Skip to content
2000
image of Emblica officinalis Gaertn. Fruits, their Phytochemicals, and Composite Herbal Products as Adjuncts in Preventing Ionizing Radiation Effects: Possible Use in Clinics

Abstract

In the management of solid tumors, ionizing radiation is a critical therapeutic modality, particularly when surgical intervention is impractical due to patient-related factors, such as compromised health or elevated mortality risk. However, its non-selective action can cause serious side effects that negate the therapeutic benefits. Efforts have thus been made to identify pharmacological agents that can selectively protect normal tissues from exposure to ionizing radiation. Seven decades of study, however, have shown that the desired success has not been achieved in obtaining an ideal radioprotective agent. Moreover, even at optimal doses, the FDA-approved drug, amifostine (also known as WR-2721 [S-2- (3-aminopropyl-amino) ethyl phosphorothioic acid], exhibits significant toxicity. An ideal radioprotective agent can also be beneficial in environments where individuals are exposed to prolonged, low-dose radiation. Considering this, there is a pressing need to develop methods of shielding cells and patients from the deleterious effects of radiation, and a non-toxic radioprotective drug can be useful in both clinical and occupational contexts. Studies have shown that the fruits of its cardinal phytochemicals, such as gallic acid, ellagic acid, quercetin, geraniin, corilagin, and kaempferol, have been demonstrated to mitigate radiation-induced side effects. Research has also demonstrated that fruits can reduce the severity of radiation-induced mucositis in head and neck cancer patients undergoing curative treatment. Currently, there are no clinically effective non-toxic medications that are beneficial in mitigating radiation-induced ill effects. In lieu of this, for the first time, this review compiles the positive effects of fruits, phytochemicals, and their byproducts, chyawanprash and triphala, on radiation-induced damage, the mechanisms by which these effects occur, and the gaps that must be filled in order for future research to help people and the agricultural and nutraceutical industries.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575362233250429114954
2025-07-17
2025-10-18
Loading full text...

Full text loading...

References

  1. Kudva A.K. Raghu S.V. Rao S. Venkatesh P. Hegde S.K. D’Souza R.K. Indian indigenous fruits as radioprotective agents: Past, present and future. Anticancer. Agents Med. Chem. 2021 22 1 53 63 10.2174/1871520621666210706124315 34229590
    [Google Scholar]
  2. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  3. Baskar R. Lee K.A. Yeo R. Yeoh K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci. 2012 9 3 193 199 10.7150/ijms.3635 22408567
    [Google Scholar]
  4. Sia J. Szmyd R. Hau E. Gee H.E. Molecular mechanisms of radiation-induced cancer cell death: A primer. Front. Cell Dev. Biol. 2020 8 41 10.3389/fcell.2020.00041 32117972
    [Google Scholar]
  5. Baliga M. Rao S. Radioprotective potential of mint: A brief review. J. Cancer Res. Ther. 2010 6 3 255 262 10.4103/0973‑1482.73336 21119249
    [Google Scholar]
  6. Baliga M. Rao S. Rai M. D’souza P. Radio protective effects of the Ayurvedic medicinal plant Ocimum sanctum Linn. (Holy Basil): A memoir. J. Cancer Res. Ther. 2016 12 1 20 27 10.4103/0973‑1482.151422 27072205
    [Google Scholar]
  7. Baliga M.S. Bhat H.P. Pereira M.M. Mathias N. Venkatesh P. Radioprotective effects of Aegle marmelos (L.) Correa (Bael): A concise review. J. Altern. Complement. Med. 2010 16 10 1109 1116 10.1089/acm.2009.0604 20932194
    [Google Scholar]
  8. Baliga M.S. Haniadka R. Pereira M.M. Thilakchand K.R. Rao S. Arora R. Radioprotective effects of Zingiber officinale Roscoe (Ginger): Past, present and future. Food Funct. 2012 3 7 714 723 10.1039/c2fo10225k 22596078
    [Google Scholar]
  9. Fischer N. Seo E.J. Efferth T. Prevention from radiation damage by natural products. Phytomedicine 2018 47 192 200 10.1016/j.phymed.2017.11.005 30166104
    [Google Scholar]
  10. Baliga M.S. Dsouza J.J. Amla (Emblica officinalis Gaertn), a wonder berry in the treatment and prevention of cancer. Eur. J. Cancer Prev. 2011 20 3 225 239 10.1097/CEJ.0b013e32834473f4 21317655
    [Google Scholar]
  11. Variya B.C. Bakrania A.K. Patel S.S. Emblica officinalis (Amla): A review for its phytochemistry, ethnomedicinal uses and medicinal potentials with respect to molecular mechanisms. Pharmacol. Res. 2016 111 180 200 10.1016/j.phrs.2016.06.013 27320046
    [Google Scholar]
  12. Avinash P.G. Hamid Shams R. Dash K.K. Shaikh A.M. Ungai D. Harsányi E. Suthar T. Kovács B. Recent insights into the morphological, nutritional and phytochemical properties of indian gooseberry (Phyllanthus emblica) for the development of functional foods. Plants 2024 13 5 574 10.3390/plants13050574 38475421
    [Google Scholar]
  13. Prananda A.T. Dalimunthe A. Harahap U. Simanjuntak Y. Peronika E. Karosekali N.E. Hasibuan P.A.Z. Syahputra R.A. Situmorang P.C. Nurkolis F. Phyllanthus emblica: A comprehensive review of its phytochemical composition and pharmacological properties. Front. Pharmacol. 2023 14 1288618 10.3389/fphar.2023.1288618 37954853
    [Google Scholar]
  14. Gantait S. Mahanta M. Bera S. Verma S.K. Advances in biotechnology of Emblica officinalis Gaertn. syn. Phyllanthus emblica L.: A nutraceuticals-rich fruit tree with multifaceted ethnomedicinal uses. 3 Biotech 2021 11 2 62 10.1007/s13205‑020‑02615‑5 33489680
    [Google Scholar]
  15. Saini R. Sharma N. Oladeji O.S. Sourirajan A. Dev K. Zengin G. El-Shazly M. Kumar V. Traditional uses, bioactive composition, pharmacology, and toxicology of Phyllanthus emblica fruits: A comprehensive review. J. Ethnopharmacol. 2022 282 114570 10.1016/j.jep.2021.114570 34480995
    [Google Scholar]
  16. Yadav S.S. Singh M.K. Singh P.K. Kumar V. Traditional knowledge to clinical trials: A review on therapeutic actions of Emblica officinalis. Biomed. Pharmacother. 2017 93 1292 1302 10.1016/j.biopha.2017.07.065 28747010
    [Google Scholar]
  17. Ma Q.G. Wang L. Liu R.H. Yuan J.B. Xiao H. Shen Z.Y. Li J.X. Guo J.Z. Cao L. Huang H.L. Wei R.R. Phyllanthus emblica Linn: A comprehensive review of botany, traditional uses, phytonutrients, health benefits, quality markers, and applications. Food Chem. 2024 446 138891 10.1016/j.foodchem.2024.138891 38432135
    [Google Scholar]
  18. Kumar G. Madka V. Pathuri G. Ganta V. Rao C.V. Molecular mechanisms of cancer prevention by gooseberry (Phyllanthus emblica). Nutr. Cancer 2021 74 7 2291 2302 10.1080/01635581.2021.2008988 34839775
    [Google Scholar]
  19. Gul M. Liu Z.W. Iahtisham-Ul-Haq Rabail R. Faheem F. Walayat N. Nawaz A. Shabbir M.A. Munekata P.E.S. Lorenzo J.M. Aadil R.M. Functional and nutraceutical significance of amla (Phyllanthus emblica L.): A review. Antioxidants 2022 11 5 816 10.3390/antiox11050816 35624683
    [Google Scholar]
  20. Ngamkitidechakul C. Jaijoy K. Hansakul P. Soonthornchareonnon N. Sireeratawong S. Antitumour effects of phyllanthus emblica L.: Induction of cancer cell apoptosis and Inhibition of in vivo tumour promotion and in vitro invasion of human cancer cells. Phytother. Res. 2010 24 9 1405 1413 10.1002/ptr.3127 20812284
    [Google Scholar]
  21. Sancheti G. Jindal A. Kumari R. Goyal P.K. Chemopreventive action of emblica officinalis on skin carcinogenesis in mice. Asian Pac. J. Cancer Prev. 2005 6 2 197 201 16101333
    [Google Scholar]
  22. Sultana S. Ahmed S. Jahangir T. Emblica officinalis and hepatocarcinogenesis: A chemopreventive study in Wistar rats. J. Ethnopharmacol. 2008 118 1 1 6 10.1016/j.jep.2007.04.021 18467048
    [Google Scholar]
  23. Sultana S. Ahmed S. Sharma S. Jahangir T. Emblica officinalis reverses thioacetamide-induced oxidative stress and early promotional events of primary hepatocarcinogenesis. J. Pharm. Pharmacol. 2004 56 12 1573 1579 10.1211/0022357044931 15586980
    [Google Scholar]
  24. Wang C. Yuan J. Wang C. Yang N. Chen J. Liu D. Song J. Feng L. Tan X. Jia X. Anti-inflammatory effects of Phyllanthus emblica L on benzopyrene-induced precancerous lung lesion by regulating the IL-1β/miR-101/Lin28B signaling pathway. Integr. Cancer Ther. 2017 16 4 505 515 10.1177/1534735416659358 27562754
    [Google Scholar]
  25. Krishnaveni M. Mirunalini S. Chemopreventive efficacy of Phyllanthus emblica L. (amla) fruit extract on 7,12-dimethylbenz(a)anthracene induced oral carcinogenesis – A dose–response study. Environ. Toxicol. Pharmacol. 2012 34 3 801 810 10.1016/j.etap.2012.09.006 23058484
    [Google Scholar]
  26. Jenkinson P. Critical review of the publications on the genotoxicology of aluminium salts: 1990–2018. Mutagenesis 2021 36 2 109 127 10.1093/mutage/geab008 33609359
    [Google Scholar]
  27. Das B. Rahman M.M. Nayak B. Pal A. Chowdhury U.K. Mukherjee S.C. Saha K.C. Pati S. Quamruzzaman Q. Chakraborti D. Groundwater arsenic contamination, its health effects and approach for mitigation in West Bengal, India and Bangladesh. Water Qual. Expo. Health 2009 1 1 5 21 10.1007/s12403‑008‑0002‑3
    [Google Scholar]
  28. Ghosh A. Sharma A. Talukder G. Relative protection given by extract of Phyllanthus emblica fruit and an equivalent amount of vitamin C against a known clastogen-caesium chloride. Food Chem. Toxicol. 1992 30 10 865 869 10.1016/0278‑6915(92)90052‑m 1427509
    [Google Scholar]
  29. Dhir B. Sharmila P. Pardha Saradhi P. Nasim S.A. Physiological and antioxidant responses of Salvinia natans exposed to chromium-rich wastewater. Ecotoxicol. Environ. Saf. 2009 72 6 1790 1797 10.1016/j.ecoenv.2009.03.015 19409614
    [Google Scholar]
  30. Geetha S. Sai Ram M. Mongia S.S. Singh V. Ilavazhagan G. Sawhney R.C. Evaluation of antioxidant activity of leaf extract of Seabuckthorn (Hippophae rhamnoides L.) on chromium(VI) induced oxidative stress in albino rats. J. Ethnopharmacol. 2003 87 2-3 247 251 10.1016/S0378‑8741(03)00154‑5 12860317
    [Google Scholar]
  31. Nandi P. Talukder G. Sharma A. Dietary chemoprevention of clastogenic effects of 3,4-benzo(a)pyrene by Emblica officinalis Gaertn. fruit extract. Br. J. Cancer 1997 76 10 1279 1283 10.1038/bjc.1997.548 9374371
    [Google Scholar]
  32. Frenkel K. Wei L. Wei H. 7,12-dimethylbenz[a]anthracene induces oxidative DNA modification in vivo. Free Radic. Biol. Med. 1995 19 3 373 380 10.1016/0891‑5849(95)00046‑Z 7557552
    [Google Scholar]
  33. Haque R. Bin-Hafeez B. Ahmad I. Parvez S. Pandey S. Raisuddin S. Protective effects of Emblica officinalis Gaertn. in cyclophosphamide-treated mice. Hum. Exp. Toxicol. 2001 20 12 643 650 10.1191/096032701718890568 11936579
    [Google Scholar]
  34. Singh I. Soyal D. Goyal P.K. Emblica officinalis (Linn.) fruit extract provides protection against radiation-induced hematological and biochemical alterations in mice. J. Environ. Pathol. Toxicol. Oncol. 2006 25 4 643 654 10.1615/JEnvironPatholToxicolOncol.v25.i4.40 17341205
    [Google Scholar]
  35. López M. Martín M. Medical management of the acute radiation syndrome. Rep. Pract. Oncol. Radiother. 2011 16 4 138 146 10.1016/j.rpor.2011.05.001 24376971
    [Google Scholar]
  36. Coeytaux K. Bey E. Christensen D. Glassman E.S. Murdock B. Doucet C. Reported radiation overexposure accidents worldwide, 1980-2013: A systematic review. PLoS One 2015 10 3 e0118709 10.1371/journal.pone.0118709 25789482
    [Google Scholar]
  37. Jindal A. Soyal D. Sharma A. Goyal P.K. Protective effect of an extract of Emblica officinalis against radiation-induced damage in mice. Integr. Cancer Ther. 2009 8 1 98 105 10.1177/1534735409331455 19223372
    [Google Scholar]
  38. Monroy R.L. Radiation effects on the lymphohematopoietic system: A compromise in immune competency. United States Academic Press Inc 1987
    [Google Scholar]
  39. Hari Kumar K.B. Sabu M.C. Lima P.S. Kuttan R. Modulation of haematopoetic system and antioxidant enzymes by Emblica officinalis Gaertn and its protective role against gamma-radiation induced damages in mice. J. Radiat. Res. 2004 45 4 549 555 10.1269/jrr.45.549 15635265
    [Google Scholar]
  40. Villa A. Sonis S.T. An update on pharmacotherapies in active development for the management of cancer regimen-associated oral mucositis. Expert Opin. Pharmacother. 2020 21 5 541 548 10.1080/14656566.2020.1718652 31990597
    [Google Scholar]
  41. Sonis S.T. A hypothesis for the pathogenesis of radiation-induced oral mucositis: When biological challenges exceed physiologic protective mechanisms. Implications for pharmacological prevention and treatment. Support. Care Cancer 2021 29 9 4939 4947 10.1007/s00520‑021‑06108‑w 33712912
    [Google Scholar]
  42. Kumar P. Sequeira P.S. Shenoy K. Shetty J. The effect of three mouthwashes on radiation-induced oral mucositis in patients with head and neck malignancies: A randomized control trial. J. Cancer Res. Ther. 2008 4 1 4 18417901
    [Google Scholar]
  43. Hegde S.K. Rao S. Rao P. Raghu S.V. Meera S. Baliga M.S. Aqueous extract of Emblica officinalis Linn (Indian gooseberry) in combination with iodine is more efficacious than iodine alone in mitigating mucositis in head and neck cancer patients undergoing curative radiotherapy: Retrospective observations. Indian J. Otolaryngol. Head Neck Surg. 2022 74 Suppl. 3 6330 6338 10.1007/s12070‑021‑03059‑w 36742808
    [Google Scholar]
  44. Nair G.G. Nair C.K.K. Radioprotective effects of gallic acid in mice. BioMed Res. Int. 2013 2013 1 13 10.1155/2013/953079 24069607
    [Google Scholar]
  45. Kang K.A. Lee I.K. Zhang R. Piao M.J. Kim K.C. Kim S.Y. Shin T. Kim B.J. Lee N.H. Hyun J.W. Radioprotective effect of geraniin via the inhibition of apoptosis triggered by γ-radiation-induced oxidative stress. Cell Biol. Toxicol. 2011 27 2 83 94 10.1007/s10565‑010‑9172‑4 20680428
    [Google Scholar]
  46. Tong F. Zhang J. Liu L. Gao X. Cai Q. Wei C. Dong J. Hu Y. Wu G. Dong X. Corilagin attenuates radiation-induced brain injury in mice. Mol. Neurobiol. 2016 53 10 6982 6996 10.1007/s12035‑015‑9591‑6 26666668
    [Google Scholar]
  47. Wu N. Zu Y. Fu Y. Kong Y. Zhao J. Li X. Li J. Wink M. Efferth T. Antioxidant activities and xanthine oxidase inhibitory effects of extracts and main polyphenolic compounds obtained from Geranium sibiricum L. J. Agric. Food Chem. 2010 58 8 4737 4743 10.1021/jf904593n 20205393
    [Google Scholar]
  48. Londhe J.S. Devasagayam T.P.A. Foo L.Y. Shastry P. Ghaskadbi S.S. Geraniin and amariin, ellagitannins from Phyllanthus amarus, protect liver cells against ethanol induced cytotoxicity. Fitoterapia 2012 83 8 1562 1568 10.1016/j.fitote.2012.09.003 22982332
    [Google Scholar]
  49. Chung A.P.Y.S. Gurtu S. Chakravarthi S. Moorthy M. Palanisamy U.D. Geraniin protects high-fat diet-induced oxidative stress in sprague dawley rats. Front. Nutr. 2018 5 17 10.3389/fnut.2018.00017 29616223
    [Google Scholar]
  50. Jiang L. Liu Y. He P. Chen J. Liu S. Tan N. Geraniin ameliorates cisplatin-induced nephrotoxicity in mice. Free Radic. Res. 2016 50 8 813 819 10.3109/10715762.2016.1173206 27043748
    [Google Scholar]
  51. Wang D. Dong X. Wang B. Liu Y. Li S. Geraniin attenuates lipopolysaccharide-induced cognitive impairment in mice by inhibiting TLR4 activation. J. Agric. Food Chem. 2019 67 36 10079 10088 10.1021/acs.jafc.9b03977 31461286
    [Google Scholar]
  52. Guangfa Z. Xin X. Yan L. Yan H. Keng L. Chunting W. Geraniin attenuates LPS-induced acute lung injury via inhibiting NF-κB and activating Nrf2 signaling pathways. Oncotarget 2017 8 14 22835 22841 10.18632/oncotarget.15227 28423560
    [Google Scholar]
  53. Huang D. Yin L. Liu X. Lv B. Xie Z. Wang X. Yu B. Zhang Y. Geraniin protects bone marrow derived mesenchymal stem cells against hydrogen peroxide induced cellular oxidative stress in vitro. Int. J. Mol. Med. 2017 41 2 739 748 10.3892/ijmm.2017.3276 29207024
    [Google Scholar]
  54. Londhe J.S. Devasagayam T.P.A. Foo L.Y. Ghaskadbi S.S. Radioprotective properties of polyphenols from Phyllanthus amarus Linn. J. Radiat. Res. 2009 50 4 303 309 10.1269/jrr.08096 19461166
    [Google Scholar]
  55. Bing S. Ha D. Kim M. Eunjin P. Ahn G. Kim D. Geraniin down regulates gamma radiation-induced apoptosis by suppressing DNA damage. Food Chem. Toxicol. 2013 57 147 153 10.1016/j.fct.2013.03.022 23541438
    [Google Scholar]
  56. Salehi B. Machin L. Monzote L. Sharifi-Rad J. Ezzat S.M. Salem M.A. Merghany R.M. El Mahdy N.M. Kılıç C.S. Sytar O. Sharifi-Rad M. Sharopov F. Martins N. Martorell M. Cho W.C. Therapeutic potential of quercetin: New insights and perspectives for human health. ACS Omega 2020 5 20 11849 11872 10.1021/acsomega.0c01818 32478277
    [Google Scholar]
  57. Oršolić N. Benković V. Horvat-Knežević A. Kopjar N. Kosalec I. Bakmaz M. Mihaljević Ž. Bendelja K. Bašić I. Assessment by survival analysis of the radioprotective properties of propolis and its polyphenolic compounds. Biol. Pharm. Bull. 2007 30 5 946 951 10.1248/bpb.30.946 17473440
    [Google Scholar]
  58. Li Y. Wang Z. Jin J. Zhu S.X. He G.Q. Li S.H. Wang J. Cai Y. Quercetin pretreatment enhances the radiosensitivity of colon cancer cells by targeting Notch-1 pathway. Biochem. Biophys. Res. Commun. 2020 523 4 947 953 10.1016/j.bbrc.2020.01.048 31964531
    [Google Scholar]
  59. Lagerweij T. Hiddingh L. Biesmans D. Crommentuijn M.H.W. Cloos J. Li X.N. Kogiso M. Tannous B.A. Vandertop W.P. Noske D.P. Kaspers G.J.L. Würdinger T. Hulleman E. A chemical screen for medulloblastoma identifies quercetin as a putative radiosensitizer. Oncotarget 2016 7 24 35776 35788 10.18632/oncotarget.7980 26967057
    [Google Scholar]
  60. Chandra A. Lagnado A.B. Farr J.N. Monroe D.G. Park S. Hachfeld C. Tchkonia T. Kirkland J.L. Khosla S. Passos J.F. Pignolo R.J. Targeted reduction of senescent cell burden alleviates focal radiotherapy-related bone loss. J. Bone Miner. Res. 2020 35 6 1119 1131 10.1002/jbmr.3978 32023351
    [Google Scholar]
  61. Guven B. Can M. Piskin O. Aydin B.G. Karakaya K. Elmas O. Acikgoz B. Flavonoids protect colon against radiation induced colitis. Regul. Toxicol. Pharmacol. 2019 104 128 132 10.1016/j.yrtph.2019.03.006 30878575
    [Google Scholar]
  62. Chatterjee J. Langhnoja J. Pillai P.P. Mustak M.S. Neuroprotective effect of quercetin against radiation‐induced endoplasmic reticulum stress in neurons. J. Biochem. Mol. Toxicol. 2019 33 2 e22242 10.1002/jbt.22242 30368985
    [Google Scholar]
  63. Zbikowska H.M. Antosik A. Szejk M. Bijak M. Nowak P. A moderate protective effect of quercetin against γ-irradiation- and storage-induced oxidative damage in red blood cells for transfusion. Int. J. Radiat. Biol. 2014 90 12 1201 1210 10.3109/09553002.2013.877173 24369823
    [Google Scholar]
  64. Zbikowska H.M. Antosik A. Szejk M. Bijak M. Olejnik A.K. Saluk J. Nowak P. Does quercetin protect human red blood cell membranes against γ-irradiation? Redox Rep. 2014 19 2 65 71 10.1179/1351000213Y.0000000074 24257622
    [Google Scholar]
  65. Benković V. Knežević A. Đikić D. Lisičić D. Oršolić N. Bašić I. Kopjar N. Radioprotective effects of quercetin and ethanolic extract of propolis in gamma-irradiated mice. Arh. Hig. Rada Toksikol. 2009 60 2 129 138 10.2478/10004‑1254‑60‑2009‑1908 19581205
    [Google Scholar]
  66. Das D.K.R. Chakraborty A. Sinha M. Manna K. Mukherjee D. Chakraborty A. Bhattacharjee S. Dey S. Modulatory role of quercetin against gamma radiation-mediated biochemical and morphological alterations of red blood cells. Int. J. Radiat. Biol. 2013 89 6 471 481 10.3109/09553002.2013.767989 23363054
    [Google Scholar]
  67. Özyurt H. Çevik Ö. Özgen Z. Özden A.S. Çadırcı S. Elmas M.A. Ercan F. Gören M.Z. Şener G. Quercetin protects radiation-induced DNA damage and apoptosis in kidney and bladder tissues of rats. Free Radic. Res. 2014 48 10 1247 1255 10.3109/10715762.2014.945925 25039564
    [Google Scholar]
  68. Marina R. González P. Ferreras M.C. Costilla S. Barrio J.P. Hepatic Nrf2 expression is altered by quercetin supplementation in X-irradiated rats. Mol. Med. Rep. 2015 11 1 539 546 10.3892/mmr.2014.2741 25339115
    [Google Scholar]
  69. Richi B. Kale R.K. Tiku A.B. Radio-modulatory effects of Green Tea Catechin EGCG on pBR322 plasmid DNA and murine splenocytes against gamma-radiation induced damage. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2012 747 1 62 70 10.1016/j.mrgentox.2012.04.002 22521723
    [Google Scholar]
  70. Shimoi K. Masuda S. Furugori M. Esaki S. Kinae N. Radioprotective effect of antioxidative flavonoids in γ-ray irradiated mice. Carcinogenesis 1994 15 11 2669 2672 10.1093/carcin/15.11.2669 7955124
    [Google Scholar]
  71. Liu G.A. Zheng R.L. Protection against damaged DNA in the single cell by polyphenols. Pharmazie 2002 57 12 852 854 12561251
    [Google Scholar]
  72. Benković V. Kopjar N. Kneževic A.H. Đikić D. Bašić I. Ramić S. Viculin T. Knežević F. Orolić N. Evaluation of radioprotective effects of propolis and quercetin on human white blood cells in vitro. Biol. Pharm. Bull. 2008 31 9 1778 1785 10.1248/bpb.31.1778 18758076
    [Google Scholar]
  73. Devipriya N. Sudheer A.R. Srinivasan M. Menon V.P. Quercetin ameliorates gamma radiation-induced DNA damage and biochemical changes in human peripheral blood lymphocytes. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2008 654 1 1 7 10.1016/j.mrgentox.2008.03.003 18436471
    [Google Scholar]
  74. Patil S. Swaroop K. Kakde N. Somashekarappa H.M. In vitro protective effect of rutin and quercetin against radiation-induced genetic damage in human lymphocytes. Indian J. Nucl. Med. 2017 32 4 289 295 10.4103/ijnm.IJNM_30_17 29142345
    [Google Scholar]
  75. de Siqueira W.N. dos Santos F.T.J. de Souza T.F. de Vasconcelos Lima M. Silva H.A.M.F. de Oliveira P.S.S. da Rocha Pitta M.G. Bezerra M.B.C.F. de Salazar e Fernandes T. de França E.J. da Silva E.B. de Albuquerque Melo A.M.M. Study of the potential radiomitigator effect of quercetin on human lymphocytes. Inflammation 2019 42 1 124 134 10.1007/s10753‑018‑0878‑4 30173325
    [Google Scholar]
  76. Derosa G. Maffioli P. Sahebkar A. Ellagic acid and its role in chronic diseases. Adv. Exp. Med. Biol. 2016 928 473 479 10.1007/978‑3‑319‑41334‑1_20 27671829
    [Google Scholar]
  77. Ríos J.L. Giner R. Marín M. Recio M. A pharmacological update of ellagic acid. Planta Med. 2018 84 15 1068 1093 10.1055/a‑0633‑9492 29847844
    [Google Scholar]
  78. Thresiamma K.C. George J. Kuttan R. Protective effect of curcumin, ellagic acid and bixin on radiation induced genotoxicity. J. Exp. Clin. Cancer Res. 1998 17 4 431 434 10089063
    [Google Scholar]
  79. Salem A.M. Mohammaden T.F. Ali M.A.M. Mohamed E.A. Hasan H.F. Ellagic and ferulic acids alleviate gamma radiation and aluminium chloride-induced oxidative damage. Life Sci. 2016 160 2 11 10.1016/j.lfs.2016.07.006 27436544
    [Google Scholar]
  80. Bhosle S.M. Huilgol N.G. Mishra K.P. Enhancement of radiation-induced oxidative stress and cytotoxicity in tumor cells by ellagic acid. Clin. Chim. Acta 2005 359 1-2 89 100 10.1016/j.cccn.2005.03.037 15922998
    [Google Scholar]
  81. Bhosle S.M. Ahire V.R. Henry M.S. Thakur V.S. Huilgol N.G. Mishra K.P. Augmentation of radiation-induced apoptosis by ellagic acid. Cancer Invest. 2010 28 3 323 330 10.3109/07357900902849616 19863348
    [Google Scholar]
  82. Das U. Biswas S. Chattopadhyay S. Chakraborty A. Dey Sharma R. Banerji A. Dey S. Radiosensitizing effect of ellagic acid on growth of Hepatocellular carcinoma cells: An in vitro study. Sci. Rep. 2017 7 1 14043 10.1038/s41598‑017‑14211‑4 29070894
    [Google Scholar]
  83. Ahire V. Kumar A. Mishra K.P. Kulkarni G. Ellagic acid enhances apoptotic sensitivity of breast cancer cells to γ-radiation. Nutr. Cancer 2017 69 6 904 910 10.1080/01635581.2017.1339811 28718725
    [Google Scholar]
  84. Li X. Deng Y. Zheng Z. Huang W. Chen L. Tong Q. Ming Y. Corilagin, a promising medicinal herbal agent. Biomed. Pharmacother. 2018 99 43 50 10.1016/j.biopha.2018.01.030 29324311
    [Google Scholar]
  85. Jagetia G.C. Baliga M.S. The evaluation of the radioprotective effect of chyavanaprasha (an ayurvedic rasayana drug) in mice exposed to lethal dose of γ ‐radiation: A preliminary study. Phytother. Res. 2004 18 1 14 18 10.1002/ptr.1298 14750194
    [Google Scholar]
  86. Jagetia G.C. Baliga M.S. Malagi K.J. Kamath M.S. The evaluation of the radioprotective effect of Triphala (an ayurvedic rejuvenating drug) in the mice exposed to γ-radiation. Phytomedicine 2002 9 2 99 108 10.1078/0944‑7113‑00095 11995956
    [Google Scholar]
  87. Baliga M.S. Meera S. Vaishnav L.K. Rao S. Palatty P.L. Rasayana drugs from the Ayurvedic system of medicine as possible radioprotective agents in cancer treatment. Integr. Cancer Ther. 2013 12 6 455 463 10.1177/1534735413490233 23737641
    [Google Scholar]
  88. Sandhya T. Lathika K.M. Pandey B.N. Bhilwade H.N. Chaubey R.C. Priyadarsini K.I. Mishra K.P. Protection against radiation oxidative damage in mice by Triphala. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2006 609 1 17 25 10.1016/j.mrgentox.2006.05.006 16860592
    [Google Scholar]
  89. Yoon W.S. Kim C.Y. Yang D.S. Park Y.J. Park W. Ahn Y.C. Kim S.H. Kwon G.Y. Protective effect of triphala on radiation induced acute intestinal mucosal damage in Sprague Dawley rats. Indian J. Exp. Biol. 2012 50 3 195 200 22439434
    [Google Scholar]
  90. Takauji Y. Miki K. Mita J. Hossain M.N. Yamauchi M. Kioi M. Ayusawa D. Fujii M. Triphala, a formulation of traditional Ayurvedic medicine, shows protective effect against X-radiation in HeLa cells. J. Biosci. 2016 41 4 569 575 10.1007/s12038‑016‑9639‑4 27966480
    [Google Scholar]
  91. Naik G.H. Priyadarsini K.I. Bhagirathi R.G. Mishra B. Mishra K.P. Banavalikar M.M. Mohan H. In vitro antioxidant studies and free radical reactions of triphala, an ayurvedic formulation and its constituents. Phytother. Res. 2005 19 7 582 586 10.1002/ptr.1515 16161061
    [Google Scholar]
  92. Rastogi R.P. Richa Kumar A. Tyagi M.B. Sinha R.P. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J. Nucleic Acids 2010 2010 1 592980 10.4061/2010/592980 21209706
    [Google Scholar]
  93. D’Orazio J. Jarrett S. Amaro-Ortiz A. Scott T. UV radiation and the skin. Int. J. Mol. Sci. 2013 14 6 12222 12248 10.3390/ijms140612222 23749111
    [Google Scholar]
  94. Majeed M. Bhat B. Anand S. Sivakumar A. Paliwal P. Geetha K.G. Inhibition of UV-induced ROS and collagen damage by Phyllanthus emblica extract in normal human dermal fibroblasts. J. Cosmet. Sci. 2011 62 1 49 56 21443845
    [Google Scholar]
  95. Adil M.D. Kaiser P. Satti N.K. Zargar A.M. Vishwakarma R.A. Tasduq S.A. Effect of Emblica officinalis (fruit) against UVB-induced photo-aging in human skin fibroblasts. J. Ethnopharmacol. 2010 132 1 109 114 10.1016/j.jep.2010.07.047 20688142
    [Google Scholar]
  96. Bae J.Y. Choi J.S. Kang S.W. Lee Y.J. Park J. Kang Y.H. Dietary compound ellagic acid alleviates skin wrinkle and inflammation induced by UV‐B irradiation. Exp. Dermatol. 2010 19 8 e182 e190 10.1111/j.1600‑0625.2009.01044.x 20113347
    [Google Scholar]
  97. Sumitra M. Manikandan P. Gayathri V.S. Mahendran P. Suguna L. Emblica officinalis exerts wound healing action through up‐regulation of collagen and extracellular signal‐regulated kinases (ERK1/2). Wound Repair Regen. 2009 17 1 99 107 10.1111/j.1524‑475X.2008.00446.x 19152656
    [Google Scholar]
  98. Yamakami Y. Morino K. Takauji Y. Kasukabe R. Miki K. Hossain M.N. Ayusawa D. Fujii M. Extract of Emblica officinalis enhances the growth of human keratinocytes in culture. J. Integr. Med. 2019 17 2 141 146 10.1016/j.joim.2019.01.004 30709781
    [Google Scholar]
  99. Chularojmontri L. Suwatronnakorn M. Wattanapitayakul S.K. Phyllanthus emblica L. enhances human umbilical vein endothelial wound healing and sprouting. Evid. Based Complement. Alternat. Med. 2013 2013 1 9 10.1155/2013/720728 23606890
    [Google Scholar]
  100. Anto E.J. Syahputra R.A. Silitonga H.A. Situmorang P.C. Nugaraha S.E. Oral acute toxicity study extract ethanol of balakka fruit (Phyllanthus emblica). Pharmacia 2022 69 1 187 194 10.3897/pharmacia.69.e81280
    [Google Scholar]
  101. Upadya H. Prabhu S. Prasad A. Subramanian D. Gupta S. Goel A. A randomized, double blind, placebo controlled, multicenter clinical trial to assess the efficacy and safety of Emblica officinalis extract in patients with dyslipidemia. BMC Complement. Altern. Med. 2019 19 1 27 10.1186/s12906‑019‑2430‑y 30670010
    [Google Scholar]
  102. Usharani P. Merugu P.L. Nutalapati C. Evaluation of the effects of a standardized aqueous extract of Phyllanthus emblica fruits on endothelial dysfunction, oxidative stress, systemic inflammation and lipid profile in subjects with metabolic syndrome: A randomised, double blind, placebo controlled clinical study. BMC Complement. Altern. Med. 2019 19 1 97 10.1186/s12906‑019‑2509‑5 31060549
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575362233250429114954
Loading
/content/journals/mrmc/10.2174/0113895575362233250429114954
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test