Skip to content
2000
Volume 25, Issue 17
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Effective and accurate drugs for imaging and tumour diagnostics are essential for the early detection of diseases and the development of treatment plans. 18F-2-Fluoro-2-deoxy-D-glucose ([18F]FDG) is the most widely used molecular tumour probe for positron emission tomography (PET) in clinical applications. However, no comparable molecular probes have been approved for single-photon emission computed tomography (SPECT) in clinical diagnostics. In recent years, significant advancements have been made in tumour probes containing 99mTc-labelled isonitrile-glucose molecules, which exhibit high specificity and sensitivity for tumour diagnosis, providing clear SPECT image contrast and diagnostic performance comparable to [18F]FDG. Based on research from our group and previous studies in the literature, the primary objective of this perspective is to investigate the structural design, molecule–target interactions, and protein–ligand complex energies of 99mTc-labelled isonitrile-carbohydrate tumour probes from the perspective of computer-aided drug design (CADD). The findings presented here provide a reference and motivation for the development of novel 99mTc-labelled carbohydrate-based tumour probes.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575398450250917115123
2025-10-01
2025-12-23
Loading full text...

Full text loading...

References

  1. RongJ. HaiderA. JeppesenT.E. JosephsonL. LiangS.H. Radiochemistry for positron emission tomography.Nat. Commun.20231413257327910.1038/s41467‑023‑36377‑4 37277339
    [Google Scholar]
  2. SiegelR.L. GiaquintoA.N. JemalA. Cancer statistics, 2024.CA Cancer J. Clin.2024741124910.3322/caac.21820 38230766
    [Google Scholar]
  3. LindsleyC.W. MüllerC.E. BongarzoneS. Diagnostic and therapeutic radiopharmaceuticals: A “Hot” topic.J. Med. Chem.20236624164571646310.1021/acs.jmedchem.3c02281 38109062
    [Google Scholar]
  4. ZhangS. WangX. GaoX. ChenX. LiL. LiG. LiuC. MiaoY. WangR. HuK. Radiopharmaceuticals and their applications in medicine.Signal Transduct. Target. Ther.202510115110.1038/s41392‑024‑02041‑6 39747850
    [Google Scholar]
  5. ToyoharaJ. VugtsD. KissO.C. ToddeS. LiX.G. LiuZ. YangZ. GillingsN. CazzolaE. SzymanskiW. MeulenN. ReillyR. TaddeiC. SchirrmacherR. LiZ. LageboY.J. BentalebN. Souza AlbernazM. LapiS. RamogidaC. MukherjeeA. AjenjoJ. Deuther-ConradW. BourdeauC. Highlight selection of radiochemistry and radiopharmacy developments by editorial board.EJNMMI Radiopharm. Chem.202491426210.1186/s41181‑024‑00268‑w 38753262
    [Google Scholar]
  6. ChenH. ShiK. CaiW. LiS. WangJ. Advancing global nuclear medicine: The role and future contributions of china.J. Nucl. Med.202465Suppl. 11SS310.2967/jnumed.124.267918 38719235
    [Google Scholar]
  7. SchwenckJ. SonaniniD. CottonJ.M. RammenseeH.G. la FougèreC. ZenderL. PichlerB.J. Advances in PET imaging of cancer.Nat. Rev. Cancer202323747449010.1038/s41568‑023‑00576‑4 37258875
    [Google Scholar]
  8. ZhangJ. Molecular imaging in oncology: Radiopharmaceuticals for pet and spect 2022.Pharmaceuticals2023171495210.3390/ph17010049 38256883
    [Google Scholar]
  9. LiZ. RuanQ. JiangY. WangQ. YinG. FengJ. ZhangJ. Current status and perspectives of novel radiopharmaceuticals with heterologous dual-targeted functions: 2013–2023.J. Med. Chem.20246724216442167010.1021/acs.jmedchem.4c01608 39648432
    [Google Scholar]
  10. FengH. WangX. ChenJ. CuiJ. GaoT. GaoY. ZengW. Nuclear imaging of glucose metabolism: Beyond 18 F-FDG.Contrast Media Mol. Imaging2019201911210.1155/2019/7954854 31049045
    [Google Scholar]
  11. BononiG. IacopiniD. CicioG. Di PietroS. GranchiC. Di BussoloV. MinutoloF. Glycoconjugated metal complexes as cancer diagnostic and therapeutic agents.ChemMedChem2021161306410.1002/cmdc.202000456 32735702
    [Google Scholar]
  12. PatraM. JohnstoneT.C. SuntharalingamK. LippardS.J. A potent glucose–platinum conjugate exploits glucose transporters and preferentially accumulates in cancer cells.Angew. Chem. Int. Ed.20165572550255410.1002/anie.201510551 26749149
    [Google Scholar]
  13. CrișanG. Moldovean-CioroianuN.S. TimaruD.G. AndrieșG. CăinapC. ChișV. Radiopharmaceuticals for PET and SPECT imaging: A literature review over the last decade.Int. J. Mol. Sci.20222395023507410.3390/ijms23095023 35563414
    [Google Scholar]
  14. ShiJ. LiuS. Clinical application of 99mTc-labeled peptides for tumor imaging: Current status and future directions.iRADIOLOGY,2024211734
    [Google Scholar]
  15. AhmedN. ZiaM. Diagnostic modalities and radiopharmaceuticals with particular importance of technetium-99m (99mTc).Chin. J. Acad. Radiol.20236414315910.1007/s42058‑023‑00128‑7
    [Google Scholar]
  16. DuattiA. Review on 99mTc radiopharmaceuticals with emphasis on new advancements.Nucl. Med. Biol.20219220221610.1016/j.nucmedbio.2020.05.005 32475681
    [Google Scholar]
  17. PapagiannopoulouD. Technetium‐99m radiochemistry for pharmaceutical applications.J. Labelled Comp. Radiopharm.2017601150252010.1002/jlcr.3531 28618064
    [Google Scholar]
  18. CuiX.Y. LiuY. WangC. WenZ. LiY. TangH. DiwuJ. YangY. CuiM. LiuZ. China’s radiopharmaceuticals on expressway: 2014–2021.Radiochim. Acta20221106-976578410.1515/ract‑2021‑1137
    [Google Scholar]
  19. YinG. ZhangJ. 99mTc labeled glucose derivatives for tumor imaging.J. Beijing Norm. Univ. (Nat Sci).2022584575586
    [Google Scholar]
  20. WangQ. QinJ. XuY. WangP. WuY. DengZ. LiZ. ChenL. Clinical Research on 99mTc-isonitrile Deoxyglucosamine Single Photon Emission computed Tomography/Computed Tomography for Lung Cancer Diagnosis.Chin. J. Clin. Oncol.2021482111251128
    [Google Scholar]
  21. WangQ. QinJ. XuY. LiZ. WangP. WuY. ChenL. Diagnostic value of 99mTc-isonitrile deoxy glucosamine SPECT/CT for regional lymph node metastasis in non-small cell lung cancer.Chin. J. Med. Imaging2023316606610
    [Google Scholar]
  22. WangQ. DengZ. LuC. ChenL. QinJ. WangP. A prospective study to compare the diagnostic accuracy of 99mTc-CNDG SPECT/CT and contrast-enhanced CT in staging of non-small cell lung cancer.J. Cancer Res. Clin. Oncol.2024150943043910.1007/s00432‑024‑05953‑6 39327339
    [Google Scholar]
  23. AbrahamM.J. MurtolaT. SchulzR. PállS. SmithJ.C. HessB. LindahlE. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers.SoftwareX20151-2192510.1016/j.softx.2015.06.001
    [Google Scholar]
  24. GorelovS. TitovA. TolichevaO. KonevegaA. ShvetsovA. DSSP in GROMACS: Tool for defining secondary structures of proteins in trajectories.J. Chem. Inf. Model.20246493593359810.1021/acs.jcim.3c01344 38655711
    [Google Scholar]
  25. YuD. LiH. LiuY. YangX. YangW. FuY. ZuoY. HuangX. Application of the molecular dynamics simulation GROMACS in food science.Food Res. Int.202419011465311466510.1016/j.foodres.2024.114653 38945587
    [Google Scholar]
  26. Valdés-TresancoM.S. Valdés-TresancoM.E. ValienteP.A. MorenoE. gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS.J. Chem. Theory Comput.202117106281629110.1021/acs.jctc.1c00645 34586825
    [Google Scholar]
  27. ZhangX. GanQ. RuanQ. XiaoD. ZhangJ. Evaluation and comparison of 99m Tc‐labeled d ‐glucosamine derivatives with different 99m Tc cores as potential tumor imaging agents.Appl. Organomet. Chem.20203412600810.1002/aoc.6008
    [Google Scholar]
  28. ZhangX. RuanQ. JiangY. GanQ. ZhangJ. Evaluation of 99mTc-CN5DG as a broad-spectrum SPECT probe for tumor imaging.Transl. Oncol.202114110096610097110.1016/j.tranon.2020.100966 33246288
    [Google Scholar]
  29. ZhangX. RuanQ. DuanX. GanQ. SongX. FangS. LinX. DuJ. ZhangJ. Novel 99m Tc-labeled glucose derivative for single photon emission computed tomography: A promising tumor imaging agent.Mol. Pharm.20181583417342410.1021/acs.molpharmaceut.8b00415 29985620
    [Google Scholar]
  30. LiY. ZhangX. ZhangJ. Synthesis and biological evaluation of a 99mTc-labeled glucose derivative for tumor imaging.SCIENTIA SINICA Chimica202252696397110.1360/SSC‑2021‑0264
    [Google Scholar]
  31. GanQ. ZhangX. RuanQ. FangS. ZhangJ. 99m Tc-CN7DG: A highly expected spect imaging agent of cancer with satisfactory tumor uptake and tumor-to-nontarget ratios.Mol. Pharm.20211831356136310.1021/acs.molpharmaceut.0c01177 33586982
    [Google Scholar]
  32. FengJ. ZhangX. JiangY. RuanQ. WangQ. ZhangJ. Preparation and bioevaluation of a novel 99mTc-labeled glucose derivative containing cyclohexane as a promising tumor imaging agent.Pharmaceuticals202316461262410.3390/ph16040612 37111368
    [Google Scholar]
  33. CarvalhoK.C. CunhaI.W. RochaR.M. AyalaF.R. CajaíbaM.M. BegnamiM.D. VilelaR.S. PaivaG.R. AndradeR.G. SoaresF.A. GLUT1 expression in malignant tumors and its use as an immunodiagnostic marker.Clinics201166696597210.1590/S1807‑59322011000600008 21808860
    [Google Scholar]
  34. van GunsterenW.F. DauraX. HansenN. MarkA.E. OostenbrinkC. RinikerS. SmithL.J. Validation of molecular simulation: An overview of issues.Angew. Chem. Int. Ed.201857488490210.1002/anie.201702945 28682472
    [Google Scholar]
  35. BedrovD. PiquemalJ.P. BorodinO. MacKerellA.D. RouxB. SchröderC. Molecular dynamics simulations of ionic liquids and electrolytes using polarizable force fields.Chem. Rev.2019119137940799510.1021/acs.chemrev.8b00763 31141351
    [Google Scholar]
  36. ChenJ.J. HanS. CaoY. ChenJ.Z. The agonist binding mechanism of human CB2 receptor studied by molecular dynamics simulation, free energy calculation and 3D-QSAR studies.Yao Xue Xue Bao201348914361449 24358778
    [Google Scholar]
  37. SunH. DuanL. ChenF. LiuH. WangZ. PanP. ZhuF. ZhangJ.Z.H. HouT. Assessing the performance of MM/PBSA and MM/GBSA methods. 7. Entropy effects on the performance of end-point binding free energy calculation approaches.Phys. Chem. Chem. Phys.20182021144501446010.1039/C7CP07623A 29785435
    [Google Scholar]
  38. XuW. Current status of computational approaches for small molecule drug discovery.J. Med. Chem.20246721186331863610.1021/acs.jmedchem.4c02462 39445455
    [Google Scholar]
  39. GkekaP. SvenssonF. MagadánC.R. de GrootM.J. JeromeS.V. Computational hit finding: An industry perspective.J. Med. Chem.20256811105071051910.1021/acs.jmedchem.4c03087 40392533
    [Google Scholar]
  40. WangK. HuangY. WangY. YouQ. WangL. Recent advances from computer-aided drug design to artificial intelligence drug design.RSC Med. Chem.202415123978400010.1039/D4MD00522H 39493228
    [Google Scholar]
  41. WangQ. GanQ. JiangY. XiaoD. ChenX. ZhangJ. The preparation and execution of exploratory human studies on novel 99m Tc-labeled glucosamine derivatives containing different phenyl isonitriles as promising tumor imaging agents.ACS Pharmacol. Transl. Sci.20236111681169110.1021/acsptsci.3c00146 37974617
    [Google Scholar]
  42. MaJ. WangQ. HuangZ. YangX. NieQ. HaoW. WangP.G. WangX. Glycosylated platinum(IV) complexes as substrates for glucose transporters (GLUTs) and organic cation transporters (OCTs) exhibited cancer targeting and human serum albumin binding properties for drug delivery.J. Med. Chem.201760135736574810.1021/acs.jmedchem.7b00433 28603992
    [Google Scholar]
  43. MaJ. YangX. HaoW. HuangZ. WangX. WangP.G. Mono-functionalized glycosylated platinum(IV) complexes possessed both pH and redox dual-responsive properties: Exhibited enhanced safety and preferentially accumulated in cancer cells in vitro and in vivo.Eur. J. Med. Chem.2017128455510.1016/j.ejmech.2017.01.032 28147308
    [Google Scholar]
  44. GonzalezP.S. O’PreyJ. CardaciS. BarthetV.J.A. SakamakiJ. BeaumatinF. RoseweirA. GayD.M. MackayG. MalviyaG. KaniaE. RitchieS. BaudotA.D. ZuninoB. MrowinskaA. NixonC. EnnisD. HoyleA. MillanD. McNeishI.A. SansomO.J. EdwardsJ. RyanK.M. Mannose impairs tumour growth and enhances chemotherapy.Nature2018563773371972310.1038/s41586‑018‑0729‑3 30464341
    [Google Scholar]
  45. YinG. RuanQ. JiangY. FengJ. HanP. WangQ. LiZ. ZhangJ. Novel 99m Tc-labeled mannose derivative as a highly promising single photon emission computed tomography probe for tumor imaging.J. Med. Chem.20246717157961580610.1021/acs.jmedchem.4c01425 39058751
    [Google Scholar]
  46. BuisD.T.P. SieswerdaE. KouijzerI.J.E. HuynhW.Y. BurchellG.L. BerrevoetsM.A.H. PrinsJ.M. SigaloffK.C.E. [18F]FDG-PET/CT in staphylococcus aureus bacteremia: A systematic review.BMC Infect. Dis.202222128229110.1186/s12879‑022‑07273‑x 35331165
    [Google Scholar]
  47. OhC. BishopM.W. ChoS.Y. Im, H.J.; Shulkin, B.L. 18 F-FDG PET/CT in the management of osteosarcoma.J. Nucl. Med.202364684285110.2967/jnumed.123.265592 37201958
    [Google Scholar]
  48. BeckerJ. SchwarzenböckS.M. KrauseB.J. FDG PET hybrid imaging.Recent Results Cancer Res.202021662566710.1007/978‑3‑030‑42618‑7_19 32594401
    [Google Scholar]
  49. HessS. FDG-PET/CT in fever of unknown origin, bacteremia, and febrile neutropenia.PET Clin.202015217518510.1016/j.cpet.2019.11.002 32145888
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575398450250917115123
Loading
/content/journals/mrmc/10.2174/0113895575398450250917115123
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test