665 39541790
    [Google Scholar]
  26. IzadiyanZ. MisranM. KalantariK. WebsterT. KiaP. BasrowiN. RasouliE. ShameliK. Advancements in liposomal nanomedicines: Innovative formulations, therapeutic applications, and future directions in precision medicine.Int. J. Nanomedicine202520January1213126210.2147/IJN.S488961 39911259
    [Google Scholar]
  27. WangS. ChenY. GuoJ. HuangQ. Liposomes for tumor targeted therapy: A review.Int. J. Mol. Sci.2023243264310.3390/ijms24032643 36768966
    [Google Scholar]
  28. VreelandW.N. Microfluidic manufacturing of liposomes.Microfluidics in Pharmaceutical Sciences AAPS Introductions in the Pharmaceutical Sciences; Lamprou, D.A.; Weaver, E., Eds.; Springer: Cham202414497610.1007/978‑3‑031‑60717‑2_3
    [Google Scholar]
  29. ZhangG. SunJ. Lipid in chips: A brief review of liposomes formation by microfluidics.Int. J. Nanomedicine2021167391741610.2147/IJN.S331639 34764647
    [Google Scholar]
  30. AndraV.V.S.N.L. PammiS.V.N. BhatrajuL.V.K.P. RuddarajuL.K. A comprehensive review on novel liposomal methodologies, commercial formulations, clinical trials and patents.Bionanoscience202212127429110.1007/s12668‑022‑00941‑x 35096502
    [Google Scholar]
  31. ThébaultC.J. RamniceanuG. BoumatiS. MichelA. SeguinJ. LarratB. MignetN. MénagerC. DoanB.T. Theranostic MRI liposomes for magnetic targeting and ultrasound triggered release of the antivascular CA4P.J. Control. Release2020322February13714810.1016/j.jconrel.2020.03.003 32145266
    [Google Scholar]
  32. ZiyuW. WangL. ZhangD. LiY.T. ZhangJ. A study on the preparation and characterization of plasmid DNA and drug-containing magnetic nanoliposomes for the treatment of tumors.Int. J. Nanomedicine2011687187510.2147/IJN.S16485 21720500
    [Google Scholar]
  33. LizoňováD. FreiS. BalouchM. ZadražilA. ŠtěpánekF. Multilobed magnetic liposomes enable remotely controlled collection, transport, and delivery of membrane-soluble cargos to vesicles and cells.ACS Appl. Bio Mater.2021464833484010.1021/acsabm.1c00106 35007032
    [Google Scholar]
  34. KomissarovaL.K. MarnautovN.A. TatikolovA.S. GoloshchapovA.N. KuznetsovA.A. KuznetsovO.A. The development of the optimal method of obtaining magnetic liposomes carrying rubomycin. AIP Conf. Proc.20192063January04002810.1063/1.5087360
    [Google Scholar]
  35. CurcioA. PerezJ.E. PrévéralS. FromainA. GenevoisC. MichelA. Van de WalleA. LalatonneY. FaivreD. MénagerC. WilhelmC. The role of tumor model in magnetic targeting of magnetosomes and ultramagnetic liposomes.Sci. Rep.2023131227810.1038/s41598‑023‑28914‑4 36755030
    [Google Scholar]
  36. GharibA. FaezizadehZ. Mesbah-NaminS.A.R. SaravaniR. Preparation, characterization and in vitro efficacy of magnetic nanoliposomes containing the artemisinin and transferrin.Daru20142214410.1186/2008‑2231‑22‑44 24887240
    [Google Scholar]
  37. TheodosiouM. SakellisE. BoukosN. KusigerskiV. Kalska-SzostkoB. EfthimiadouE. Iron oxide nanoflowers encapsulated in thermosensitive fluorescent liposomes for hyperthermia treatment of lung adenocarcinoma.Sci. Rep.2022121869710.1038/s41598‑022‑12687‑3 35610309
    [Google Scholar]
  38. JoniecA. SekS. KrysinskiP. Magnetoliposomes as potential carriers of doxorubicin to tumours.Chemistry20162249177151772410.1002/chem.201602809 27786376
    [Google Scholar]
  39. T SA. LuY.J. ChenJ.P. Optimization of the preparation of magnetic liposomes for the combined use of magnetic hyperthermia and photothermia in dual magneto-photothermal cancer therapy.Int. J. Mol. Sci.20202115518710.3390/ijms21155187 32707876
    [Google Scholar]
  40. ZharkovM.N. GerasimovM.V. TrushinaD.B. KhmeleninD.N. GromovaE.V. YakobsonD.E. PyataevM.A. Two types of magnetite-containing liposomes for magnetocontrolled drug release.J. Phys. Conf. Ser.20191389101207010.1088/1742‑6596/1389/1/012070
    [Google Scholar]
  41. CondeA.J. BatallaM. CerdaB. MykhaylykO. PlankC. PodhajcerO. CabaleiroJ.M. MadridR.E. PolicastroL. Continuous flow generation of magnetoliposomes in a low-cost portable microfluidic platform.Lab Chip201414234506451210.1039/C4LC00839A 25257193
    [Google Scholar]
  42. ZhaoM. ChangJ. FuX. LiangC. LiangS. YanR. LiA. Nano-sized cationic polymeric magnetic liposomes significantly improves drug delivery to the brain in rats.J. Drug Target.201220541642110.3109/1061186X.2011.651726 22519867
    [Google Scholar]
  43. Shirmardi ShaghasemiB. VirkM.M. ReimhultE. Optimization of magneto-thermally controlled release kinetics by tuning of magnetoliposome composition and structure.Sci. Rep.201771747410.1038/s41598‑017‑06980‑9 28784989
    [Google Scholar]
  44. LiuY. QuanX. LiJ. HuoJ. LiX. ZhaoZ. LiS. WanJ. LiJ. LiuS. WangT. ZhangX. GuanB. WenR. ZhaoZ. WangC. BaiC. Liposomes embedded with PEGylated iron oxide nanoparticles enable ferroptosis and combination therapy in cancer.Natl. Sci. Rev.2023101nwac16710.1093/nsr/nwac167 36684514
    [Google Scholar]
  45. KorolevD.V. ShulmeysterG.A. IstominaM.S. NikiforovA.I. AleksandrovI.V. SemenovV.G. GalagudzaM.M. Indocyanine green-containing magnetic liposomes for constant magnetic field-guided targeted delivery and theranostics.Magnetochemistry202281012710.3390/magnetochemistry8100127
    [Google Scholar]
  46. KiwadaH. SatoJ. YamadaS. KatoY. Feasibility of magnetic liposomes as a targeting device for drugs.Chem. Pharm. Bull.198634104253425810.1248/cpb.34.4253 3829157
    [Google Scholar]
  47. RodriguesA.R.O. GomesI.T. AlmeidaB.G. AraújoJ.P. CastanheiraE.M.S. CoutinhoP.J.G. Magnetic liposomes based on nickel ferrite nanoparticles for biomedical applications.Phys. Chem. Phys.20151727180111802110.1039/C5CP01894C 26095537
    [Google Scholar]
  48. LuoY. YangW. AbuduainiA. AisaH.A. Preparation of magnetic nanoliposomes of sesquiterpene‐rich fraction from Cichorium glandulosum and its tissue distribution in mice.Evid. Based Complement. Alternat. Med.201820181854951910.1155/2018/8549519 30420898
    [Google Scholar]
  49. RodriguesA.R.O. SantosL.C.A. MacedoD.O. RioI.S.R. PiresA. PereiraA.M. ArújoJ.P. CastanheiraE.M.S. CoutinhoP.J.G. Plasmonic/magnetic liposomes based on nanoparticles with multicore-shell architecture for chemo/thermotherapy.J. Phys. Conf. Ser.20222407101205110.1088/1742‑6596/2407/1/012051
    [Google Scholar]
  50. García-JimenoS. EstelrichJ. Callejas-FernándezJ. Roldán-VargasS. Reversible and irreversible aggregation of magnetic liposomes.Nanoscale2017939151311514310.1039/C7NR05301K 28972615
    [Google Scholar]
  51. GharibA. FaezizadehZ. Mesbah-NaminS.A. SaravaniR. Experimental treatment of breast cancer-bearing BALB/c mice by artemisinin and transferrin-loaded magnetic nanoliposomes.Pharmacogn. Mag.2015114211710.4103/0973‑1296.157710 26109756
    [Google Scholar]
  52. HeY. ZhangL. SongC. ZhuD. Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy.Int. J. Nanomedicine2014914055406610.2147/IJN.S61880 25187709
    [Google Scholar]
  53. ZhuZ. WangL. JiaY. DuanS. LiS. JiangL. LinX. YanF. HouC. HuC. DiB. Magnetic liposomes infused with GPCR-expressing cell membrane for targeted extraction using minimum organic solvent: An investigative study of trace THC in sewage.Anal. Chem.20239534126131262210.1021/acs.analchem.2c05397 37583350
    [Google Scholar]
  54. AmstadE. KohlbrecherJ. MüllerE. SchweizerT. TextorM. ReimhultE. Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes.Nano Lett.20111141664167010.1021/nl2001499 21351741
    [Google Scholar]
  55. VlasovaK.Y. PiroyanA. Le-DeygenI.M. VishwasraoH.M. RamseyJ.D. KlyachkoN.L. GolovinY.I. RudakovskayaP.G. KireevI.I. KabanovA.V. Sokolsky-PapkovM. Magnetic liposome design for drug release systems responsive to super-low frequency alternating current magnetic field (AC MF).J. Colloid Interface Sci.201955268970010.1016/j.jcis.2019.05.071 31176052
    [Google Scholar]
  56. ZhuH. HeY. HuangS. TianJ. WangL. HaoJ. XieB. LingJ. Chlorin e6-loaded sonosensitive magnetic nanoliposomes conjugated with the magnetic field for enhancing anti-tumor effect of sonodynamic therapy.Pharm. Dev. Technol.202025101249125910.1080/10837450.2020.1810274 32811263
    [Google Scholar]
  57. ZhaoZ. ZhaoY. ChenC. XieC. GLUT1-mediated magnetic liposomes for targeting bone metastatic breast cancer.Eur. J. Gynaecol. Oncol.2023449810510.22514/ejgo.2023.012
    [Google Scholar]
  58. CardelliniJ. SurpiA. MuzziB. PaccianiV. InnocentiC. SangregorioC. DediuV.A. MontisC. BertiD. Magnetic–plasmonic nanoscale liposomes with tunable optical and magnetic properties for combined multimodal imaging and drug delivery.ACS Appl. Nano Mater.2024743668367810.1021/acsanm.3c05100
    [Google Scholar]
  59. ShenS. HuangD. CaoJ. ChenY. ZhangX. GuoS. MaW. QiX. GeY. WuL. Magnetic liposomes for light-sensitive drug delivery and combined photothermal–chemotherapy of tumors.J. Mater. Chem. B Mater. Biol. Med.2019771096110610.1039/C8TB02684J 32254777
    [Google Scholar]
  60. ZhuY. YangD. GuoT. LinM. Use of S2.2/DOX magnetic nanoliposomes in MR molecule imaging and targeted thermochemotherapy for breast cancer in vitro.Technol. Cancer Res. Treat.2023221533033823119449810.1177/15330338231194498 37563954
    [Google Scholar]
  61. NakayamaY. MustapićM. EbrahimianH. WagnerP. KimJ.H. HossainM.S.A. HorvatJ. MartinacB. Magnetic nanoparticles for “smart liposomes”.Eur. Biophys. J.201544864765410.1007/s00249‑015‑1059‑0 26184724
    [Google Scholar]
  62. AriasF.J. De Las HerasS. Magnetorheological liposomes. An alternative approach for drug delivery driven by mutual magnetic dipole–dipole interaction.J. Magn Mater.2022564P217015210.1016/j.jmmm.2022.170152
    [Google Scholar]
  63. BéalleG. Di CoratoR. Kolosnjaj-TabiJ. DupuisV. ClémentO. GazeauF. WilhelmC. MénagerC. Ultra magnetic liposomes for MR imaging, targeting, and hyperthermia.Langmuir20122832118341184210.1021/la3024716 22799267
    [Google Scholar]
  64. CifuentesJ. Cifuentes-AlmanzaS. Ruiz PuentesP. QuezadaV. González BarriosA.F. Calderón-PeláezM.A. Velandia-RomeroM.L. RafatM. Muñoz-CamargoC. AlbarracínS.L. CruzJ.C. Multifunctional magnetoliposomes as drug delivery vehicles for the potential treatment of Parkinson’s disease.Front. Bioeng. Biotechnol.202311May118184210.3389/fbioe.2023.1181842 37214285
    [Google Scholar]
  65. DaiM. WuC. FangH.M. LiL. YanJ.B. ZengD.L. ZouT. Thermo-responsive magnetic liposomes for hyperthermia-triggered local drug delivery.J. Microencapsul.201734440841510.1080/02652048.2017.1339738 28590788
    [Google Scholar]
  66. GogoiM. JaiswalM.K. SarmaH.D. BahadurD. BanerjeeR. Biocompatibility and therapeutic evaluation of magnetic liposomes designed for self-controlled cancer hyperthermia and chemotherapy.Integr. Biol.20179655556510.1039/C6IB00234J 28513646
    [Google Scholar]
  67. JinZ. ChoS. KoS.Y. ParkJ.O. ParkS. Controlled drug releasing of doxorubicin loaded magnetic nanoliposome using nir irradiation.201613th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)Xi'an, China19-22 August 201610.1109/URAI.2016.7734085
    [Google Scholar]
  68. KuboT. SugitaT. ShimoseS. NittaY. IkutaY. MurakamiT. Targeted delivery of anticancer drugs with intravenously administered magnetic liposomes in osteosarcoma-bearing hamsters.Int. J. Oncol.200017230931510.3892/ijo.17.2.309 10891540
    [Google Scholar]
  69. KuboT. SugitaT. ShimoseS. NittaY. IkutaY. MurakamiT. Targeted systemic chemotherapy using magnetic liposomes with incorporated adriamycin for osteosarcoma in hamsters.Int. J. Oncol.200118112112510.3892/ijo.18.1.121 11115548
    [Google Scholar]
  70. KuznetsovA.A. FilippovV.I. AlyautdinR.N. TorshinaN.L. KuznetsovO.A. Application of magnetic liposomes for magnetically guided transport of muscle relaxants and anti-cancer photodynamic drugs.J. Magn. Mater.20012251-29510010.1016/S0304‑8853(00)01235‑X
    [Google Scholar]
  71. KonoY. Preparation of magnetized mesenchymal stem cells using magnetic liposomes to enhance their retention in targeted tissue —evaluation of retention and anti-inflammatory efficiency in skeletal muscle—.Yakugaku Zasshi2022142111145115110.1248/yakushi.22‑00132 36328443
    [Google Scholar]
  72. PetrichenkoO. ĒrglisK. CēbersA. PlotnieceA. PajusteK. BéalleG. MénagerC. DuboisE. PerzynskiR. Bilayer properties of giant magnetic liposomes formed by cationic pyridine amphiphile and probed by active deformation under magnetic forces.Eur. Phys. J. E2013361910.1140/epje/i2013‑13009‑0 23359032
    [Google Scholar]
  73. KuaiJ.H. WangQ. ZhangA.J. ZhangJ.Y. ChenZ.F. WuK.K. HuX.Z. Epidermal growth factor receptor-targeted immune magnetic liposomes capture circulating colorectal tumor cells efficiently.World J. Gastroenterol.201824335135910.3748/wjg.v24.i3.351 29391757
    [Google Scholar]
  74. LiuY. YangF. YuanC. LiM. WangT. ChenB. JinJ. ZhaoP. TongJ. LuoS. GuN. Magnetic nanoliposomes as in situ microbubble bombers for multimodality image-guided cancer theranostics.ACS Nano20171121509151910.1021/acsnano.6b06815 28045496
    [Google Scholar]
  75. LiuY. LiJ. ChenH. CaiY. ShengT. WangP. LiZ. YangF. GuN. Magnet-activatable nanoliposomes as intracellular bubble microreactors to enhance drug delivery efficacy and burst cancer cells.Nanoscale20191140188541886510.1039/C9NR07021D 31596307
    [Google Scholar]
  76. LuY.J. ChuangE.Y. ChengY.H. AnilkumarT.S. ChenH.A. ChenJ.P. Thermosensitive magnetic liposomes for alternating magnetic field-inducible drug delivery in dual targeted brain tumor chemotherapy.Chem. Eng. J.201937337372073310.1016/j.cej.2019.05.055
    [Google Scholar]
  77. Nuñez-MagosL. Lira-EscobedoJ. Rodríguez-LópezR. Muñoz-NaviaM. Castillo-RiveraF. Viveros-MéndezP.X. AraujoE. EncinasA. Saucedo-AnayaS.A. Aranda-EspinozaS. Effects of DC magnetic fields on magnetoliposomes.Front. Mol. Biosci.20218September70341710.3389/fmolb.2021.703417 34589517
    [Google Scholar]
  78. Pakdaman GoliP. Bikhof TorbatiM. ParivarK. Akbarzadeh KhiaviA. YousefiM. LiuY. YangF. YuanC. LiM. WangT. ChenB. JinJ. ZhaoP. TongJ. LuoS. GuN. ZizzariA. CarboneL. CesariaM. BiancoM. PerroneE. RendinaF. ArimaV. Continuous flow scalable production of injectable size-monodisperse nanoliposomes in easy-fabrication milli-fluidic reactors.Process Biochem.2021110April11648110.1016/j.procbio.2021.08.007
    [Google Scholar]
  79. PengZ. WangC. FangE. LuX. WangG. TongQ. Co-delivery of doxorubicin and SATB1 shRNA by thermosensitive magnetic cationic liposomes for gastric cancer therapy.PLoS One2014939292410.1371/journal.pone.0092924 24675979
    [Google Scholar]
  80. RivièreC. MartinaM.S. TomitaY. WilhelmC. Tran DinhA. MénagerC. PinardE. LesieurS. GazeauF. SeylazJ. Magnetic targeting of nanometric magnetic fluid loaded liposomes to specific brain intravascular areas: A dynamic imaging study in mice.Radiology2007244243944810.1148/radiol.2442060912 17562813
    [Google Scholar]
  81. RogozhnikovD. BabenyshevA.V. KovalevaA.Y. YakovtsevaM.N. LuninA.V. LyfanovD.A. NikitinM.P. Synthesis of fluorescent and magnetic liposomes and their application for optical detection of migrating cancer cells.2020International Conference Laser Optics (ICLO)November 202010.1109/ICLO48556.2020.9285456
    [Google Scholar]
  82. HardiansyahA. HuangL.Y. YangM.C. LiuT.Y. TsaiS.C. YangC.Y. KuoC.Y. ChanT.Y. ZouH.M. LianW.N. LinC.H. Magnetic liposomes for colorectal cancer cells therapy by high-frequency magnetic field treatment.Nanoscale Res. Lett.20149149710.1186/1556‑276X‑9‑497 25246875
    [Google Scholar]
  83. HakkeV. SonawaneS. AnandanS. SonawaneS. AshokkumarM. Process intensification approach using microreactors for synthesizing nanomaterials—a critical review.Nanomaterials20211119810.3390/nano11010098 33406661
    [Google Scholar]
  84. ArduinoI. Di FonteR. SommonteF. LopedotaA. PorcelliL. LiJ. SerratiS. BártoloR. SantosH.A. IacobazziR.M. AzzaritiA. DenoraN. Fabrication of biomimetic hybrid liposomes via microfluidic technology: Homotypic targeting and antitumor efficacy studies in glioma cells.Int. J. Nanomedicine202419December132171323310.2147/IJN.S489872 39679250
    [Google Scholar]
  85. KuribayashiK. TressetG. CoquetP. FujitaH. TakeuchiS. Electroformation of giant liposomes in microfluidic channels.Meas. Sci. Technol.200617123121312610.1088/0957‑0233/17/12/S01
    [Google Scholar]
  86. Pourabdollah Vardi̇nA. YesilozG. Nanoscale liposome synthesis for drug delivery applications via ultrafast acoustofluidic micromixing.Hittite J. Sci. Eng.202310323724110.17350/HJSE19030000312
    [Google Scholar]
  87. ArangurenA. TorresC.E. Muñoz-CamargoC. OsmaJ.F. CruzJ.C. Synthesis of nanoscale liposomes via low-cost microfluidic systems.Micromachines20201112105010.3390/mi11121050 33260732
    [Google Scholar]
  88. LvS. JingR. LiuX. ShiH. ShiY. WangX. ZhaoX. CaoK. LvZ. One-step microfluidic fabrication of multi-responsive liposomes for targeted delivery of doxorubicin synergism with photothermal effect.Int. J. Nanomedicine2021167759777210.2147/IJN.S329621 34848958
    [Google Scholar]
  89. PittiuA. PannuzzoM. CasulaL. PiredduR. ValentiD. CardiaM.C. LaiF. RosaA. SinicoC. SchlichM. Production of liposomes by microfluidics: The impact of post-manufacturing dilution on drug encapsulation and lipid loss.Int. J. Pharm.2024664August12464110.1016/j.ijpharm.2024.124641 39191334
    [Google Scholar]
  90. TorresC.E. CifuentesJ. GómezS.C. QuezadaV. GiraldoK.A. PuentesP.R. Rueda-GensiniL. SernaJ.A. Muñoz-CamargoC. ReyesL.H. OsmaJ.F. CruzJ.C. Microfluidic synthesis and purification of magnetoliposomes for potential applications in the gastrointestinal delivery of difficult-to-transport drugs.Pharmaceutics202214231510.3390/pharmaceutics14020315 35214047
    [Google Scholar]
  91. AkiyamaR. MurakamiY. InoueK. OritaY. ShimoyamaY. Fabrication of PEGylated liposome in microfluidic flow process using supercritical CO2.J. Nanopart. Res.2022241225710.1007/s11051‑022‑05635‑9
    [Google Scholar]
  92. HanJ.Y. La FiandraJ.N. DeVoeD.L. Microfluidic vortex focusing for high throughput synthesis of size-tunable liposomes.Nat. Commun.2022131699710.1038/s41467‑022‑34750‑3 36384946
    [Google Scholar]
  93. HoodR.R. DeVoeD.L. AndarA. SwaanP.W. OmiatekD.M. VreelandW.N. Microfluidic synthesis of PEGylated liposomes.Microsystems Meas Instrum.20121–41410.1109/MAMNA.2012.6195094
    [Google Scholar]
  94. RanR. MiddelbergA.P.J. ZhaoC.X. Microfluidic synthesis of multifunctional liposomes for tumour targeting.Colloids Surf. B Biointerfaces201614840241010.1016/j.colsurfb.2016.09.016 27639490
    [Google Scholar]
  95. ShanH. SunX. LiuX. SunQ. HeY. ChenZ. LinQ. JiangZ. ChenX. ChenZ. ZhaoS. One‐step formation of targeted liposomes in a versatile microfluidic mixing device.Small2023197220549810.1002/smll.202205498 36449632
    [Google Scholar]
  96. AgamM. PaulV. AbdelgawadM. HusseiniG. Targeted liposomes production in a microfluidic chip.IEEE International Conference on Nano/Molecular Medicine and Engineering, NANOMED, IEEENovember 2021535610.1109/NANOMED54179.2021.9766644
    [Google Scholar]
  97. AghaeiH. Solaimany NazarA.R. Continuous production of the nanoscale liposome in a double flow-focusing microfluidic device.Ind. Eng. Chem. Res.20195851230322304510.1021/acs.iecr.9b04079
    [Google Scholar]
  98. ForbesN. HussainM.T. BriugliaM.L. EdwardsD.P. HorstJ.H. SzitaN. PerrieY. Rapid and scale-independent microfluidic manufacture of liposomes entrapping protein incorporating in-line purification and at-line size monitoring.Int. J. Pharm.2019556556688110.1016/j.ijpharm.2018.11.060 30503269
    [Google Scholar]
  99. Di FrancescoV. BosoD.P. MooreT.L. SchreflerB.A. DecuzziP. Machine learning instructed microfluidic synthesis of curcumin-loaded liposomes.Biomed. Microdevices20232532910.1007/s10544‑023‑00671‑1 37542568
    [Google Scholar]
  100. DimovN. KastnerE. HussainM. PerrieY. SzitaN. Formation and purification of tailored liposomes for drug delivery using a module-based micro continuous-flow system.Sci. Rep.2017711204510.1038/s41598‑017‑11533‑1 28935923
    [Google Scholar]
  101. JoshiS. HussainM.T. RocesC.B. AnderluzziG. KastnerE. SalmasoS. KirbyD.J. PerrieY. Microfluidics based manufacture of liposomes simultaneously entrapping hydrophilic and lipophilic drugs.Int. J. Pharm.2016514116016810.1016/j.ijpharm.2016.09.027 27863660
    [Google Scholar]
  102. YanarF. KimptonH. CristaldiD.A. MosayyebiA. CarugoD. ZhangX. Synthesis and characterization of liposomes encapsulating silver nanoprisms obtained by millifluidic-based production for drug delivery.Mater. Res. Express202310808500810.1088/2053‑1591/acf192
    [Google Scholar]
  103. BottaroE. NastruzziC. “Off-the-shelf” microfluidic devices for the production of liposomes for drug delivery.Mater. Sci. Eng. C201664293310.1016/j.msec.2016.03.056 27127025
    [Google Scholar]
  104. JahnA. LucasF. WepfR.A. DittrichP.S. Freezing continuous-flow self-assembly in a microfluidic device: Toward imaging of liposome formation.Langmuir20132951717172310.1021/la303675g 23289615
    [Google Scholar]
  105. JahnA. VreelandW.N. DeVoeD.L. LocascioL.E. GaitanM. Microfluidic directed formation of liposomes of controlled size.Langmuir200723116289629310.1021/la070051a 17451256
    [Google Scholar]
  106. CarugoD. BottaroE. OwenJ. StrideE. NastruzziC. Liposome production by microfluidics: Potential and limiting factors.Sci. Rep.2016612587610.1038/srep25876 27194474
    [Google Scholar]
  107. HoodR.R. DeVoeD.L. High‐throughput continuous flow production of nanoscale liposomes by microfluidic vertical flow focusing.Small201511435790579910.1002/smll.201501345 26395346
    [Google Scholar]
  108. CheungC.C.L. MaG. RuizA. Al-JamalW.T. Microfluidic production of lysolipid-containing temperature-sensitive liposomes.J. Vis. Exp.2020202015711110.3791/60907 32202528
    [Google Scholar]
  109. KastnerE. VermaV. LowryD. PerrieY. Microfluidic-controlled manufacture of liposomes for the solubilisation of a poorly water soluble drug.Int. J. Pharm.20154851-212213010.1016/j.ijpharm.2015.02.063 25725309
    [Google Scholar]
  110. CinquerruiS. MancusoF. VladisavljevićG.T. BakkerS.E. MalikD.J. Nanoencapsulation of bacteriophages in liposomes prepared using microfluidic hydrodynamic flow focusing.Front. Microbiol.20189SEP217210.3389/fmicb.2018.02172 30258426
    [Google Scholar]
  111. BallacchinoG. WeaverE. MathewE. DoratiR. GentaI. ContiB. LamprouD.A. Manufacturing of 3D-printed microfluidic devices for the synthesis of drug-loaded liposomal formulations.Int. J. Mol. Sci.20212215806410.3390/ijms22158064 34360832
    [Google Scholar]
  112. DeshpandeS. DekkerC. On-chip microfluidic production of cell-sized liposomes.Nat. Protoc.201813585687410.1038/nprot.2017.160 29599442
    [Google Scholar]
  113. RaoL. CaiB. BuL.L. LiaoQ.Q. GuoS.S. ZhaoX.Z. DongW.F. LiuW. Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy.ACS Nano20171143496350510.1021/acsnano.7b00133 28272874
    [Google Scholar]
  114. HabaultD. DeryA. LengJ. LecommandouxS. Le MeinsJ.F. SandreO. Droplet microfluidics to prepare magnetic polymer vesicles and to confine the heat in magnetic hyperthermia.IEEE Trans. Magn.201349118219010.1109/TMAG.2012.2221688
    [Google Scholar]
  115. Écija-ArenasÁ. Román-PizarroV. Fernández-RomeroJ.M. Luminescence continuous flow system for monitoring the efficiency of hybrid liposomes separation using multiphase density gradient centrifugation.Talanta202122212153212153210.1016/j.talanta.2020.121532 33167240
    [Google Scholar]
  116. DaviesR.T. KimD. ParkJ. Formation of liposomes using a 3D flow focusing microfluidic device with spatially patterned wettability by corona discharge.J. Micromech. Microeng.201222505500310.1088/0960‑1317/22/5/055003
    [Google Scholar]
  117. HoodR.R. DeVoeD.L. AtenciaJ. VreelandW.N. OmiatekD.M. A facile route to the synthesis of monodisperse nanoscale liposomes using 3D microfluidic hydrodynamic focusing in a concentric capillary array.Lab Chip201414142403240910.1039/C4LC00334A 24825622
    [Google Scholar]
  118. HuangX. CaddellR. YuB. XuS. TheobaldB. LeeL.J. LeeR.J. Ultrasound-enhanced microfluidic synthesis of liposomes.Anticancer Res.201030246346610.1158/0008‑5472.CAN‑09‑2501 20332455
    [Google Scholar]
  119. JiJ. KawanoR. Microfluidic generation of cell-sized liposomes using a budding strategy.ChemRxiv202410.26434/chemrxiv‑2024‑4gnff‑v2
    [Google Scholar]
  120. Matsuura-SawadaY. MaekiM. UnoS. WadaK. TokeshiM. Controlling lamellarity and physicochemical properties of liposomes prepared using a microfluidic device.Biomater. Sci.20231172419242610.1039/D2BM01703B 36752548
    [Google Scholar]
  121. OtaA. MochizukiA. SouK. TakeokaS. Evaluation of a static mixer as a new microfluidic method for liposome formulation.Front. Bioeng. Biotechnol.202311August122982910.3389/fbioe.2023.1229829 37675402
    [Google Scholar]
  122. MarońE. KrysińskiP. ChudyM. Perspective chapter: Magnetoliposomes - a recent development as recent advances in the field of controlled release drug delivery. In: Liposomes - Recent Advances, New Perspectives and Applications; IntechOpen: United Kingdom2022
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575408099250918013809
Loading
/content/journals/mrmc/10.2174/0113895575408099250918013809
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test