Skip to content
2000
Volume 25, Issue 15
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Diabetes mellitus is a disease characterised by elevated blood glucose levels, with its major subtypes being type 1 (immune-mediated) and type 2 (lifestyle-related) diabetes. Medical treatment for diabetes requires patients to perform subcutaneous insulin injections since oral insulin faces problems with gastric breakdown. Nano-sized insulin delivery systems show great potential for oral usage because they protect the insulin molecule from enzymatic breakdown and enhance its absorption rates through the digestive system. The review article investigates the utilisation of insulin-loaded nanoparticles as an advanced treatment method for diabetes management. The data evaluates insulin-loaded nanoparticles for their impact on stability enhancement as well as their protective functions and improved oral bioavailability potential. The research reviewed the relevant literature on insulin-loaded nanoparticles as a treatment method for diabetes. The research articles were obtained through databases including ScienceDirect, Scopus, PubMed and Google Scholar. Studies about incorporating insulin with nanoparticles and their bioavailability features and therapeutic potential were analysed. The review demonstrates that insulin-loaded nanoparticles markedly improve insulin stability, bioavailability, and absorption, overcoming the challenges associated with oral insulin delivery. Diverse nanoparticle compositions, encompassing polymeric and lipid-based carriers, exhibit encouraging outcomes in preclinical investigations. Despite existing limitations in large-scale production and clinical application, nanotechnology presents a revolutionary method for diabetes treatment. Additional research and clinical studies are necessary to validate insulin-loaded nanoparticles as a feasible, patient-friendly substitute for traditional insulin therapy.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575398397250827102455
2025-09-16
2026-02-22
Loading full text...

Full text loading...

References

  1. ChoN.H. ShawJ.E. KarurangaS. HuangY. da Rocha FernandesJ.D. OhlroggeA.W. MalandaB. Diabetes AtlasI.D.F. IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045.Diabetes Res. Clin. Pract.201813827128110.1016/j.diabres.2018.02.02329496507
    [Google Scholar]
  2. 8. Pharmacologic approaches to glycemic treatment: Standards of medical care in diabetes—2018.Diabetes Care201841Suppl. 1S73S8510.2337/dc18‑S00829222379
    [Google Scholar]
  3. KatsarouA. GudbjörnsdottirS. RawshaniA. DabeleaD. BonifacioE. AndersonB.J. JacobsenL.M. SchatzD.A. LernmarkÅ. Type 1 diabetes mellitus.Nat. Rev. Dis. Primers2017311701610.1038/nrdp.2017.1628358037
    [Google Scholar]
  4. RajputS. Kumar SharmaP. MalviyaR. Fluid mechanics in circulating tumour cells: Role in metastasis and treatment strategies.Med. Drug Discov.20231810015810.1016/j.medidd.2023.100158
    [Google Scholar]
  5. Russell-JonesD. BawlchhimZ. Discovery of insulin 100 years on.Postgrad. Med. J.202399117366166810.1136/postgradmedj‑2022‑14165137389580
    [Google Scholar]
  6. PuigserverP. RheeJ. DonovanJ. WalkeyC.J. YoonJ.C. OrienteF. KitamuraY. AltomonteJ. DongH. AcciliD. SpiegelmanB.M. Insulin-regulated hepatic gluconeogenesis through FOXO1–PGC-1α interaction.Nature2003423693955055510.1038/nature0166712754525
    [Google Scholar]
  7. LiuH.Y. HanJ. CaoS.Y. HongT. ZhuoD. ShiJ. LiuZ. CaoW. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: Inhibition of FoxO1-dependent expression of key autophagy genes by insulin.J. Biol. Chem.200928445314843149210.1074/jbc.M109.03393619758991
    [Google Scholar]
  8. FaganA. BatemanL.M. O’SheaJ.P. CreanA.M. Elucidating the degradation pathways of human insulin in the solid state.J. Anal. Test.20248328829910.1007/s41664‑024‑00302‑539184306
    [Google Scholar]
  9. GirardotS. In vitro and in silico approach of continuous subcutaneous insulin infusion system reliability.. Doctoral dissertation, Sorbonne Université2021
    [Google Scholar]
  10. FukudaM. TanakaA. TaharaY. IkegamiH. YamamotoY. KumaharaY. ShimaK. Correlation between minimal secretory capacity of pancreatic β-cells and stability of diabetic control.Diabetes1988371818810.2337/diab.37.1.813275557
    [Google Scholar]
  11. CerfM.E. Beta cell dysfunction and insulin resistance.Front. Endocrinol.201343710.3389/fendo.2013.0003723542897
    [Google Scholar]
  12. LinnT. EbnerK. SchneiderK. DischerT. KreuterJ. RaptisG. LaubeH. A One-year study of newly Manifested Type-I Diabetes- mellitus under tight glucose control.Med. Welt19944535761
    [Google Scholar]
  13. RosenfeldL. Insulin: Discovery and controversy.Clin. Chem.200248122270228810.1093/clinchem/48.12.227012446492
    [Google Scholar]
  14. VermaA. KumarN. MalviyaR. SharmaP.K. Emerging trends in non-invasive insulin delivery.J. Pharm.20142014137804826556194
    [Google Scholar]
  15. Doyle-DelgadoK. ChamberlainJ.J. ShubrookJ.H. SkolnikN. TrujilloJ. Pharmacologic approaches to glycemic treatment of type 2 diabetes: Synopsis of the 2020 American diabetes association’s standards of medical care in diabetes clinical guideline.Ann. Intern. Med.20201731081382110.7326/M20‑247032866414
    [Google Scholar]
  16. Baghban TaraghdariZ. ImaniR. MohabatpourF. A review on bioengineering approaches to insulin delivery: A pharmaceutical and engineering perspective.Macromol. Biosci.2019194180045810.1002/mabi.20180045830614193
    [Google Scholar]
  17. KondiahP.P.D. ChoonaraY.E. TomarL.K. TyagiC. KumarP. du ToitL.C. MarimuthuT. ModiG. PillayV. Development of a gastric absorptive, immediate responsive, oral protein-loaded versatile polymeric delivery system.AAPS PharmSciTech20171872479249310.1208/s12249‑017‑0725‑128205143
    [Google Scholar]
  18. RajputS. SharmaP.K. MalviyaR. Biomarkers and treatment strategies for breast cancer recurrence.Curr. Drug Targets202324151209122010.2174/011389450125805923110307202538164731
    [Google Scholar]
  19. KumariA. YadavS.K. YadavS.C. Biodegradable polymeric nanoparticles based drug delivery systems.Colloids Surf. B Biointerfaces201075111810.1016/j.colsurfb.2009.09.00119782542
    [Google Scholar]
  20. JoshiH.M. BhumkarD.R. JoshiK. PokharkarV. SastryM. Gold nanoparticles as carriers for efficient transmucosal insulin delivery.Langmuir200622130030510.1021/la051982u16378435
    [Google Scholar]
  21. ZhaoX. ZuY. ZuS. WangD. ZhangY. ZuB. Insulin nanoparticles for transdermal delivery: Preparation and physicochemical characterization and in vitro evaluation.Drug Dev. Ind. Pharm.201036101177118510.3109/0363904100369508920367030
    [Google Scholar]
  22. WongC.Y. MartinezJ. DassC.R. Oral delivery of insulin for treatment of diabetes: Status quo, challenges and opportunities.J. Pharm. Pharmacol.20166891093110810.1111/jphp.1260727364922
    [Google Scholar]
  23. AdlerA.I. StevensR.J. ManleyS.E. BilousR.W. CullC.A. HolmanR.R. Development and progression of nephropathy in type 2 diabetes: The United Kingdom Prospective Diabetes Study (UKPDS 64).Kidney Int.200363122523210.1046/j.1523‑1755.2003.00712.x12472787
    [Google Scholar]
  24. AlbaneseA. TangP.S. ChanW.C.W. The effect of nanoparticle size, shape, and surface chemistry on biological systems.Annu. Rev. Biomed. Eng.201214111610.1146/annurev‑bioeng‑071811‑15012422524388
    [Google Scholar]
  25. DreadenE.C. AlkilanyA.M. HuangX. MurphyC.J. El-SayedM.A. The golden age: Gold nanoparticles for biomedicine.Chem. Soc. Rev.20124172740277910.1039/C1CS15237H22109657
    [Google Scholar]
  26. ElsabahyM. WooleyK.L. Design of polymeric nanoparticles for biomedical delivery applications.Chem. Soc. Rev.20124172545256110.1039/c2cs15327k22334259
    [Google Scholar]
  27. KamalyN. XiaoZ. ValenciaP.M. Radovic-MorenoA.F. FarokhzadO.C. Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation.Chem. Soc. Rev.20124172971301010.1039/c2cs15344k22388185
    [Google Scholar]
  28. MehmoodA. GhafarH. YaqoobS. GoharU.F. AhmadB. Mesoporous silica nanoparticles: A review.J. Dev. Drugs20176210017410.4172/2329‑6631.1000174
    [Google Scholar]
  29. EiflerA.C. Thaxton, CS Nanoparticle therapeutics: FDA approval, clinical trials, regulatory pathways, and case study.Methods Mol. Biol.201172632533810.1007/978‑1‑61779‑052‑2_2121424459
    [Google Scholar]
  30. CsajbókÉ.A. TamásG. Cerebral cortex: A target and source of insulin?Diabetologia20165981609161510.1007/s00125‑016‑3996‑227207082
    [Google Scholar]
  31. KaufmanB.A. LiC. SoleimanpourS.A. Mitochondrial regulation of β-cell function: Maintaining the momentum for insulin release.Mol. Aspects Med.2015429110410.1016/j.mam.2015.01.00425659350
    [Google Scholar]
  32. YangB.Y. ZhaiG. GongY.L. SuJ.Z. PengX.Y. ShangG.H. HanD. JinJ.Y. LiuH.K. DuZ.Y. YinZ. XieS.Q. Different physiological roles of insulin receptors in mediating nutrient metabolism in zebrafish.Am. J. Physiol. Endocrinol. Metab.20183151E38E5110.1152/ajpendo.00227.201729351486
    [Google Scholar]
  33. FareseR.V. SajanM.P. StandaertM.L. Atypical protein kinase C in insulin action and insulin resistance.Biochem. Soc. Trans.200533235035310.1042/BST033035015787604
    [Google Scholar]
  34. TaniguchiC.M. EmanuelliB. KahnC.R. Critical nodes in signalling pathways: Insights into insulin action.Nat. Rev. Mol. Cell Biol.200672859610.1038/nrm183716493415
    [Google Scholar]
  35. VasiljevićJ. TorkkoJ.M. KnochK.P. SolimenaM. The making of insulin in health and disease.Diabetologia202063101981198910.1007/s00125‑020‑05192‑732894308
    [Google Scholar]
  36. DavidoviciB.B. SattarN. JörgP.C. PuigL. EmeryP. BarkerJ.N. van de KerkhofP. StåhleM. NestleF.O. GirolomoniG. KruegerJ.G. Psoriasis and systemic inflammatory diseases: Potential mechanistic links between skin disease and co-morbid conditions.J. Invest. Dermatol.201013071785179610.1038/jid.2010.10320445552
    [Google Scholar]
  37. SunL. WangD. FengK. ZhangJ.A. GaoW. ZhangL. Cell membrane-coated nanoparticles for targeting carcinogenic bacteria.Adv. Drug Deliv. Rev.202420911532010.1016/j.addr.2024.11532038643841
    [Google Scholar]
  38. WangB. YangY. LiX. Interaction of hypertension and insulin resistance exacerbates the occurrence of diabetes mellitus in healthy individuals.J. Diabetes Res.2022202211710.1155/2022/928981235493612
    [Google Scholar]
  39. HaywoodN.J. SlaterT.A. MatthewsC.J. WheatcroftS.B. The insulin like growth factor and binding protein family: Novel therapeutic targets in obesity & diabetes.Mol. Metab.201919869610.1016/j.molmet.2018.10.00830392760
    [Google Scholar]
  40. SemwalD.K. KumarA. AswalS. ChauhanA. SemwalR.B. Protective and therapeutic effects of natural products against diabetes mellitus via regenerating pancreatic β ‐cells and restoring their dysfunction.Phytother. Res.20213531218122910.1002/ptr.688532987447
    [Google Scholar]
  41. RorsmanP. BraunM. Regulation of insulin secretion in human pancreatic islets.Annu. Rev. Physiol.201375115517910.1146/annurev‑physiol‑030212‑18375422974438
    [Google Scholar]
  42. BeauloyeV. MuakuS. LauseP. PortetelleD. RenavilleR. StroobantsA. KetelslegersJ. MaiterD. Monoclonal antibodies to growth hormone (GH) prolong liver GH binding and GH-induced IGF-I/IGFBP-3 synthesis.Am. J. Physiol. Endocrinol. Metab.19992772E308E31510.1152/ajpendo.1999.277.2.e308
    [Google Scholar]
  43. McCullochL.J. van de BuntM. BraunM. FraynK.N. ClarkA. GloynA.L. GLUT2 (SLC2A2) is not the principal glucose transporter in human pancreatic beta cells: Implications for understanding genetic association signals at this locus.Mol. Genet. Metab.2011104464865310.1016/j.ymgme.2011.08.02621920790
    [Google Scholar]
  44. RajputS. MalviyaR. UniyalP. Advancements in the diagnosis, prognosis, and treatment of retinoblastoma.Can. J. Ophthalmol.202459528129910.1016/j.jcjo.2024.01.01838369298
    [Google Scholar]
  45. KampmannU. HoeyemP. MengelA. SchmitzO. RungbyJ. OrskovL. MøllerN. Insulin dose-response studies in severely insulin-resistant type 2 diabetes-evidence for effectiveness of very high insulin doses.Diabetes Obes. Metab.201113651151610.1111/j.1463‑1326.2011.01373.x21272188
    [Google Scholar]
  46. ClarkeP.M. GrayA.M. BriggsA. FarmerA.J. FennP. StevensR.J. MatthewsD.R. StrattonI.M. HolmanR.R. A model to estimate the lifetime health outcomes of patients with Type 2 diabetes: The United Kingdom Prospective Diabetes Study (UKPDS) Outcomes Model (UKPDS no. 68).Diabetologia200447101747175910.1007/s00125‑004‑1527‑z15517152
    [Google Scholar]
  47. MatschinskyF.M. Regulation of pancreatic β-cell glucokinase: From basics to therapeutics.Diabetes200251Suppl. 3S394S40410.2337/diabetes.51.2007.S39412475782
    [Google Scholar]
  48. LamontagneJ. PepinÉ. PeyotM.L. JolyÉ. RudermanN.B. PoitoutV. MadirajuS.R.M. NolanC.J. PrentkiM. Pioglitazone acutely reduces insulin secretion and causes metabolic deceleration of the pancreatic β-cell at submaximal glucose concentrations.Endocrinology200915083465347410.1210/en.2008‑155719406947
    [Google Scholar]
  49. Gutiérrez-RodeloC. Roura-GuibernaA. Olivares-ReyesJ.A. Molecular mechanisms of insulin resistance: An update.Gac. Med. Mex.2017153221422828474708
    [Google Scholar]
  50. KaufmanF.R. GibsonL.C. HalvorsonM. CarpenterS. FisherL.K. PitukcheewanontP. A pilot study of the continuous glucose monitoring system: Clinical decisions and glycemic control after its use in pediatric type 1 diabetic subjects.Diabetes Care200124122030203410.2337/diacare.24.12.203011723078
    [Google Scholar]
  51. KellyJ.L. HirschI.B. TrenceD.L. Rapid decrease in clinically significant hypoglycemia with insulin glargine.Diabetes2002512A12310.2337/diabetes.51.2.A123
    [Google Scholar]
  52. LuY. XuJ. LiY. WangR. DaiC. ZhangB. ZhangX. XuL. TaoY. HanM. GuoR. WuQ. WuL. MengZ. TanM. LiJ. DRAK2 suppresses autophagy by phosphorylating ULK1 at Ser 56 to diminish pancreatic β cell function upon overnutrition.Sci. Transl. Med.202416733eade864710.1126/scitranslmed.ade864738324636
    [Google Scholar]
  53. RodenM. PetersenK. ShulmanG. Insulin resistance in type 2 diabetes.Textbook of Diabetes5th ed HoltR.I. CockramC. FlyvbjergA. GoldsteinB.J. 2017New York City, NY, USA17418610.1002/9781118924853.ch13
    [Google Scholar]
  54. KostovK. Effects of magnesium deficiency on mechanisms of insulin resistance in type 2 diabetes: Focusing on the processes of insulin secretion and signalling.Int. J. Mol. Sci.2019206135110.3390/ijms2006135130889804
    [Google Scholar]
  55. SinghJ. BidaseeK.R. AdeghateE. HowarthC.F. D’SouzaA. SinghR.B. Left ventricle structural remodelling in prediabetes and overt type 2 diabetes mellitus in the Goto-Kakizaki rat.World Heart J.201791
    [Google Scholar]
  56. RubinoF. BatterhamR.L. KochM. MingroneG. le RouxC.W. FarooqiI.S. Farpour-LambertN. GreggE.W. CummingsD.E. Lancet diabetes & endocrinology commission on the definition and diagnosis of clinical obesity.Lancet Diabetes Endocrinol.202311422622810.1016/S2213‑8587(23)00058‑X36878238
    [Google Scholar]
  57. AngelidiA.M. FilippaiosA. MantzorosC.S. Severe insulin resistance syndromes.J. Clin. Invest.2021131414224510.1172/JCI14224533586681
    [Google Scholar]
  58. ThorensB. Brain glucose sensing and neural regulation of insulin and glucagon secretion.Diabetes Obes. Metab.201113s1828810.1111/j.1463‑1326.2011.01453.x21824260
    [Google Scholar]
  59. BinderG. SeidelA.K. MartinD.D. SchweizerR. SchwarzeC.P. WollmannH.A. EggermannT. RankeM.B. The endocrine phenotype in silver-russell syndrome is defined by the underlying epigenetic alteration.J. Clin. Endocrinol. Metab.20089341402140710.1210/jc.2007‑189718230663
    [Google Scholar]
  60. LeRoithD. McGuinnessM. ShemerJ. StannardB. LanauF. FariaT.N. KatoH. WernerH. AdamoM. RobertsC.T. Insulin-like growth factors.Neurosignals19921417318110.1159/0001093231307923
    [Google Scholar]
  61. SantoleriD. TitchenellP.M. Resolving the paradox of hepatic insulin resistance.Cell. Mol. Gastroenterol. Hepatol.20197244745610.1016/j.jcmgh.2018.10.01630739869
    [Google Scholar]
  62. TitchenellP.M. QuinnW.J. LuM. ChuQ. LuW. LiC. ChenH. MonksB.R. ChenJ. RabinowitzJ.D. BirnbaumM.J. Direct hepatocyte insulin signaling is required for lipogenesis but is dispensable for the suppression of glucose production.Cell Metab.20162361154116610.1016/j.cmet.2016.04.02227238637
    [Google Scholar]
  63. HandelsmanY. BloomgardenZ.T. GrunbergerG. UmpierrezG. ZimmermanR.S. BaileyT.S. BlondeL. BrayG.A. CohenA.J. Dagogo-JackS. DavidsonJ.A. EinhornD. GandaO.P. GarberA.J. GarveyW.T. HenryR.R. HirschI.B. HortonE.S. HurleyD.L. JellingerP.S. JovanovičL. LebovitzH.E. LeRoithD. LevyP. McGillJ.B. MechanickJ.I. MestmanJ.H. MoghissiE.S. OrzeckE.A. Pessah-PollackR. RosenblitP.D. VinikA.I. WyneK. ZangenehF. American association of clinical endocrinologists and american college of endocrinology–clinical practice guidelines for developing a diabetes mellitus comprehensive care plan–2015—executive summary.Endocr. Pract.201521441343710.4158/EP15672.GL27408942
    [Google Scholar]
  64. NathanD.M. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: Overview.Diabetes Care201437191610.2337/dc13‑211224356592
    [Google Scholar]
  65. LeeS.H. ParkS.Y. ChoiC.S. Insulin resistance: From mechanisms to therapeutic strategies.Diabetes Metab. J.2022461153710.4093/dmj.2021.028034965646
    [Google Scholar]
  66. MobasseriM. ShirmohammadiM. AmiriT. VahedN. Hosseini FardH. GhojazadehM. Prevalence and incidence of type 1 diabetes in the world: A systematic review and meta-analysis.Health Promot. Perspect.20201029811510.34172/hpp.2020.1832296622
    [Google Scholar]
  67. RajputS. MalviyaR. SrivastavaS. AhmadI. RabS.O. UniyalP. Cardiovascular disease and thrombosis: Intersections with the immune system, inflammation, and the coagulation system.Ann. Pharm. Fr.202583222825010.1016/j.pharma.2024.08.005
    [Google Scholar]
  68. DabeleaD. RewersA. StaffordJ.M. StandifordD.A. LawrenceJ.M. SaydahS. ImperatoreG. D’AgostinoR.B. Mayer-DavisE.J. PihokerC. Trends in the prevalence of ketoacidosis at diabetes diagnosis: The SEARCH for diabetes in youth study.Pediatrics20141334e938e94510.1542/peds.2013‑279524685959
    [Google Scholar]
  69. SteckA.K. EisenbarthG.S. Genetic similarities between latent autoimmune diabetes and type 1 and type 2 diabetes.Diabetes20085751160116210.2337/db07‑178618443373
    [Google Scholar]
  70. JacobsenL.M. BundyB.N. GrecoM.N. SchatzD.A. AtkinsonM.A. BruskoT.M. MathewsC.E. HeroldK.C. GitelmanS.E. KrischerJ.P. HallerM.J. Comparing beta cell preservation across clinical trials in recent-onset type 1 diabetes.Diabetes Technol. Ther.2020221294895310.1089/dia.2020.030532833543
    [Google Scholar]
  71. BachJ.F. The effect of infections on susceptibility to autoimmune and allergic diseases.N. Engl. J. Med.20023471291192010.1056/NEJMra02010012239261
    [Google Scholar]
  72. Collado-MesaF. Diaz-DiazO. AshkenaziI. LaronZ. Seasonality of birth and Type 1 diabetes onset in children (0–14 years) in Cuba.Diabet. Med.2001181193994010.1046/j.1464‑5491.2001.00590‑3.x11703443
    [Google Scholar]
  73. BorbaV.V. LernerA. MatthiasT. ShoenfeldY. Bovine milk proteins as a trigger for autoimmune diseases: Myth or reality.Int. J.2020811021
    [Google Scholar]
  74. ShanW. ZhuX. LiuM. LiL. ZhongJ. SunW. ZhangZ. HuangY. Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin.ACS Nano2015932345235610.1021/acsnano.5b0002825658958
    [Google Scholar]
  75. WuZ.M. ZhouL. GuoX.D. JiangW. LingL. QianY. LuoK.Q. ZhangL.J. HP55-coated capsule containing PLGA/RS nanoparticles for oral delivery of insulin.Int. J. Pharm.20124251-21810.1016/j.ijpharm.2011.12.05522248666
    [Google Scholar]
  76. BeraS. NaskarA. JanaS. Inorganic-organic hybrid nanocomposite for biomedical applications.Adv. Mater.2017241317481754
    [Google Scholar]
  77. LiL. JiangG. YuW. LiuD. ChenH. LiuY. TongZ. KongX. YaoJ. Preparation of chitosan-based multifunctional nanocarriers overcoming multiple barriers for oral delivery of insulin.Mater. Sci. Eng. C201770Pt 127828610.1016/j.msec.2016.08.08327770892
    [Google Scholar]
  78. LinY.H. ChenC.T. LiangH.F. KulkarniA.R. LeeP.W. ChenC.H. SungH.W. Novel nanoparticles for oral insulin delivery via the paracellular pathway.Nanotechnology2007181010510210.1088/0957‑4484/18/10/105102
    [Google Scholar]
  79. SabbaghF. MuhamadI.I. NiazmandR. DikshitP.K. KimB.S. Recent progress in polymeric non-invasive insulin delivery.Int. J. Biol. Macromol.202220322224310.1016/j.ijbiomac.2022.01.13435101478
    [Google Scholar]
  80. LeeV., Ed.; Peptide and protein drug delivery.Boca Raton, FloridaCrc Press202410.1201/9781003573715
    [Google Scholar]
  81. UlluwishewaD. AndersonR.C. McNabbW.C. MoughanP.J. WellsJ.M. RoyN.C. Regulation of tight junction permeability by intestinal bacteria and dietary components.J. Nutr.2011141576977610.3945/jn.110.13565721430248
    [Google Scholar]
  82. MaZ. LimT.M. LimL.Y. Pharmacological activity of peroral chitosan–insulin nanoparticles in diabetic rats.Int. J. Pharm.20052931-227128010.1016/j.ijpharm.2004.12.02515778065
    [Google Scholar]
  83. SungH.W. SonajeK. LiaoZ.X. HsuL.W. ChuangE.Y. pH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: From mechanism to therapeutic applications.Acc. Chem. Res.201245461962910.1021/ar200234q22236133
    [Google Scholar]
  84. SunS. LiangN. PiaoH. YamamotoH. KawashimaY. CuiF. Insulin-S.O (sodium oleate) complex-loaded PLGA nanoparticles: Formulation, characterization and in vivo evaluation.J. Microencapsul.201027647147810.3109/0265204090351549020113168
    [Google Scholar]
  85. CuiF. TaoA. CunD. ZhangL. ShiK. Preparation of insulin loaded PLGA-Hp55 nanoparticles for oral delivery.J. Pharm. Sci.200796242142710.1002/jps.2075017051590
    [Google Scholar]
  86. ChalasaniK.B. Russell-JonesG.J. YandrapuS.K. DiwanP.V. JainS.K. A novel vitamin B12-nanosphere conjugate carrier system for peroral delivery of insulin.J. Control. Release2007117342142910.1016/j.jconrel.2006.12.00317239471
    [Google Scholar]
  87. RajputS. MalviyaR. SridharS.B. Nanoparticle-based photodynamic therapy for targeted treatment of breast cancer.Nano Struct. Nano Objects20244010140510.1016/j.nanoso.2024.101405
    [Google Scholar]
  88. ReisC.P. VeigaF.J. RibeiroA.J. NeufeldR.J. DamgéC. Nanoparticulate biopolymers deliver insulin orally eliciting pharmacological response.J. Pharm. Sci.200897125290530510.1002/jps.2134718384153
    [Google Scholar]
  89. WoitiskiC.B. NeufeldR.J. VeigaF. CarvalhoR.A. FigueiredoI.V. Pharmacological effect of orally delivered insulin facilitated by multilayered stable nanoparticles.Eur. J. Pharm. Sci.2010413-455656310.1016/j.ejps.2010.08.00920800679
    [Google Scholar]
  90. GrafA. RadesT. HookS.M. Oral insulin delivery using nanoparticles based on microemulsions with different structure-types: Optimisation and in vivo evaluation.Eur. J. Pharm. Sci.2009371536110.1016/j.ejps.2008.12.01719167488
    [Google Scholar]
  91. BeissonF. TissA. RivièreC. VergerR. Methods for lipase detection and assay: A critical review.Eur. J. Lipid Sci. Technol.2000102213315310.1002/(SICI)1438‑9312(200002)102:2<133:AID‑EJLT133>3.0.CO;2‑X
    [Google Scholar]
  92. RawatM. SinghD. SarafS. SarafS. Nanocarriers: Promising vehicle for bioactive drugs.Biol. Pharm. Bull.20062991790179810.1248/bpb.29.179016946487
    [Google Scholar]
  93. ZhangN. PingQ. HuangG. XuW. ChengY. HanX. Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin.Int. J. Pharm.20063271-215315910.1016/j.ijpharm.2006.07.02616935443
    [Google Scholar]
  94. YangR. GaoR. LiF. HeH. TangX. The influence of lipid characteristics on the formation, in vitro release, and in vivo absorption of protein-loaded SLN prepared by the double emulsion process.Drug Dev. Ind. Pharm.201137213914810.3109/03639045.2010.49715120578879
    [Google Scholar]
  95. Mora-HuertasC.E. FessiH. ElaissariA. Polymer-based nanocapsules for drug delivery.Int. J. Pharm.20103851-211314210.1016/j.ijpharm.2009.10.01819825408
    [Google Scholar]
  96. VauthierC. LabarreD. PonchelG. Design aspects of poly(alkylcyanoacrylate) nanoparticles for drug delivery.J. Drug Target.2007151064166310.1080/1061186070160337218041633
    [Google Scholar]
  97. ShinE. JooS.H. YeomM.S. KwakS.K. Theoretical study on the stability of insulin within poly-isobutyl cyanoacrylate (PIBCA) nanocapsule.Mol. Simul.2019451189690310.1080/08927022.2019.1609671
    [Google Scholar]
  98. SajeeshS. SharmaC.P. Novel pH responsive polymethacrylic acid–chitosan–polyethylene glycol nanoparticles for oral peptide delivery.J. Biomed. Mater. Res. B Appl. Biomater.200676B229830510.1002/jbm.b.3037216130147
    [Google Scholar]
  99. Abd-AlhussainG.K. AlatrakjiM.Q.Y.M.A. AhmedS.J. FawziH.A. Efficacy of oral insulin nanoparticles for the management of hyperglycemia in a rat model of diabetes induced with streptozotocin.J. Med. Life202417221722510.25122/jml‑2023‑035538813352
    [Google Scholar]
  100. DamgéC. MaincentP. UbrichN. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats.J. Control. Release2007117216317010.1016/j.jconrel.2006.10.02317141909
    [Google Scholar]
  101. GuptaS. TejavathKK. Poly(alkyl cyanoacrylate): Advancement as nano delivery systems.Cancer Therapy.Amsterdam, NetherlandsElsevier202425326510.1016/B978‑0‑443‑15401‑0.00010‑5
    [Google Scholar]
  102. RanaA. MittalA. VashistC. RajputS. SridharS.B. MalviyaR. Exploration of 4D printing and its applications in the biomedical sciences.Curr. Pharm. Des.202510.2174/011381612835847325033117553640325819
    [Google Scholar]
  103. SarmentoB. RibeiroA. VeigaF. SampaioP. NeufeldR. FerreiraD. Alginate/chitosan nanoparticles are effective for oral insulin delivery.Pharm. Res.200724122198220610.1007/s11095‑007‑9367‑417577641
    [Google Scholar]
  104. WilkinsonR.G. MarmotM. Social determinants of health: The solid facts.United KingdomWorld Health Organization2003
    [Google Scholar]
  105. KernT.S. Interrelationships between the retinal neuroglia and vasculature in diabetes.Diabetes Metab. J.201438316317010.4093/dmj.2014.38.3.16325003068
    [Google Scholar]
  106. StemM. GardnerT. Neurodegeneration in the pathogenesis of diabetic retinopathy: Molecular mechanisms and therapeutic implications.Curr. Med. Chem.201320263241325010.2174/0929867311320999002723745549
    [Google Scholar]
  107. PayneA. KajaS. NaumchukY. KunjukunjuN. KoulenP. Antioxidant drug therapy approaches for neuroprotection in chronic diseases of the retina.Int. J. Mol. Sci.20141521865188610.3390/ijms1502186524473138
    [Google Scholar]
  108. OlaM.S. AhmedM.M. AhmadR. AbuohashishH.M. Al-RejaieS.S. AlhomidaA.S. Neuroprotective effects of rutin in streptozotocin-induced diabetic rat retina.J. Mol. Neurosci.201556244044810.1007/s12031‑015‑0561‑225929832
    [Google Scholar]
  109. OlaM.S. AbouammohM. KhanH.A. AlhomidaA.S. AlfaranM.F. OlaM.S. Novel drugs and their targets in the potential treatment of diabetic retinopathy.Med. Sci. Monit.20131930030810.12659/MSM.88389523619778
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575398397250827102455
Loading
/content/journals/mrmc/10.2174/0113895575398397250827102455
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): bioavailability; chronic disorder; Diabetes; insulin; nanoparticle; nanotechnology
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test