Skip to content
2000
image of Revolutionizing Diabetes Treatment with Insulin-loaded Nanoparticles

Abstract

Diabetes mellitus is a disease characterised by elevated blood glucose levels, with its major subtypes being type 1 (immune-mediated) and type 2 (lifestyle-related) diabetes. Medical treatment for diabetes requires patients to perform subcutaneous insulin injections since oral insulin faces problems with gastric breakdown. Nano-sized insulin delivery systems show great potential for oral usage because they protect the insulin molecule from enzymatic breakdown and enhance its absorption rates through the digestive system. The review article investigates the utilisation of insulin-loaded nanoparticles as an advanced treatment method for diabetes management. The data evaluates insulin-loaded nanoparticles for their impact on stability enhancement as well as their protective functions and improved oral bioavailability potential. The research reviewed the relevant literature on insulin-loaded nanoparticles as a treatment method for diabetes. The research articles were obtained through databases including ScienceDirect, Scopus, PubMed and Google Scholar. Studies about incorporating insulin with nanoparticles and their bioavailability features and therapeutic potential were analysed. The review demonstrates that insulin-loaded nanoparticles markedly improve insulin stability, bioavailability, and absorption, overcoming the challenges associated with oral insulin delivery. Diverse nanoparticle compositions, encompassing polymeric and lipid-based carriers, exhibit encouraging outcomes in preclinical investigations. Despite existing limitations in large-scale production and clinical application, nanotechnology presents a revolutionary method for diabetes treatment. Additional research and clinical studies are necessary to validate insulin-loaded nanoparticles as a feasible, patient-friendly substitute for traditional insulin therapy.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575398397250827102455
2025-09-16
2025-09-22
Loading full text...

Full text loading...

References

  1. Cho N.H. Shaw J.E. Karuranga S. Huang Y. da Rocha Fernandes J.D. Ohlrogge A.W. Malanda B. Diabetes Atlas I.D.F. IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018 138 271 281 10.1016/j.diabres.2018.02.023 29496507
    [Google Scholar]
  2. 8. Pharmacologic approaches to glycemic treatment: Standards of medical care in diabetes—2018. Diabetes Care 2018 41 Suppl. 1 S73 S85 10.2337/dc18‑S008 29222379
    [Google Scholar]
  3. Katsarou A. Gudbjörnsdottir S. Rawshani A. Dabelea D. Bonifacio E. Anderson B.J. Jacobsen L.M. Schatz D.A. Lernmark Å. Type 1 diabetes mellitus. Nat. Rev. Dis. Primers 2017 3 1 17016 10.1038/nrdp.2017.16 28358037
    [Google Scholar]
  4. Rajput S. Kumar Sharma P. Malviya R. Fluid mechanics in circulating tumour cells: Role in metastasis and treatment strategies. Med. Drug Discov 2023 18 100158 10.1016/j.medidd.2023.100158
    [Google Scholar]
  5. Russell-Jones D. Bawlchhim Z. Discovery of insulin 100 years on. Postgrad. Med. J. 2023 99 1173 661 668 10.1136/postgradmedj‑2022‑141651 37389580
    [Google Scholar]
  6. Puigserver P. Rhee J. Donovan J. Walkey C.J. Yoon J.C. Oriente F. Kitamura Y. Altomonte J. Dong H. Accili D. Spiegelman B.M. Insulin-regulated hepatic gluconeogenesis through FOXO1–PGC-1α interaction. Nature 2003 423 6939 550 555 10.1038/nature01667 12754525
    [Google Scholar]
  7. Liu H.Y. Han J. Cao S.Y. Hong T. Zhuo D. Shi J. Liu Z. Cao W. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: Inhibition of FoxO1-dependent expression of key autophagy genes by insulin. J. Biol. Chem. 2009 284 45 31484 31492 10.1074/jbc.M109.033936 19758991
    [Google Scholar]
  8. Fagan A. Bateman L.M. O’Shea J.P. Crean A.M. Elucidating the degradation pathways of human insulin in the solid state. J. Anal. Test. 2024 8 3 288 299 10.1007/s41664‑024‑00302‑5 39184306
    [Google Scholar]
  9. Girardot S. In vitro and in silico approach of continuous subcutaneous insulin infusion system reliability. Doctoral dissertation, Sorbonne Université 2021
    [Google Scholar]
  10. Fukuda M. Tanaka A. Tahara Y. Ikegami H. Yamamoto Y. Kumahara Y. Shima K. Correlation between minimal secretory capacity of pancreatic β-cells and stability of diabetic control. Diabetes 1988 37 1 81 88 10.2337/diab.37.1.81 3275557
    [Google Scholar]
  11. Cerf M.E. Beta cell dysfunction and insulin resistance. Front. Endocrinol. 2013 4 37 10.3389/fendo.2013.00037 23542897
    [Google Scholar]
  12. Linn T. Ebner K. Schneider K. Discher T. Kreuter J. Raptis G. Laube H. A One-year study of newly Manifested Type-I Diabetes- mellitus under tight glucose control. Med. Welt 1994 45 3 57 61
    [Google Scholar]
  13. Rosenfeld L. Insulin: Discovery and controversy. Clin. Chem. 2002 48 12 2270 2288 10.1093/clinchem/48.12.2270 12446492
    [Google Scholar]
  14. Verma A. Kumar N. Malviya R. Sharma P.K. Emerging trends in non-invasive insulin delivery. J. Pharm. 2014 2014 1 378048 [PMID: 26556194
    [Google Scholar]
  15. Doyle-Delgado K. Chamberlain J.J. Shubrook J.H. Skolnik N. Trujillo J. Pharmacologic approaches to glycemic treatment of type 2 diabetes: Synopsis of the 2020 American diabetes association’s standards of medical care in diabetes clinical guideline. Ann. Intern. Med. 2020 173 10 813 821 10.7326/M20‑2470 32866414
    [Google Scholar]
  16. Baghban Taraghdari Z. Imani R. Mohabatpour F. A review on bioengineering approaches to insulin delivery: A pharmaceutical and engineering perspective. Macromol. Biosci. 2019 19 4 1800458 10.1002/mabi.201800458 30614193
    [Google Scholar]
  17. Kondiah P.P.D. Choonara Y.E. Tomar L.K. Tyagi C. Kumar P. du Toit L.C. Marimuthu T. Modi G. Pillay V. Development of a gastric absorptive, immediate responsive, oral protein-loaded versatile polymeric delivery system. AAPS PharmSciTech 2017 18 7 2479 2493 10.1208/s12249‑017‑0725‑1 28205143
    [Google Scholar]
  18. Rajput S. Sharma P.K. Malviya R. Biomarkers and treatment strategies for breast cancer recurrence. Curr. Drug Targets 2023 24 15 1209 1220 10.2174/0113894501258059231103072025 38164731
    [Google Scholar]
  19. Kumari A. Yadav S.K. Yadav S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces 2010 75 1 1 18 10.1016/j.colsurfb.2009.09.001 19782542
    [Google Scholar]
  20. Joshi H.M. Bhumkar D.R. Joshi K. Pokharkar V. Sastry M. Gold nanoparticles as carriers for efficient transmucosal insulin delivery. Langmuir 2006 22 1 300 305 10.1021/la051982u 16378435
    [Google Scholar]
  21. Zhao X. Zu Y. Zu S. Wang D. Zhang Y. Zu B. Insulin nanoparticles for transdermal delivery: Preparation and physicochemical characterization and in vitro evaluation. Drug Dev. Ind. Pharm. 2010 36 10 1177 1185 10.3109/03639041003695089 20367030
    [Google Scholar]
  22. Wong C.Y. Martinez J. Dass C.R. Oral delivery of insulin for treatment of diabetes: Status quo, challenges and opportunities. J. Pharm. Pharmacol. 2016 68 9 1093 1108 10.1111/jphp.12607 27364922
    [Google Scholar]
  23. Adler A.I. Stevens R.J. Manley S.E. Bilous R.W. Cull C.A. Holman R.R. Development and progression of nephropathy in type 2 diabetes: The United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int. 2003 63 1 225 232 10.1046/j.1523‑1755.2003.00712.x 12472787
    [Google Scholar]
  24. Albanese A. Tang P.S. Chan W.C.W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012 14 1 1 16 10.1146/annurev‑bioeng‑071811‑150124 22524388
    [Google Scholar]
  25. Dreaden E.C. Alkilany A.M. Huang X. Murphy C.J. El-Sayed M.A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012 41 7 2740 2779 10.1039/C1CS15237H 22109657
    [Google Scholar]
  26. Elsabahy M. Wooley K.L. Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 2012 41 7 2545 2561 10.1039/c2cs15327k 22334259
    [Google Scholar]
  27. Kamaly N. Xiao Z. Valencia P.M. Radovic-Moreno A.F. Farokhzad O.C. Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chem. Soc. Rev. 2012 41 7 2971 3010 10.1039/c2cs15344k 22388185
    [Google Scholar]
  28. Mehmood A. Ghafar H. Yaqoob S. Gohar U.F. Ahmad B. Mesoporous silica nanoparticles: A review. J. Dev. Drugs 2017 6 2 100174 10.4172/2329‑6631.1000174
    [Google Scholar]
  29. Eifler AC. Thaxton, CS Nanoparticle therapeutics: FDA approval, clinical trials, regulatory pathways, and case study. Methods Mol. Biol. 2011 726 325 338 10.1007/978‑1‑61779‑052‑2_21 21424459
    [Google Scholar]
  30. Csajbók É.A. Tamás G. Cerebral cortex: A target and source of insulin? Diabetologia, 2016 59 (8) 1609 1615 10.1007/s00125‑016‑3996‑2 27207082
    [Google Scholar]
  31. Kaufman B.A. Li C. Soleimanpour S.A. Mitochondrial regulation of β-cell function: Maintaining the momentum for insulin release. Mol. Aspects Med. 2015 42 91 104 10.1016/j.mam.2015.01.004 25659350
    [Google Scholar]
  32. Yang B.Y. Zhai G. Gong Y.L. Su J.Z. Peng X.Y. Shang G.H. Han D. Jin J.Y. Liu H.K. Du Z.Y. Yin Z. Xie S.Q. Different physiological roles of insulin receptors in mediating nutrient metabolism in zebrafish. Am. J. Physiol. Endocrinol. Metab. 2018 315 1 E38 E51 10.1152/ajpendo.00227.2017 29351486
    [Google Scholar]
  33. Farese R.V. Sajan M.P. Standaert M.L. Atypical protein kinase C in insulin action and insulin resistance. Biochem. Soc. Trans. 2005 33 2 350 353 10.1042/BST0330350 15787604
    [Google Scholar]
  34. Taniguchi C.M. Emanuelli B. Kahn C.R. Critical nodes in signalling pathways: Insights into insulin action. Nat. Rev. Mol. Cell Biol. 2006 7 2 85 96 10.1038/nrm1837 16493415
    [Google Scholar]
  35. Vasiljević J. Torkko J.M. Knoch K.P. Solimena M. The making of insulin in health and disease. Diabetologia 2020 63 10 1981 1989 10.1007/s00125‑020‑05192‑7 32894308
    [Google Scholar]
  36. Davidovici B.B. Sattar N. Jörg P.C. Puig L. Emery P. Barker J.N. van de Kerkhof P. Ståhle M. Nestle F.O. Girolomoni G. Krueger J.G. Psoriasis and systemic inflammatory diseases: Potential mechanistic links between skin disease and co-morbid conditions. J. Invest. Dermatol. 2010 130 7 1785 1796 10.1038/jid.2010.103 20445552
    [Google Scholar]
  37. Sun L. Wang D. Feng K. Zhang J.A. Gao W. Zhang L. Cell membrane-coated nanoparticles for targeting carcinogenic bacteria. Adv. Drug Deliv. Rev. 2024 209 115320 10.1016/j.addr.2024.115320 38643841
    [Google Scholar]
  38. Wang B. Yang Y. Li X. Interaction of hypertension and insulin resistance exacerbates the occurrence of diabetes mellitus in healthy individuals. J. Diabetes Res. 2022 2022 1 1 7 10.1155/2022/9289812 35493612
    [Google Scholar]
  39. Haywood N.J. Slater T.A. Matthews C.J. Wheatcroft S.B. The insulin like growth factor and binding protein family: Novel therapeutic targets in obesity & diabetes. Mol. Metab. 2019 19 86 96 10.1016/j.molmet.2018.10.008 30392760
    [Google Scholar]
  40. Semwal D.K. Kumar A. Aswal S. Chauhan A. Semwal R.B. Protective and therapeutic effects of natural products against diabetes mellitus via regenerating pancreatic β ‐cells and restoring their dysfunction. Phytother. Res. 2021 35 3 1218 1229 10.1002/ptr.6885 32987447
    [Google Scholar]
  41. Rorsman P. Braun M. Regulation of insulin secretion in human pancreatic islets. Annu. Rev. Physiol. 2013 75 1 155 179 10.1146/annurev‑physiol‑030212‑183754 22974438
    [Google Scholar]
  42. Beauloye V. Muaku S. Lause P. Portetelle D. Renaville R. Stroobants A. Ketelslegers J. Maiter D. Monoclonal antibodies to growth hormone (GH) prolong liver GH binding and GH-induced IGF-I/IGFBP-3 synthesis. Am. J. Physiol. Endocrinol. Metab. 1999 277 2 E308 E315 10.1152/ajpendo.1999.277.2.e308
    [Google Scholar]
  43. McCulloch L.J. van de Bunt M. Braun M. Frayn K.N. Clark A. Gloyn A.L. GLUT2 (SLC2A2) is not the principal glucose transporter in human pancreatic beta cells: Implications for understanding genetic association signals at this locus. Mol. Genet. Metab. 2011 104 4 648 653 10.1016/j.ymgme.2011.08.026 21920790
    [Google Scholar]
  44. Rajput S. Malviya R. Uniyal P. Advancements in the diagnosis, prognosis, and treatment of retinoblastoma. Can. J. Ophthalmol. 2024 59 5 281 299 10.1016/j.jcjo.2024.01.018 38369298
    [Google Scholar]
  45. Kampmann U. Hoeyem P. Mengel A. Schmitz O. Rungby J. Orskov L. Møller N. Insulin dose-response studies in severely insulin-resistant type 2 diabetes-evidence for effectiveness of very high insulin doses. Diabetes Obes. Metab. 2011 13 6 511 516 10.1111/j.1463‑1326.2011.01373.x 21272188
    [Google Scholar]
  46. Clarke P.M. Gray A.M. Briggs A. Farmer A.J. Fenn P. Stevens R.J. Matthews D.R. Stratton I.M. Holman R.R. A model to estimate the lifetime health outcomes of patients with Type 2 diabetes: The United Kingdom Prospective Diabetes Study (UKPDS) Outcomes Model (UKPDS no. 68). Diabetologia 2004 47 10 1747 1759 10.1007/s00125‑004‑1527‑z 15517152
    [Google Scholar]
  47. Matschinsky F.M. Regulation of pancreatic β-cell glucokinase: From basics to therapeutics. Diabetes 2002 51 Suppl. 3 S394 S404 10.2337/diabetes.51.2007.S394 12475782
    [Google Scholar]
  48. Lamontagne J. Pepin É. Peyot M.L. Joly É. Ruderman N.B. Poitout V. Madiraju S.R.M. Nolan C.J. Prentki M. Pioglitazone acutely reduces insulin secretion and causes metabolic deceleration of the pancreatic β-cell at submaximal glucose concentrations. Endocrinology 2009 150 8 3465 3474 10.1210/en.2008‑1557 19406947
    [Google Scholar]
  49. Gutiérrez-Rodelo C. Roura-Guiberna A. Olivares-Reyes J.A. Molecular mechanisms of insulin resistance: An update. Gac. Med. Mex. 2017 153 2 214 228 [PMID: 28474708
    [Google Scholar]
  50. Kaufman F.R. Gibson L.C. Halvorson M. Carpenter S. Fisher L.K. Pitukcheewanont P. A pilot study of the continuous glucose monitoring system: Clinical decisions and glycemic control after its use in pediatric type 1 diabetic subjects. Diabetes Care 2001 24 12 2030 2034 10.2337/diacare.24.12.2030 11723078
    [Google Scholar]
  51. Kelly J.L. Hirsch I.B. Trence D.L. Rapid decrease in clinically significant hypoglycemia with insulin glargine. Diabetes 2002 51 2 A123 10.2337/diabetes.51.2.A123
    [Google Scholar]
  52. Lu Y. Xu J. Li Y. Wang R. Dai C. Zhang B. Zhang X. Xu L. Tao Y. Han M. Guo R. Wu Q. Wu L. Meng Z. Tan M. Li J. DRAK2 suppresses autophagy by phosphorylating ULK1 at Ser 56 to diminish pancreatic β cell function upon overnutrition. Sci. Transl. Med. 2024 16 733 eade8647 10.1126/scitranslmed.ade8647 38324636
    [Google Scholar]
  53. Roden M. Petersen K. Shulman G. Insulin resistance in type 2 diabetes. In: Textbook of Diabetes, 5th ed; Holt, R.I.; Cockram, C.; Flyvbjerg, A.; Goldstein, B.J., Eds.; : New York City, NY, USA 2017 174 186 10.1002/9781118924853.ch13
    [Google Scholar]
  54. Kostov K. Effects of magnesium deficiency on mechanisms of insulin resistance in type 2 diabetes: Focusing on the processes of insulin secretion and signalling. Int. J. Mol. Sci. 2019 20 6 1351 10.3390/ijms20061351 30889804
    [Google Scholar]
  55. Singh J. Bidasee K.R. Adeghate E. Howarth C.F. D’Souza A. Singh R.B. Left ventricle structural remodelling in prediabetes and overt type 2 diabetes mellitus in the Goto-Kakizaki rat. World Heart J. 2017 9 1
    [Google Scholar]
  56. Rubino F. Batterham R.L. Koch M. Mingrone G. le Roux C.W. Farooqi I.S. Farpour-Lambert N. Gregg E.W. Cummings D.E. Lancet diabetes & endocrinology commission on the definition and diagnosis of clinical obesity. Lancet Diabetes Endocrinol. 2023 11 4 226 228 10.1016/S2213‑8587(23)00058‑X 36878238
    [Google Scholar]
  57. Angelidi A.M. Filippaios A. Mantzoros C.S. Severe insulin resistance syndromes. J. Clin. Invest. 2021 131 4 142245 10.1172/JCI142245 33586681
    [Google Scholar]
  58. Thorens B. Brain glucose sensing and neural regulation of insulin and glucagon secretion. Diabetes Obes. Metab. 2011 13 s1 82 88 10.1111/j.1463‑1326.2011.01453.x 21824260
    [Google Scholar]
  59. Binder G. Seidel A.K. Martin D.D. Schweizer R. Schwarze C.P. Wollmann H.A. Eggermann T. Ranke M.B. The endocrine phenotype in silver-russell syndrome is defined by the underlying epigenetic alteration. J. Clin. Endocrinol. Metab. 2008 93 4 1402 1407 10.1210/jc.2007‑1897 18230663
    [Google Scholar]
  60. LeRoith D. McGuinness M. Shemer J. Stannard B. Lanau F. Faria T.N. Kato H. Werner H. Adamo M. Roberts C.T. Insulin-like growth factors. Neurosignals 1992 1 4 173 181 10.1159/000109323 1307923
    [Google Scholar]
  61. Santoleri D. Titchenell P.M. Resolving the paradox of hepatic insulin resistance. Cell. Mol. Gastroenterol. Hepatol. 2019 7 2 447 456 10.1016/j.jcmgh.2018.10.016 30739869
    [Google Scholar]
  62. Titchenell P.M. Quinn W.J. Lu M. Chu Q. Lu W. Li C. Chen H. Monks B.R. Chen J. Rabinowitz J.D. Birnbaum M.J. Direct hepatocyte insulin signaling is required for lipogenesis but is dispensable for the suppression of glucose production. Cell Metab. 2016 23 6 1154 1166 10.1016/j.cmet.2016.04.022 27238637
    [Google Scholar]
  63. Handelsman Y. Bloomgarden Z.T. Grunberger G. Umpierrez G. Zimmerman R.S. Bailey T.S. Blonde L. Bray G.A. Cohen A.J. Dagogo-Jack S. Davidson J.A. Einhorn D. Ganda O.P. Garber A.J. Garvey W.T. Henry R.R. Hirsch I.B. Horton E.S. Hurley D.L. Jellinger P.S. Jovanovič L. Lebovitz H.E. LeRoith D. Levy P. McGill J.B. Mechanick J.I. Mestman J.H. Moghissi E.S. Orzeck E.A. Pessah-Pollack R. Rosenblit P.D. Vinik A.I. Wyne K. Zangeneh F. American association of clinical endocrinologists and american college of endocrinology–clinical practice guidelines for developing a diabetes mellitus comprehensive care plan–2015—executive summary. Endocr. Pract. 2015 21 4 413 437 10.4158/EP15672.GL 27408942
    [Google Scholar]
  64. Nathan D.M. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: Overview. Diabetes Care 2014 37 1 9 16 10.2337/dc13‑2112 24356592
    [Google Scholar]
  65. Lee S.H. Park S.Y. Choi C.S. Insulin resistance: From mechanisms to therapeutic strategies. Diabetes Metab. J. 2022 46 1 15 37 10.4093/dmj.2021.0280 34965646
    [Google Scholar]
  66. Mobasseri M. Shirmohammadi M. Amiri T. Vahed N. Hosseini Fard H. Ghojazadeh M. Prevalence and incidence of type 1 diabetes in the world: A systematic review and meta-analysis. Health Promot. Perspect. 2020 10 2 98 115 10.34172/hpp.2020.18 32296622
    [Google Scholar]
  67. Rajput S. Malviya R. Srivastava S. Ahmad I. Rab S.O. Uniyal P. Cardiovascular disease and thrombosis: Intersections with the immune system, inflammation, and the coagulation system. Ann. Pharm. Fr. 2025 83 2 228 250 10.1016/j.pharma.2024.08.005
    [Google Scholar]
  68. Dabelea D. Rewers A. Stafford J.M. Standiford D.A. Lawrence J.M. Saydah S. Imperatore G. D’Agostino R.B. Mayer-Davis E.J. Pihoker C. Trends in the prevalence of ketoacidosis at diabetes diagnosis: The SEARCH for diabetes in youth study. Pediatrics 2014 133 4 e938 e945 10.1542/peds.2013‑2795 24685959
    [Google Scholar]
  69. Steck A.K. Eisenbarth G.S. Genetic similarities between latent autoimmune diabetes and type 1 and type 2 diabetes. Diabetes 2008 57 5 1160 1162 10.2337/db07‑1786 18443373
    [Google Scholar]
  70. Jacobsen L.M. Bundy B.N. Greco M.N. Schatz D.A. Atkinson M.A. Brusko T.M. Mathews C.E. Herold K.C. Gitelman S.E. Krischer J.P. Haller M.J. Comparing beta cell preservation across clinical trials in recent-onset type 1 diabetes. Diabetes Technol. Ther. 2020 22 12 948 953 10.1089/dia.2020.0305 32833543
    [Google Scholar]
  71. Bach J.F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 2002 347 12 911 920 10.1056/NEJMra020100 12239261
    [Google Scholar]
  72. Collado-Mesa F. Diaz-Diaz O. Ashkenazi I. Laron Z. Seasonality of birth and Type 1 diabetes onset in children (0–14 years) in Cuba. Diabet. Med. 2001 18 11 939 940 10.1046/j.1464‑5491.2001.00590‑3.x 11703443
    [Google Scholar]
  73. Borba V.V. Lerner A. Matthias T. Shoenfeld Y. Bovine milk proteins as a trigger for autoimmune diseases: Myth or reality. Int. J. 2020 8 1 10 21
    [Google Scholar]
  74. Shan W. Zhu X. Liu M. Li L. Zhong J. Sun W. Zhang Z. Huang Y. Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin. ACS Nano 2015 9 3 2345 2356 10.1021/acsnano.5b00028 25658958
    [Google Scholar]
  75. Wu Z.M. Zhou L. Guo X.D. Jiang W. Ling L. Qian Y. Luo K.Q. Zhang L.J. HP55-coated capsule containing PLGA/RS nanoparticles for oral delivery of insulin. Int. J. Pharm. 2012 425 1-2 1 8 10.1016/j.ijpharm.2011.12.055 22248666
    [Google Scholar]
  76. Bera S. Naskar A. Jana S. Inorganic-organic hybrid nanocomposite for biomedical applications. Adv. Mater. 2017 24 13 1748 1754
    [Google Scholar]
  77. Li L. Jiang G. Yu W. Liu D. Chen H. Liu Y. Tong Z. Kong X. Yao J. Preparation of chitosan-based multifunctional nanocarriers overcoming multiple barriers for oral delivery of insulin. Mater. Sci. Eng. C 2017 70 Pt 1 278 286 10.1016/j.msec.2016.08.083 27770892
    [Google Scholar]
  78. Lin Y.H. Chen C.T. Liang H.F. Kulkarni A.R. Lee P.W. Chen C.H. Sung H.W. Novel nanoparticles for oral insulin delivery via the paracellular pathway. Nanotechnology 2007 18 10 105102 10.1088/0957‑4484/18/10/105102
    [Google Scholar]
  79. Sabbagh F. Muhamad I.I. Niazmand R. Dikshit P.K. Kim B.S. Recent progress in polymeric non-invasive insulin delivery. Int. J. Biol. Macromol. 2022 203 222 243 10.1016/j.ijbiomac.2022.01.134 35101478
    [Google Scholar]
  80. Lee V. Peptide and protein drug delivery. Boca Raton, Florida Crc Press 2024 10.1201/9781003573715
    [Google Scholar]
  81. Ulluwishewa D. Anderson R.C. McNabb W.C. Moughan P.J. Wells J.M. Roy N.C. Regulation of tight junction permeability by intestinal bacteria and dietary components. J. Nutr. 2011 141 5 769 776 10.3945/jn.110.135657 21430248
    [Google Scholar]
  82. Ma Z. Lim T.M. Lim L.Y. Pharmacological activity of peroral chitosan–insulin nanoparticles in diabetic rats. Int. J. Pharm. 2005 293 1-2 271 280 10.1016/j.ijpharm.2004.12.025 15778065
    [Google Scholar]
  83. Sung H.W. Sonaje K. Liao Z.X. Hsu L.W. Chuang E.Y. pH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: From mechanism to therapeutic applications. Acc. Chem. Res. 2012 45 4 619 629 10.1021/ar200234q 22236133
    [Google Scholar]
  84. Sun S. Liang N. Piao H. Yamamoto H. Kawashima Y. Cui F. Insulin-S.O (sodium oleate) complex-loaded PLGA nanoparticles: Formulation, characterization and in vivo evaluation. J. Microencapsul. 2010 27 6 471 478 10.3109/02652040903515490 20113168
    [Google Scholar]
  85. Cui F. Tao A. Cun D. Zhang L. Shi K. Preparation of insulin loaded PLGA-Hp55 nanoparticles for oral delivery. J. Pharm. Sci. 2007 96 2 421 427 10.1002/jps.20750 17051590
    [Google Scholar]
  86. Chalasani K.B. Russell-Jones G.J. Yandrapu S.K. Diwan P.V. Jain S.K. A novel vitamin B12-nanosphere conjugate carrier system for peroral delivery of insulin. J. Control. Release 2007 117 3 421 429 10.1016/j.jconrel.2006.12.003 17239471
    [Google Scholar]
  87. Rajput S. Malviya R. Sridhar S.B. Nanoparticle-based photodynamic therapy for targeted treatment of breast cancer. Nano Struct. Nano Objects 2024 40 101405 10.1016/j.nanoso.2024.101405
    [Google Scholar]
  88. Reis C.P. Veiga F.J. Ribeiro A.J. Neufeld R.J. Damgé C. Nanoparticulate biopolymers deliver insulin orally eliciting pharmacological response. J. Pharm. Sci. 2008 97 12 5290 5305 10.1002/jps.21347 18384153
    [Google Scholar]
  89. Woitiski C.B. Neufeld R.J. Veiga F. Carvalho R.A. Figueiredo I.V. Pharmacological effect of orally delivered insulin facilitated by multilayered stable nanoparticles. Eur. J. Pharm. Sci. 2010 41 3-4 556 563 10.1016/j.ejps.2010.08.009 20800679
    [Google Scholar]
  90. Graf A. Rades T. Hook S.M. Oral insulin delivery using nanoparticles based on microemulsions with different structure-types: Optimisation and in vivo evaluation. Eur. J. Pharm. Sci. 2009 37 1 53 61 10.1016/j.ejps.2008.12.017 19167488
    [Google Scholar]
  91. Beisson F. Tiss A. Rivière C. Verger R. Methods for lipase detection and assay: A critical review. Eur. J. Lipid Sci. Technol. 2000 102 2 133 153 10.1002/(SICI)1438‑9312(200002)102:2<133:AID‑EJLT133>3.0.CO;2‑X
    [Google Scholar]
  92. Rawat M. Singh D. Saraf S. Saraf S. Nanocarriers: Promising vehicle for bioactive drugs. Biol. Pharm. Bull. 2006 29 9 1790 1798 10.1248/bpb.29.1790 16946487
    [Google Scholar]
  93. Zhang N. Ping Q. Huang G. Xu W. Cheng Y. Han X. Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int. J. Pharm. 2006 327 1-2 153 159 10.1016/j.ijpharm.2006.07.026 16935443
    [Google Scholar]
  94. Yang R. Gao R. Li F. He H. Tang X. The influence of lipid characteristics on the formation, in vitro release, and in vivo absorption of protein-loaded SLN prepared by the double emulsion process. Drug Dev. Ind. Pharm. 2011 37 2 139 148 10.3109/03639045.2010.497151 20578879
    [Google Scholar]
  95. Mora-Huertas C.E. Fessi H. Elaissari A. Polymer-based nanocapsules for drug delivery. Int. J. Pharm. 2010 385 1-2 113 142 10.1016/j.ijpharm.2009.10.018 19825408
    [Google Scholar]
  96. Vauthier C. Labarre D. Ponchel G. Design aspects of poly(alkylcyanoacrylate) nanoparticles for drug delivery. J. Drug Target. 2007 15 10 641 663 10.1080/10611860701603372 18041633
    [Google Scholar]
  97. Shin E. Joo S.H. Yeom M.S. Kwak S.K. Theoretical study on the stability of insulin within poly-isobutyl cyanoacrylate (PIBCA) nanocapsule. Mol. Simul. 2019 45 11 896 903 10.1080/08927022.2019.1609671
    [Google Scholar]
  98. Sajeesh S. Sharma C.P. Novel pH responsive polymethacrylic acid–chitosan–polyethylene glycol nanoparticles for oral peptide delivery. J. Biomed. Mater. Res. B Appl. Biomater. 2006 76B 2 298 305 10.1002/jbm.b.30372 16130147
    [Google Scholar]
  99. Abd-Alhussain G.K. Alatrakji M.Q.Y.M.A. Ahmed S.J. Fawzi H.A. Efficacy of oral insulin nanoparticles for the management of hyperglycemia in a rat model of diabetes induced with streptozotocin. J. Med. Life 2024 17 2 217 225 10.25122/jml‑2023‑0355 38813352
    [Google Scholar]
  100. Damgé C. Maincent P. Ubrich N. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J. Control. Release 2007 117 2 163 170 10.1016/j.jconrel.2006.10.023 17141909
    [Google Scholar]
  101. Gupta S. Tejavath K.K. Poly(alkyl cyanoacrylate): Advancement as nano delivery systems. In:Cancer Therapy. Amsterdam, Netherlands Elsevier 2024 253 265 10.1016/B978‑0‑443‑15401‑0.00010‑5
    [Google Scholar]
  102. Rana A. Mittal A. Vashist C. Rajput S. Sridhar S.B. Malviya R. Exploration of 4D printing and its applications in the biomedical sciences. Curr. Pharm. Des. 2025 10.2174/0113816128358473250331175536 40325819
    [Google Scholar]
  103. Sarmento B. Ribeiro A. Veiga F. Sampaio P. Neufeld R. Ferreira D. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm. Res. 2007 24 12 2198 2206 10.1007/s11095‑007‑9367‑4 17577641
    [Google Scholar]
  104. Wilkinson R.G. Marmot M. Social determinants of health: The solid facts. United Kingdom World Health Organization 2003
    [Google Scholar]
  105. Kern T.S. Interrelationships between the retinal neuroglia and vasculature in diabetes. Diabetes Metab. J. 2014 38 3 163 170 10.4093/dmj.2014.38.3.163 25003068
    [Google Scholar]
  106. Stem M. Gardner T. Neurodegeneration in the pathogenesis of diabetic retinopathy: Molecular mechanisms and therapeutic implications. Curr. Med. Chem. 2013 20 26 3241 3250 10.2174/09298673113209990027 23745549
    [Google Scholar]
  107. Payne A. Kaja S. Naumchuk Y. Kunjukunju N. Koulen P. Antioxidant drug therapy approaches for neuroprotection in chronic diseases of the retina. Int. J. Mol. Sci. 2014 15 2 1865 1886 10.3390/ijms15021865 24473138
    [Google Scholar]
  108. Ola M.S. Ahmed M.M. Ahmad R. Abuohashish H.M. Al-Rejaie S.S. Alhomida A.S. Neuroprotective effects of rutin in streptozotocin-induced diabetic rat retina. J. Mol. Neurosci. 2015 56 2 440 448 10.1007/s12031‑015‑0561‑2 25929832
    [Google Scholar]
  109. Ola M.S. Abouammoh M. Khan H.A. Alhomida A.S. Alfaran M.F. Ola M.S. Novel drugs and their targets in the potential treatment of diabetic retinopathy. Med. Sci. Monit. 2013 19 300 308 10.12659/MSM.883895 23619778
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575398397250827102455
Loading
/content/journals/mrmc/10.2174/0113895575398397250827102455
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: scopus ; nanotechnology ; nanoparticle ; insulin ; Diabetes ; bioavailability
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test