Skip to content
2000
Volume 25, Issue 17
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Introduction
Objective

Antimicrobial resistance (AMR) has become a global controversial issue, making conventional treatments less effective. Hence, the design and development of new and efficient antimicrobial agents are on the researchers’ agenda to reduce death rates and health care costs. In this regard, chlorine-containing compounds have been the center of attention. This review highlights the antimicrobial potential of chlorine-containing natural and semi-synthetic compounds, aiming to identify versatile candidates effective against microorganisms.

Methods

The literature was comprehensively surveyed using Google Scholar, Web of Science, Scopus, and PubMed, focusing on studies published since 2016, focusing on the antimicrobial properties of natural and semi-synthetic chlorinated compounds.

Results

Natural chlorinated compounds have shown remarkable antimicrobial activity, generally more potent than their semi-synthetic counterparts.

Discussion

The strong activity against resistant strains like MRSA underlines their therapeutic potential in addressing pressing clinical challenges. Nature-derived scaffolds serve as a promising foundation for the development of novel antimicrobial agents.

Conclusion

Several naturally occurring compounds have proven more effective than their semi-synthetic derivatives, making them attractive candidates for addressing the growing threat of AMR.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575396696250904113228
2025-09-19
2025-12-31
Loading full text...

Full text loading...

References

  1. HoC.S. WongC.T.H. AungT.T. LakshminarayananR. MehtaJ.S. RauzS. McNallyA. KintsesB. PeacockS.J. de la Fuente-NunezC. HancockR.E.W. TingD.S.J. Antimicrobial resistance: A concise update.Lancet Microbe20256110094710.1016/j.lanmic.2024.07.010 39305919
    [Google Scholar]
  2. World AMR Awareness Week Preventing antimicrobial resistance togethe.2023Available from: https://www.who.int/news/item/17-11-2023-world-amr-awareness-week--preventing-antimicrobial-resistance-together
  3. NaghaviM. VollsetS.E. IkutaK.S. SwetschinskiL.R. GrayA.P. WoolE.E. Robles AguilarG. MestrovicT. SmithG. HanC. HsuR.L. ChalekJ. ArakiD.T. ChungE. RaggiC. Gershberg HayoonA. Davis WeaverN. LindstedtP.A. SmithA.E. AltayU. BhattacharjeeN.V. GiannakisK. FellF. McManigalB. EkapiratN. MendesJ.A. RunghienT. SrimoklaO. AbdelkaderA. Abd-ElsalamS. AboagyeR.G. AbolhassaniH. AbualruzH. AbubakarU. AbukhadijahH.J. AburuzS. Abu-ZaidA. AchalapongS. AddoI.Y. AdekanmbiV. AdeyeoluwaT.E. AdnaniQ.E.S. AdzigbliL.A. AfzalM.S. AfzalS. AgodiA. AhlstromA.J. AhmadA. AhmadS. AhmadT. AhmadiA. AhmedA. AhmedH. AhmedI. AhmedM. AhmedS. AhmedS.A. AkkaifM.A. Al AwaidyS. Al ThaherY. AlalalmehS.O. AlBatainehM.T. AldhaleeiW.A. Al-GheethiA.A.S. AlhajiN.B. AliA. AliL. AliS.S. AliW. AllelK. Al-MarwaniS. AlrawashdehA. AltafA. Al-TammemiA.B. Al-TawfiqJ.A. AlzoubiK.H. Al-ZyoudW.A. AmosB. AmuasiJ.H. AncuceanuR. AndrewsJ.R. AnilA. AnuoluwaI.A. AnvariS. AnyasodorA.E. ApostolG.L.C. ArablooJ. ArafatM. AravkinA.Y. AredaD. AremuA. ArtamonovA.A. AshleyE.A. AsikaM.O. AthariS.S. AtoutM.M.W. AwokeT. AzadnajafabadS. AzamJ.M. AzizS. AzzamA.Y. BabaeiM. BabinF-X. BadarM. BaigA.A. BajceticM. BakerS. BardhanM. BarqawiH.J. BasharatZ. BasiruA. BastardM. BasuS. BayleyegnN.S. BeleteM.A. BelloO.O. BeloukasA. BerkleyJ.A. BhagavathulaA.S. BhaskarS. BhuyanS.S. BielickiJ.A. BrikoN.I. BrownC.S. BrowneA.J. BuonsensoD. BustanjiY. CarvalheiroC.G. Castañeda-OrjuelaC.A. CenderadewiM. ChadwickJ. ChakrabortyS. ChandikaR.M. ChandyS. ChansamouthV. ChattuV.K. ChaudharyA.A. ChingP.R. ChopraH. ChowdhuryF.R. ChuD-T. ChutiyamiM. Cruz-MartinsN. da SilvaA.G. DadrasO. DaiX. DarchoS.D. DasS. De la HozF.P. DekkerD.M. DhamaK. DiazD. DicksonB.F.R. DjorieS.G. DodangehM. DohareS. DokovaK.G. DoshiO.P. DowouR.K. DsouzaH.L. DunachieS.J. DziedzicA.M. EckmannsT. Ed-DraA. EftekharimehrabadA. EkundayoT.C. El SayedI. ElhadiM. El-HuneidiW. EliasC. EllisS.J. ElsheikhR. ElsohabyI. EltahaC. EshratiB. EslamiM. EyreD.W. FadakaA.O. FagbamigbeA.F. FahimA. Fakhri-DemeshghiehA. FasinaF.O. FasinaM.M. FatehizadehA. FeaseyN.A. FeizkhahA. FekaduG. FischerF. FitrianaI. ForrestK.M. Fortuna RodriguesC. FullerJ.E. GadanyaM.A. GajdácsM. GandhiA.P. Garcia-GalloE.E. GarrettD.O. GautamR.K. GebregergisM.W. GebrehiwotM. GebremeskelT.G. GeffersC. GeorgalisL. GhazyR.M. GolechhaM. GolinelliD. GordonM. GulatiS. GuptaR.D. GuptaS. GuptaV.K. HabteyohannesA.D. HallerS. HarapanH. HarrisonM.L. HasaballahA.I. HasanI. HasanR.S. HasaniH. HaselbeckA.H. HasnainM.S. HassanI.I. HassanS. Hassan Zadeh TabatabaeiM.S. HayatK. HeJ. HegaziO.E. HeidariM. HezamK. HollaR. HolmM. HopkinsH. HossainM.M. HosseinzadehM. HostiucS. HusseinN.R. HuyL.D. Ibáñez-PradaE.D. IkiromaA. IlicI.M. IslamS.M.S. IsmailF. IsmailN.E. IwuC.D. Iwu-JajaC.J. JafarzadehA. JaitehF. Jalilzadeh YengejehR. JamoraR.D.G. JavidniaJ. JawaidT. JenneyA.W.J. JeonH.J. JokarM. JomehzadehN. JooT. JosephN. KamalZ. KanmodiK.K. KantarR.S. KapisiJ.A. KarayeI.M. KhaderY.S. KhajuriaH. KhalidN. KhamesipourF. KhanA. KhanM.J. KhanM.T. KhanalV. KhidriF.F. KhubchandaniJ. KhusuwanS. KimM.S. KisaA. KorshunovV.A. KrappF. KrumkampR. KuddusM. KulimbetM. KumarD. KumaranE.A.P. KuttikkattuA. KyuH.H. LandiresI. LawalB.K. LeT.T.T. LedererI.M. LeeM. LeeS.W. LepapeA. LerangoT.L. LigadeV.S. LimC. LimS.S. LimenhL.W. LiuC. LiuX. LiuX. LoftusM.J. M AminH.I. Maass K.L. Maharaj S.B. Mahmoud M.A. Maikanti-Charalampous P. Makram O.M. Malhotra K. Malik A.A. Mandilara G.D. Marks F. Martinez-Guerra B.A. Martorell M. Masoumi-Asl H. Mathioudakis A.G. May J. McHugh T.A. Meiring J. Meles H.N. Melese A. Melese E.B. Minervini G. Mohamed N.S. Mohammed S. Mohan S. Mokdad A.H. Monasta L. Moodi Ghalibaf A.A. Moore C.E. Moradi Y. Mossialos E. Mougin V. Mukoro G.D. Mulita F. Muller-Pebody B. Murillo-Zamora E. Musa S. Musicha P. Musila L.A. Muthupandian S. Nagarajan A.J. Naghavi P. Nainu F. Nair T.S. Najmuldeen H.H.R. Natto Z.S. Nauman J. Nayak B.P. Nchanji G.T. Ndishimye P. Negoi I. Negoi R.I. Nejadghaderi S.A. Nguyen Q.A.P. Noman E.A. Nwakanma D.C. O’Brien S. Ochoa T.J. Odetokun I.A. Ogundijo O.A. Ojo-Akosile T.R. Okeke S.R. Okonji O.C. Olagunju A.T. Olivas-Martinez A. Olorukooba A.A. Olwoch P. Onyedibe K.I. Ortiz-Brizuela E. Osuolale O. Ounchanum P. Oyeyemi O.T. P A M.P. Paredes J.L. Parikh R.R. Patel J. Patil S. Pawar S. Peleg A.Y. Peprah P. Perdigão J. Perrone C. Petcu I-R. Phommasone K. Piracha Z.Z. Poddighe D. Pollard A.J. Poluru R. Ponce-De-Leon A. Puvvula J. Qamar F.N. Qasim N.H. Rafai C.D. Raghav P. Rahbarnia L. Rahim F. Rahimi-Movaghar V. Rahman M. Rahman M.A. Ramadan H. Ramasamy S.K. Ramesh P.S. Ramteke P.W. Rana R.K. Rani U. Rashidi M-M. Rathish D. Rattanavong S. Rawaf S. Redwan E.M.M. Reyes L.F. Roberts T. Robotham J.V. Rosenthal V.D. Ross A.G. Roy N. Rudd K.E. Sabet C.J. Saddik B.A. Saeb M.R. Saeed U. Saeedi Moghaddam S. Saengchan W. Safaei M. Saghazadeh A. Saheb Sharif-Askari N. Sahebkar A. Sahoo S.S. Sahu M. Saki M. Salam N. Saleem Z. Saleh M.A. Samodra Y.L. Samy A.M. Saravanan A. Satpathy M. Schumacher A.E. Sedighi M. Seekaew S. Shafie M. Shah P.A. Shahid S. Shahwan M.J. Shakoor S. Shalev N. Shamim M.A. Shamshirgaran M.A. Shamsi A. Sharifan A. Shastry R.P. Shetty M. Shittu A. Shrestha S. Siddig E.E. Sideroglou T. Sifuentes-Osornio J. Silva L.M.L.R. Simões E.A.F. Simpson A.J.H. Singh A. Singh S. Sinto R. Soliman S.S.M. Soraneh S. Stoesser N. Stoeva T.Z. Swain C.K. Szarpak L. T y S.S. Tabatabai S. Tabche C. Taha Z.M-A. Tan K-K. Tasak N. Tat N.Y. Thaiprakong A. Thangaraju P. Tigoi C.C. Tiwari K. Tovani-Palone M.R. Tran T.H. Tumurkhuu M. Turner P. Udoakang A.J. Udoh A. Ullah N. Ullah S. Vaithinathan A.G. Valenti M. Vos T. Vu H.T.L. Waheed Y. Walker A.S. Walson J.L. Wangrangsimakul T. Weerakoon K.G. Wertheim H.F.L. Williams P.C.M. Wolde A.A. Wozniak T.M. Wu F. Wu Z. Yadav M.K.K. Yaghoubi S. Yahaya Z.S. Yarahmadi A. Yezli S. Yismaw Y.E. Yon D.K. Yuan C-W. Yusuf H. Zakham F. Zamagni G. Zhang H. Zhang Z-J. Zielińska M. Zumla A. Zyoud S.H.H. Zyoud S.H. Hay S.I. Stergachis A. Sartorius B. Cooper B.S. Dolecek C. Murray C.J.L. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050.Lancet2024404104591199122610.1016/S0140‑6736(24)01867‑1 39299261
    [Google Scholar]
  4. MunitaJ.M. AriasC.A. Mechanisms of antibiotic resistance.Microbiol. Spectr.20164210.1128/microbiolspec.VMBF‑0016‑2015 27227291
    [Google Scholar]
  5. MelchiorriD. RockeT. AlmR.A. CameronA.M. GiganteV. Addressing urgent priorities in antibiotic development: Insights from WHO 2023 antibacterial clinical pipeline analyses.Lancet Microbe20256310099210.1016/j.lanmic.2024.100992 39454608
    [Google Scholar]
  6. LiuH.Y. PrenticeE.L. WebberM.A. Mechanisms of antimicrobial resistance in biofilms. NPJ.Antimicrob. Resist.2024212710.1038/s44259‑024‑00046‑3 39364333
    [Google Scholar]
  7. BreijyehZ. KaramanR. Design and synthesis of novel antimicrobial agents.Antibiotics202312362810.3390/antibiotics12030628 36978495
    [Google Scholar]
  8. LanJ. ZouJ. XinH. SunJ. HanT. SunM. NiuM. Nanomedicines as disruptors or inhibitors of biofilms: Opportunities in addressing antimicrobial resistance.J. Control. Release202538138111358910.1016/j.jconrel.2025.113589 40032007
    [Google Scholar]
  9. ZhengS. TuY. LiB. QuG. LiA. PengX. LiS. ShaoC. Antimicrobial peptide biological activity, delivery systems and clinical translation status and challenges.J. Transl. Med.202523129210.1186/s12967‑025‑06321‑9 40055730
    [Google Scholar]
  10. AngeliniP. Plant-derived antimicrobials and their crucial role in combating antimicrobial resistance.Antibiotics (Basel)202413874610.3390/antibiotics13080746 39200046
    [Google Scholar]
  11. DharaniS. ThiribhuvanamalaG. AngappanK. SwarnakumariN. Jeya Sundara SharmilaD. Manikanda BoopathiN. Mushroom - derived antimicrobials – A source of eco-friendly antimicrobial compounds against phytopathogens.J. Plant Pathol.202511510.1007/s42161‑025‑01914‑1
    [Google Scholar]
  12. Grigore-GurguL. DumitrașcuL. AproduI. Aromatic herbs as a source of bioactive compounds: An overview of their antioxidant capacity, antimicrobial activity, and major applications.Molecules2025306130410.3390/molecules30061304 40142079
    [Google Scholar]
  13. JoshiS. SrivastavaR. Effect of “magic chlorine” in drug discovery: An in silico approach.RSC Advances20231349349223493410.1039/D3RA06638J 38035236
    [Google Scholar]
  14. ChiodiD. IshiharaY. “Magic chloro”: Profound effects of the chlorine atom in drug discovery.J. Med. Chem.20236685305533110.1021/acs.jmedchem.2c02015 37014977
    [Google Scholar]
  15. AbbaC.C. EzeP.M. EbadaS.S. EzeN.K. ProkschP. TeuschN. OkoyeF.B.C. EbokaC.J. Rare chlorinated fungal metabolite and alpha-pyrones from an endophytic fungus Nigrospora sp.ACS Omega20251065722572910.1021/acsomega.4c09190 39989763
    [Google Scholar]
  16. CabritaM.T. ValeC. RauterA.P. Halogenated compounds from marine algae.Mar. Drugs2010882301231710.3390/md8082301 20948909
    [Google Scholar]
  17. DuanF. XinG. NiuH. HuangW. Chlorinated emodin as a natural antibacterial agent against drug-resistant bacteria through dual influence on bacterial cell membranes and DNA.Sci. Rep.2017711272110.1038/s41598‑017‑12905‑3 28983096
    [Google Scholar]
  18. RoullierC. GuittonY. ValeryM. AmandS. PradoS. Robiou du PontT. GrovelO. PouchusY.F. Automated detection of natural halogenated compounds from LC-MS profiles–application to the isolation of bioactive chlorinated compounds from marine-derived fungi.Anal. Chem.201688189143915010.1021/acs.analchem.6b02128 27537349
    [Google Scholar]
  19. LiaoL. ChenR. JiangM. TianX. LiuH. YuY. FanC. ChenB. Bioprospecting potential of halogenases from Arctic marine actinomycetes.BMC Microbiol.20161613410.1186/s12866‑016‑0662‑2 26964536
    [Google Scholar]
  20. ClaytonG.E. ThornR.M.S. ReynoldsD.M. The efficacy of chlorine-based disinfectants against planktonic and biofilm bacteria for decentralised point-of-use drinking water.npj Clean Water2021414810.1038/s41545‑021‑00139‑w
    [Google Scholar]
  21. AlmhöjdU.S. LehrkinderA. Roos-JansåkerA.M. LingströmP. Antimicrobial efficacy of chlorine agents against selected oral pathogens.Clin. Oral Investig.20232795695570710.1007/s00784‑023‑05190‑0 37606720
    [Google Scholar]
  22. VenkobacharC. IyengarL. Prabhakara RaoA.V.S. Mechanism of disinfection: Effect of chlorine on cell membrane functions.Water Res.197711872772910.1016/0043‑1354(77)90114‑2
    [Google Scholar]
  23. Cyboran-MikołajczykS. MatczakK. Olchowik-GrabarekE. SękowskiS. NowickaP. Krawczyk-ŁebekA. Kostrzewa-SusłowE. The influence of the chlorine atom on the biological activity of 2′-hydroxychalcone in relation to the lipid phase of biological membranes - Anticancer and antimicrobial activity.Chem. Biol. Interact.202439811108210.1016/j.cbi.2024.111082
    [Google Scholar]
  24. VirtoR. MañasP. ÁlvarezI. CondonS. RasoJ. Membrane damage and microbial inactivation by chlorine in the absence and presence of a chlorine-demanding substrate.Appl. Environ. Microbiol.20057195022502810.1128/AEM.71.9.5022‑5028.2005 16151082
    [Google Scholar]
  25. GerebtzoffG. Li-BlatterX. FischerH. FrentzelA. SeeligA. Halogenation of drugs enhances membrane binding and permeation.ChemBioChem20045567668410.1002/cbic.200400017 15122640
    [Google Scholar]
  26. YiR. ShiY. CaoX. PanC. Actinomycetes: Treasure trove for discovering novel antibiotic candidates.Eur. J. Med. Chem.202528611731710.1016/j.ejmech.2025.117317 39884098
    [Google Scholar]
  27. SelimM.S.M. AbdelhamidS.A. MohamedS.S. Secondary metabolites and biodiversity of actinomycetes.J. Genet. Eng. Biotechnol.20211917210.1186/s43141‑021‑00156‑9 33982192
    [Google Scholar]
  28. OlanrewajuO.S. BabalolaO.O. Streptomyces: Implications and interactions in plant growth promotion.Appl. Microbiol. Biotechnol.201910331179118810.1007/s00253‑018‑09577‑y 30594952
    [Google Scholar]
  29. TenebroC.P. TronoD.J.V.L. BalidaL.A.P. BayogL.K.A. BrunaJ.R. SabidoE.M. CaspeD.P.C. de Los SantosE.L.C. SaludesJ.P. DalisayD.S. Synergy between genome mining, metabolomics, and bioinformatics uncovers antibacterial chlorinated carbazole alkaloids and their biosynthetic gene cluster from Streptomyces tubbatahanensis sp. Nov., a novel actinomycete isolated from Sulu Sea, Philippines.Microbiol. Spectr.2023112e03661e2210.1128/spectrum.03661‑22 36809153
    [Google Scholar]
  30. ShaalaL.A. YoussefD.T.A. AlzughaibiT.A. ElhadyS.S. Antimicrobial chlorinated 3-phenylpropanoic acid derivatives from the Red Sea marine actinomycete Streptomyces coelicolor LY001.Mar. Drugs202018945010.3390/md18090450 32867397
    [Google Scholar]
  31. SongY. YangJ. YuJ. LiJ. YuanJ. WongN.K. JuJ. Chlorinated bis-indole alkaloids from deep-sea derived Streptomyces sp. SCSIO 11791 with antibacterial and cytotoxic activities.J. Antibiot.202073854254710.1038/s41429‑020‑0307‑4 32332871
    [Google Scholar]
  32. SonS. HongY.S. JangM. HeoK.T. LeeB. JangJ.P. KimJ.W. RyooI.J. KimW.G. KoS.K. KimB.Y. JangJ.H. AhnJ.S. Genomics-driven discovery of chlorinated cyclic hexapeptides ulleungmycins A and B from a Streptomyces species.J. Nat. Prod.201780113025303110.1021/acs.jnatprod.7b00660 29083895
    [Google Scholar]
  33. DuttaS. WhicherJ.R. HansenD.A. HaleW.A. ChemlerJ.A. CongdonG.R. NarayanA.R.H. HåkanssonK. ShermanD.H. SmithJ.L. SkiniotisG. Structure of a modular polyketide synthase.Nature2014510750651251710.1038/nature13423 24965652
    [Google Scholar]
  34. IgarashiY. MatsuokaN. InY. KatauraT. TashiroE. SaikiI. SudohY. DuangmalK. ThamchaipenetA. Nonthmicin, a polyether polyketide bearing a halogen-modified tetronate with neuroprotective and antiinvasive activity from Actinomadura sp.Org. Lett.20171961406140910.1021/acs.orglett.7b00318 28256141
    [Google Scholar]
  35. LüY. ShaoM. WangY. QianS. WangM. WangY. LiX. BaoY. DengC. YueC. LiuD. LiuN. LiuM. HuangY. ChenZ. HuY. Zunyimycins B and C, new chloroanthrabenzoxocinones antibiotics against methicillin-resistant Staphylococcus aureus and Enterococci from Streptomyces sp. FJS31-2.Molecules201722225110.3390/molecules22020251 28208722
    [Google Scholar]
  36. KawaharaT. SaitaK. IwamotoR. WadaM. Benastatin K, a chlorinated benastatin-related antibiotic from Streptomyces sp. HGTA384.J. Antibiot.202477747147410.1038/s41429‑024‑00727‑1 38664572
    [Google Scholar]
  37. Garcia-PichelF. ZehrJ.P. BhattacharyaD. PakrasiH.B. What’s in a name? The case of cyanobacteria.J. Phycol.20205611510.1111/jpy.12934 31618454
    [Google Scholar]
  38. Sánchez-BaracaldoP. BianchiniG. WilsonJ.D. KnollA.H. Cyanobacteria and biogeochemical cycles through Earth history.Trends Microbiol.202230214315710.1016/j.tim.2021.05.008 34229911
    [Google Scholar]
  39. MahishP.K. FuleU. PandawM. RakshitA. Potential antimicrobial activity of Cyanobacteria Oscillatoria boryana and Oscillatoria pseudogeminata isolated from Odisha Coast, India.Biosci. Biotechnol. Res. Asia202219117318110.13005/bbra/2976
    [Google Scholar]
  40. DussaultD. VuK.D. VansachT. HorgenF.D. LacroixM. Antimicrobial effects of marine algal extracts and cyanobacterial pure compounds against five foodborne pathogens.Food Chem.201619911411810.1016/j.foodchem.2015.11.119 26775951
    [Google Scholar]
  41. MatsuuraY. MoriyamaM. ŁukasikP. VanderpoolD. TanahashiM. MengX.Y. McCutcheonJ.P. FukatsuT. Recurrent symbiont recruitment from fungal parasites in cicadas.Proc. Natl. Acad. Sci. USA201811526E5970E597910.1073/pnas.1803245115 29891654
    [Google Scholar]
  42. RichardsonM.D. Opportunistic and pathogenic fungi.J. Antimicrob. Chemother.199128Suppl. A11110.1093/jac/28.suppl_A.1 1938702
    [Google Scholar]
  43. YanL.H. DuF.Y. LiX.M. YangS.Q. WangB.G. LiX. Antibacterial indole diketopiperazine alkaloids from the deep-sea cold seep-derived fungus Aspergillus chevalieri.Mar. Drugs202321319510.3390/md21030195 36976244
    [Google Scholar]
  44. WangW. LiaoY. ChenR. HouY. KeW. ZhangB. GaoM. ShaoZ. ChenJ. LiF. Chlorinated azaphilone pigments with antimicrobial and cytotoxic activities isolated from the deep sea derived fungus Chaetomium sp. NA-S01-R1.Mar. Drugs20181626110.3390/md16020061 29438326
    [Google Scholar]
  45. BrinkmannC. MarkerA. KurtbökeD. An overview on marine sponge-symbiotic bacteria as unexhausted sources for natural product discovery.Diversity2017944010.3390/d9040040
    [Google Scholar]
  46. SipkemaD. FranssenM.C.R. OsingaR. TramperJ. WijffelsR.H. Marine sponges as pharmacy.Mar. Biotechnol.20057314216210.1007/s10126‑004‑0405‑5 15776313
    [Google Scholar]
  47. LiJ.X. XuQ.H. ShangR.Y. LiuQ. LuoX.C. LinH.W. JiaoW.H. AspergetherinsA-D. Aspergetherins A-D, new chlorinated biphenyls with anti-MRSA activity from the marine sponge symbiotic fungus Aspergillus terreus 164018.Chem. Biodivers.2023204e20230001010.1002/cbdv.202300010 36876631
    [Google Scholar]
  48. BahrinL.G. HopfH. JonesP.G. SarbuL.G. BabiiC. MihaiA.C. StefanM. BirsaL.M. Antibacterial structure–activity relationship studies of several tricyclic sulfur-containing flavonoids.Beilstein J. Org. Chem.20161211065107110.3762/bjoc.12.100 27340492
    [Google Scholar]
  49. SunH. AnsariM.F. FangB. ZhouC.H. Natural berberine-hybridized benzimidazoles as novel unique bactericides against Staphylococcus aureus.J. Agric. Food Chem.202169287831784010.1021/acs.jafc.1c02545 34228443
    [Google Scholar]
  50. CaoR. PengW. WangZ. XuA. beta-Carboline alkaloids: Biochemical and pharmacological functions.Curr. Med. Chem.200714447950010.2174/092986707779940998 17305548
    [Google Scholar]
  51. SuzukiK. NomuraI. NinomiyaM. TanakaK. KoketsuM. Synthesis and antimicrobial activity of β-carboline derivatives with N2-alkyl modifications.Bioorg. Med. Chem. Lett.201828172976297810.1016/j.bmcl.2018.06.050 30001916
    [Google Scholar]
  52. OkoloE.N. UgwuD.I. EzemaB.E. NdefoJ.C. EzeF.U. EzemaC.G. EzugwuJ.A. UjamO.T. New chalcone derivatives as potential antimicrobial and antioxidant agent.Sci. Rep.20211112178110.1038/s41598‑021‑01292‑5 34741131
    [Google Scholar]
  53. NarwalS. KumarS. VermaP.K. Synthesis and biological activity of new chalcone scaffolds as prospective antimicrobial agents.Res. Chem. Intermed.20214741625164110.1007/s11164‑020‑04359‑6
    [Google Scholar]
  54. JinS. SatoN. Benzoquinone, the substance essential for antibacterial activity in aqueous extracts from succulent young shoots of the pear Pyrus spp.Phytochemistry200362110110710.1016/S0031‑9422(02)00444‑2 12475625
    [Google Scholar]
  55. ZhangZ. SunY. LiY. SongX. WangR. ZhangD. The potential of marine-derived piperazine alkaloids: Sources, structures and bioactivities.Eur. J. Med. Chem.202426511608110.1016/j.ejmech.2023.116081 38181652
    [Google Scholar]
  56. XuF. XueS. DengL. ZhangS. LiY. ZhaoX. The piperazine compound ASP activates an auxin response in Arabidopsis thaliana.BMC Genomics202021178810.1186/s12864‑020‑07203‑8 33176686
    [Google Scholar]
  57. YıldızM. Design, synthesis, characterization, and antimicrobial activity of novel piperazine substituted 1,4-benzoquinones.J. Mol. Struct.2020120312742210.1016/j.molstruc.2019.127422
    [Google Scholar]
  58. DiasF.R.F. NovaisJ.S. DevillartT.A.N.S. da SilvaW.A. FerreiraM.O. LoureiroR.S. CamposV.R. FerreiraV.F. de SouzaM.C.B.V. CastroH.C. CunhaA.C. Synthesis and antimicrobial evaluation of amino sugar-based naphthoquinones and isoquinoline-5,8-diones and their halogenated compounds.Eur. J. Med. Chem.201815611210.1016/j.ejmech.2018.06.050 30006155
    [Google Scholar]
  59. HavauxM. Plastoquinone in and beyond photosynthesis.Trends Plant Sci.202025121252126510.1016/j.tplants.2020.06.011 32713776
    [Google Scholar]
  60. KaraE.M. BayrakN. YıldırımH. YıldızM. CelikB.O. TuyunA.F. Chlorinated plastoquinone analogs that inhibit Staphylococcus epidermidis and Candida albicans growth.Folia Microbiol.202065578579510.1007/s12223‑020‑00783‑8 32458315
    [Google Scholar]
  61. WangX. QuinnP.J. Endotoxins: Lipopolysaccharides of gram-negative bacteria.Endotoxins: Structure, Function and Recognition. WangX. QuinnP. DordrechtSpringer201032510.1007/978‑90‑481‑9078‑2_1
    [Google Scholar]
  62. SilhavyT.J. KahneD. WalkerS. The bacterial cell envelope.Cold Spring Harb. Perspect. Biol.201025a00041410.1101/cshperspect.a000414 20452953
    [Google Scholar]
  63. ExnerM. BhattacharyaS. ChristiansenB. GebelJ. Goroncy-BermesP. HartemannP. HeegP. IlschnerC. KramerA. LarsonE. MerkensW. MielkeM. OltmannsP. RossB. RotterM. SchmithausenR.M. SonntagH.G. TrautmannM. Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria?GMS Hyg. Infect. Control201712Doc05 28451516
    [Google Scholar]
  64. BreijyehZ. JubehB. KaramanR. Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it.Molecules2020256134010.3390/molecules25061340 32187986
    [Google Scholar]
  65. NikaidoH. PagèsJ.M. Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria.FEMS Microbiol. Rev.201236234036310.1111/j.1574‑6976.2011.00290.x 21707670
    [Google Scholar]
  66. PagèsJ.M. JamesC.E. WinterhalterM. The porin and the permeating antibiotic: A selective diffusion barrier in Gram-negative bacteria.Nat. Rev. Microbiol.200861289390310.1038/nrmicro1994 18997824
    [Google Scholar]
  67. RajagopalM. WalkerS. Envelope structures of gram-positive bacteria.Curr. Top. Microbiol. Immunol.2017404144 26919863
    [Google Scholar]
  68. DelcourA.H. Outer membrane permeability and antibiotic resistance.Biochim. Biophys. Acta. Proteins Proteomics20091794580881610.1016/j.bbapap.2008.11.005 19100346
    [Google Scholar]
  69. ZhangS. WangJ. AhnJ. Advances in the discovery of efflux pump inhibitors as novel potentiators to control antimicrobial-resistant pathogens.Antibiotics2023129141710.3390/antibiotics12091417 37760714
    [Google Scholar]
  70. AudaI.G. Ali SalmanI.M. OdahJ.G. Efflux pumps of gram-negative bacteria in brief.Gene Rep.20202010066610.1016/j.genrep.2020.100666
    [Google Scholar]
  71. GauravA. BakhtP. SainiM. PandeyS. PathaniaR. Role of bacterial efflux pumps in antibiotic resistance, virulence, and strategies to discover novel efflux pump inhibitors.Microbiology2023169500133310.1099/mic.0.001333 37224055
    [Google Scholar]
  72. SharmaA. GuptaV.K. PathaniaR. Efflux pump inhibitors for bacterial pathogens.Indian J. Med. Res.2019149212914510.4103/ijmr.IJMR_2079_17 31219077
    [Google Scholar]
  73. Mai-ProchnowA. ClausonM. HongJ. MurphyA.B. Gram positive and gram negative bacteria differ in their sensitivity to cold plasma.Sci. Rep.2016613861010.1038/srep38610 27934958
    [Google Scholar]
  74. YamauchiR. KawanoK. YamaokaY. TaniguchiA. YanoY. TakasuK. MatsuzakiK. Development of antimicrobial peptide–antibiotic conjugates to improve the outer membrane permeability of antibiotics against gram-negative bacteria.ACS Infect. Dis.20228112339234710.1021/acsinfecdis.2c00406 36255133
    [Google Scholar]
  75. FerenciT. PhanK. How porin heterogeneity and trade-offs affect the antibiotic susceptibility of gram-negative bacteria.Genes2015641113112410.3390/genes6041113 26506392
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575396696250904113228
Loading
/content/journals/mrmc/10.2174/0113895575396696250904113228
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test