Skip to content
2000
Volume 25, Issue 12
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

This mini-review summarizes the structure-property relationships of seven small-molecule drugs approved in 2024, providing insights into effective lead-to-candidate optimization strategies. The analysis focused on aprocitentan, flurpiridaz F-18, inavolisib, vorasidenib, ensitrelvir, golidocitinib, and zorifertinib, highlighting the key structural modifications that enhanced their drug-like properties. Notable optimization strategies included the strategic use of five- and six-membered nitrogen-containing heterocycles as cyclic bioisosteres and solubilizing groups. For the kinase inhibitor golidocitinib, the unique position of a solubilizing group within the binding pocket achieved dual benefits, , enhanced target selectivity and physicochemical properties. When developing central nervous system-penetrant drugs such as zorifertinib, careful control of rotatable bonds, hydrogen bond donors, and molecular lipophilicity was critical for optimizing blood-brain barrier penetration while remaining suitable for oral administration. These findings on structure-property relationships offer valuable guidance for future drug development, particularly in addressing challenges related to solubility, bioavailability, and tissue-specific drug distribution.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575390155250711072709
2025-07-22
2025-11-01
Loading full text...

Full text loading...

References

  1. MohsR.C. GreigN.H. Drug discovery and development: Role of basic biological research.Alzheimers Dement. (N. Y.)20173465165710.1016/j.trci.2017.10.005 29255791
    [Google Scholar]
  2. VealeC.G.L. Into the fray! A beginner’s guide to medicinal chemistry.ChemMedChem20211681199122510.1002/cmdc.202000929 33591595
    [Google Scholar]
  3. MeanwellN.A. Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety.Chem. Res. Toxicol.20112491420145610.1021/tx200211v 21790149
    [Google Scholar]
  4. PoongavanamV. DoakB.C. KihlbergJ. Opportunities and guidelines for discovery of orally absorbed drugs in beyond rule of 5 space.Curr. Opin. Chem. Biol.201844232910.1016/j.cbpa.2018.05.010 29803972
    [Google Scholar]
  5. PenningtonL.D. HesseM.J. KoesterD.C. McAteeR.C. QuniesA.M. HuD.X. Property-based drug design merits a Nobel prize.J. Med. Chem.20246714114521145810.1021/acs.jmedchem.4c01345 38940466
    [Google Scholar]
  6. DiL. KernsE.H. Drug-Like Properties: Concepts, Structure Design and Methods from ADME to Toxicity Optimization.2nd edAcademic Press201610.1016/C2013‑0‑18378‑X
    [Google Scholar]
  7. SchniderP. Overview of strategies for solving ADMET challenges The Medicinal Chemist’s Guide to Solving ADMET Challenges.The Royal Society of Chemistry202111510.1039/9781788016414
    [Google Scholar]
  8. GunaydinH. AltmanM.D. EllisJ.M. FullerP. JohnsonS.A. LahueB. LapointeB. Strategy for extending half-life in drug design and its significance.ACS Med. Chem. Lett.20189652853310.1021/acsmedchemlett.8b00018 29937977
    [Google Scholar]
  9. ChoiK. Structure-property relationships reported for the new drugs approved in 2022.Mini Rev. Med. Chem.202424333034010.2174/1389557523666230519162803 37211842
    [Google Scholar]
  10. ChoiK. Structure-property relationships reported for the new drugs approved in 2023.Mini Rev. Med. Chem.202424201822183310.2174/0113895575308674240415074629 38676492
    [Google Scholar]
  11. MullardA. 2024 FDA approvals.Nat. Rev. Drug Discov.2025242758210.1038/d41573‑025‑00001‑5 39747473
    [Google Scholar]
  12. US Food and Drug Administration Novel drug approvals.2024Available from: https://www.fda.gov/drugs/novel-drug-approvals-fda/novel-drug-approvals-2024
    [Google Scholar]
  13. BlazekO. BakrisG.L. A review of novel endothelin antagonists and overview of non-steroidal mineralocorticoid antagonists for treating resistant hypertension: An update.Eur. J. Pharmacol.202497917675210.1016/j.ejphar.2024.176752 39047966
    [Google Scholar]
  14. XuJ. JiangX. XuS. Aprocitentan, a dual endothelin-1 (ET-1) antagonist for treating resistant hypertension: Mechanism of action and therapeutic potential.Drug Discov. Today2023281110378810.1016/j.drudis.2023.103788 37742911
    [Google Scholar]
  15. YaoY. FanB. YangB. JiaZ. LiB. Aprocitentan: A new development of resistant hypertension.J. Clin. Hypertens. (Greenwich)202325758759010.1111/jch.14686 37334561
    [Google Scholar]
  16. BossC. BolliM.H. GatfieldJ. From bosentan (Tracleer®) to macitentan (Opsumit®): The medicinal chemistry perspective.Bioorg. Med. Chem. Lett.201626153381339410.1016/j.bmcl.2016.06.014 27321813
    [Google Scholar]
  17. BolliM.H. BossC. BinkertC. BuchmannS. BurD. HessP. IglarzM. MeyerS. ReinJ. ReyM. TreiberA. ClozelM. FischliW. WellerT. The discovery of N-[5-(4-bromophenyl)-6-[2-[(5-bromo-2-pyrimidinyl)oxy]ethoxy]-4-pyrimidinyl]-N′-propylsulfamide (Macitentan), an orally active, potent dual endothelin receptor antagonist.J. Med. Chem.201255177849786110.1021/jm3009103 22862294
    [Google Scholar]
  18. IglarzM. BinkertC. MorrisonK. FischliW. GatfieldJ. TreiberA. WellerT. BolliM.H. BossC. BuchmannS. CapeletoB. HessP. QiuC. ClozelM. Pharmacology of macitentan, an orally active tissue-targeting dual endothelin receptor antagonist.J. Pharmacol. Exp. Ther.2008327373674510.1124/jpet.108.142976 18780830
    [Google Scholar]
  19. HouJ. LiuS. ZhangX. TuG. WuL. ZhangY. YangH. LiX. LiuJ. JiangL. TanQ. BaiF. LiuZ. MiaoC. HuaT. LuoZ. Structural basis of antagonist selectivity in endothelin receptors.Cell Discov.20241017910.1038/s41421‑024‑00705‑9 39075075
    [Google Scholar]
  20. SidhartaP.N. van GiersbergenP.L.M. HalabiA. DingemanseJ. Macitentan: Entry-into-humans study with a new endothelin receptor antagonist.Eur. J. Clin. Pharmacol.2011671097798410.1007/s00228‑011‑1043‑2 21541781
    [Google Scholar]
  21. SidhartaP. MelchiorM. KankamM.K. DingemanseJ. Single- and multiple-dose tolerability, safety, pharmacokinetics, and pharmacodynamics of the dual endothelin receptor antagonist aprocitentan in healthy adult and elderly subjects.Drug Des. Devel. Ther.20191394996410.2147/DDDT.S199051 30962677
    [Google Scholar]
  22. SidhartaP.N. FischerH. DingemanseJ. Absorption, distribution, metabolism, and excretion of aprocitentan, a dual endothelin receptor antagonist, in humans.Curr. Drug Metab.202122539941010.2174/1389200222666210204202815 33563190
    [Google Scholar]
  23. SchlaichM.P. BelletM. WeberM.A. DanaietashP. BakrisG.L. FlackJ.M. DreierR.F. Sassi-SayadiM. HaskellL.P. NarkiewiczK. WangJ.G. ReidC. SchlaichM. KatzI. AjaniA. BiswasS. EslerM. ElderG. RogerS. ColquhounD. MooneyJ. De BackerT. PersuA. ChaumontM. KrzesinskiJ.M. VanasscheT. GirardG. PliammL. SchiffrinE. MeraliF. DresserG. ValleeM. JollyS. ChowS. WangJ. MuJ. YuJ. YuanH. FengY. ZhangX. XieJ. LinL. SoucekM. WidimskyJ. CifkovaR. VaclavikJ. UllrychM. LukacM. RychlikI. Guldager LauridsenT. KantolaI. TaurioJ. UkkolaO. OrmezzanoO. GosseP. AziziM. CourandP.Y. DelsartP. TartiereJ.M. MahfoudF. SchmiederR. StegbauerJ. LurzP. KoziolekM. OttC. ToursarkissianN. TsioufisK. KyfnidisK. ManolisA. PatsilinakosS. ZebekakisP. KaravidasA. DenesP. BezzeghK. ZsomM. KovacsL. SharabiY. EliasM. SukholutskyI. YosefyC. KenisI. AtarS. VolpeM. Maria LorenzaM. TaddeiS. GrassiG. VeglioF. SonJ.W. KimJ.Y. ParkJ.I. LeeC.H. LeeH.Y. RaugalieneR. MarcinkevicieneJ.E. KavaliauskieneR. DeinumJ. KroonA. van den BornB.J. JanuszewiczA. TykarskiA. WalczewskaJ. GaciongZ. WiecekA. ChrostowskaM. KleinrokA. KrekoraJ. KaniaG. Podrazka-SzczepaniakA. GolawskiC. PodziewskiM. KaczmarekB. SkoczylasG. WilkolaskiA. WozniakI. Janik-PalazzoloM. RewerskaB. KonradiA. ShvartsY. PecherinaT. NikolaevK. LiudmilaG. OrlikovaO. MordovinV. PetrochenkovaN. KamalovG. KosmachevaE. NikolaevK. TyrenkoV. GorbunovV. ObrezanA. SupryadkinaT. LerI. KotenkoO. KuzinA. Martínez GarcíaF. RedonJ. OliverasA. Beltran RomeroL. ShatyloV. RudenkoL. BazylevychA. RudykY. KarpenkoO. StanislavchukM. TseluykoV. KushnirM. AsanovE. SirenkoY. YagenskyA. CollierD. GuptaP. WebbD. MacLeodM. McLayJ. PeaceA. AroraS. BuchananP. HarrisR. DegarmoR. GuillenM. KarnsA. NeutelJ. PaliwalY. PettisK. TothP.D. WayneJ.M. ButcherM.B. DillerP.M. OparilS. CalhounD. BrautigamD. FlackJ. GoldmanJ.M. RashidiA. AslamN. HaleyW. AndrawisN. LangB. MillerR. PowellJ. DewhurstR. PritchardJ. KhannaD. TangD. GabraN. ParkJ. JonesC. ScottC. LunaB. MussajiM. BhagwatR. BauerM. McGintyJ. NambiarR. SangrigoliR. DavisW.R. EavesW. McGrewF. AwadA. BolsterE. ScottD. KaliraoP. DabelP. CalhounW. GougeS. WarrenM. LawrenceM.K. JamalA. El-ShahawyM. MercadoC. KumarJ. Velasquez-MieyerP. BuschR. LewisT. RichL. Dual endothelin antagonist aprocitentan for resistant hypertension (PRECISION): A multicentre, blinded, randomised, parallel-group, phase 3 trial.Lancet2022400103671927193710.1016/S0140‑6736(22)02034‑7 36356632
    [Google Scholar]
  24. PulidoT. AdzerikhoI. ChannickR.N. DelcroixM. GalièN. GhofraniH.A. JansaP. JingZ.C. Le BrunF.O. MehtaS. MittelholzerC.M. PerchenetL. SastryB.K.S. SitbonO. SouzaR. TorbickiA. ZengX. RubinL.J. SimonneauG. Macitentan and morbidity and mortality in pulmonary arterial hypertension.N. Engl. J. Med.2013369980981810.1056/NEJMoa1213917 23984728
    [Google Scholar]
  25. McCarthyM.W. Ensitrelvir as a potential treatment for COVID-19.Expert Opin. Pharmacother.202223181995199810.1080/14656566.2022.2146493 36350029
    [Google Scholar]
  26. CannalireR. CerchiaC. BeccariA.R. Di LevaF.S. SummaV. Targeting SARS-CoV-2 proteases and polymerase for COVID-19 treatment: State of the art and future opportunities.J. Med. Chem.20226542716274610.1021/acs.jmedchem.0c01140 33186044
    [Google Scholar]
  27. YangY. LuoY.D. ZhangC.B. XiangY. BaiX.Y. ZhangD. FuZ.Y. HaoR.B. LiuX.L. Progress in research on inhibitors targeting SARS-CoV-2 main protease (Mpro).ACS Omega2024932341963421910.1021/acsomega.4c03023 39157135
    [Google Scholar]
  28. UnohY. UeharaS. NakaharaK. NoboriH. YamatsuY. YamamotoS. MaruyamaY. TaodaY. KasamatsuK. SutoT. KoukiK. NakahashiA. KawashimaS. SanakiT. TobaS. UemuraK. MizutareT. AndoS. SasakiM. OrbaY. SawaH. SatoA. SatoT. KatoT. TachibanaY. Discovery of S-217622, a noncovalent oral SARS-CoV-2 3CL protease inhibitor clinical candidate for treating COVID-19.J. Med. Chem.20226596499651210.1021/acs.jmedchem.2c00117 35352927
    [Google Scholar]
  29. LinC. JiangH. LiW. ZengP. ZhouX. ZhangJ. LiJ. Structural basis for the inhibition of coronaviral main proteases by ensitrelvir.Structure202331910161024.e310.1016/j.str.2023.06.010 37421945
    [Google Scholar]
  30. FerraroS. ConvertinoI. CappelloE. ValdiserraG. BonasoM. TuccoriM. Lessons learnt from the preclinical discovery and development of ensitrelvir as a COVID-19 therapeutic option.Expert Opin. Drug Discov.202419192010.1080/17460441.2023.2267001 37830361
    [Google Scholar]
  31. YuM. NekollaS.G. SchwaigerM. RobinsonS.P. The next generation of cardiac positron emission tomography imaging agents: discovery of flurpiridaz F-18 for detection of coronary disease.Semin. Nucl. Med.201141430531310.1053/j.semnuclmed.2011.02.004 21624564
    [Google Scholar]
  32. LinX. ZhangJ. WangX. TangZ. ZhangX. LuJ. Development of radiolabeled compounds for myocardial perfusion imaging.Curr. Pharm. Des.20121881041105710.2174/138161212799315876 22272824
    [Google Scholar]
  33. MouT. ZhangX. Research progress on 18F-labeled agents for imaging of myocardial perfusion with positron emission tomography.Molecules201722456210.3390/molecules22040562 28358340
    [Google Scholar]
  34. LiJ. LuJ. ZhouY. Mitochondrial-targeted molecular imaging in cardiac disease.BioMed Res. Int.20172017111110.1155/2017/5246853 28638829
    [Google Scholar]
  35. PurohitA. RadekeH. AzureM. HansonK. BenettiR. SuF. YalamanchiliP. YuM. HayesM. GuaraldiM. KaganM. RobinsonS. CasebierD. Synthesis and biological evaluation of pyridazinone analogues as potential cardiac positron emission tomography tracers.J. Med. Chem.200851102954297010.1021/jm701443n 18422306
    [Google Scholar]
  36. KucharM. MamatC. Methods to increase the metabolic stability of 18F-radiotracers.Molecules2015209161861622010.3390/molecules200916186 26404227
    [Google Scholar]
  37. GuengerichF.P. Kinetic deuterium isotope effects in cytochrome P450 reactions.Methods Enzymol201759621723810.1016/bs.mie.2017.06.036 28911772
    [Google Scholar]
  38. MaddahiJ. CzerninJ. LazewatskyJ. HuangS.C. DahlbomM. SchelbertH. SparksR. EhlgenA. CraneP. ZhuQ. DevineM. PhelpsM. Phase I, first-in-human study of BMS747158, a novel 18F-labeled tracer for myocardial perfusion PET: dosimetry, biodistribution, safety, and imaging characteristics after a single injection at rest.J. Nucl. Med.20115291490149810.2967/jnumed.111.092528 21849402
    [Google Scholar]
  39. MaddahiJ. LazewatskyJ. UdelsonJ.E. BermanD.S. BeanlandsR.S.B. HellerG.V. BatemanT.M. KnuutiJ. OrlandiC. Phase-III clinical trial of fluorine-18 flurpiridaz positron emission tomography for evaluation of coronary artery disease.J. Am. Coll. Cardiol.202076439140110.1016/j.jacc.2020.05.063 32703509
    [Google Scholar]
  40. KeamS.J. Golidocitinib: First approval.Drugs202484101319132410.1007/s40265‑024‑02089‑2 39298087
    [Google Scholar]
  41. LvY. MiP. BabonJ.J. FanG. QiJ. CaoL. LangJ. ZhangJ. WangF. KobeB. Small molecule drug discovery targeting the JAK-STAT pathway.Pharmacol. Res.202420410721710.1016/j.phrs.2024.107217 38777110
    [Google Scholar]
  42. GaoY. LanL. WangC. WangY. ShiL. SunL. Selective JAK1 inhibitors and the therapeutic applications thereof: A patent review (2016–2023).Expert Opin. Ther. Pat.202411510.1080/13543776.2024.2446223 39716925
    [Google Scholar]
  43. SuQ. BanksE. BebernitzG. BellK. BorensteinC.F. ChenH. ChuaquiC.E. DengN. FergusonA.D. KawatkarS. GrimsterN.P. RustonL. LyneP.D. ReadJ.A. PengX. PeiX. FawellS. TangZ. ThronerS. VasbinderM.M. WangH. Winter-HoltJ. WoessnerR. WuA. YangW. ZindaM. KettleJ.G. Discovery of (2 R)- N -[3-[2-[(3-Methoxy-1-methyl-pyrazol-4-yl)amino]pyrimidin-4-yl]-1 H -indol-7-yl]-2-(4-methylpiperazin-1-yl)propenamide (AZD4205) as a Potent and Selective Janus Kinase 1 Inhibitor.J. Med. Chem.20206394517452710.1021/acs.jmedchem.9b01392 32297743
    [Google Scholar]
  44. VasanN. CantleyL.C. At a crossroads: How to translate the roles of PI3K in oncogenic and metabolic signalling into improvements in cancer therapy.Nat. Rev. Clin. Oncol.202219747148510.1038/s41571‑022‑00633‑1 35484287
    [Google Scholar]
  45. VanhaesebroeckB. PerryM.W.D. BrownJ.R. AndréF. OkkenhaugK. PI3K inhibitors are finally coming of age.Nat. Rev. Drug Discov.2021201074176910.1038/s41573‑021‑00209‑1 34127844
    [Google Scholar]
  46. BelliC. RepettoM. AnandS. PortaC. SubbiahV. CuriglianoG. The emerging role of PI3K inhibitors for solid tumour treatment and beyond.Br. J. Cancer2023128122150216210.1038/s41416‑023‑02221‑1 36914722
    [Google Scholar]
  47. NdubakuC.O. HeffronT.P. StabenS.T. BaumgardnerM. BlaquiereN. BradleyE. BullR. DoS. DotsonJ. DudleyD. EdgarK.A. FriedmanL.S. GoldsmithR. HealdR.A. KolesnikovA. LeeL. LewisC. NanniniM. NonomiyaJ. PangJ. PriceS. PriorW.W. SalphatiL. SiderisS. WallinJ.J. WangL. WeiB. SampathD. OliveroA.G. Discovery of 2-{3-[2-(1-isopropyl-3-methyl-1H-1,2–4-triazol-5-yl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepin-9-yl]-1H-pyrazol-1-yl}-2-methylpropanamide (GDC-0032): A β-sparing phospho-inositide 3-kinase inhibitor with high unbound exposure and robust in vivo antitumor activity.J. Med. Chem.201356114597461010.1021/jm4003632 23662903
    [Google Scholar]
  48. HananE.J. LiangJ. WangX. BlakeR.A. BlaquiereN. StabenS.T. Monomeric targeted protein degraders.J. Med. Chem.20206320113301136110.1021/acs.jmedchem.0c00093 32352776
    [Google Scholar]
  49. SongK.W. EdgarK.A. HananE.J. HafnerM. OehJ. MerchantM. SampathD. NanniniM.A. HongR. PhuL. ForrestW.F. StawiskiE. SchmidtS. EndresN. GuanJ. WallinJ.J. CheongJ. PliseE.G. Lewis PhillipsG.D. SalphatiL. HeffronT.P. OliveroA.G. MalekS. StabenS.T. KirkpatrickD.S. DeyA. FriedmanL.S. RTK-dependent inducible degradation of mutant PI3Kα drives GDC-0077 (inavolisib) efficacy.Cancer Discov.202212120421910.1158/2159‑8290.CD‑21‑0072 34544753
    [Google Scholar]
  50. DentS. CortésJ. Im, Y.H.; Diéras, V.; Harbeck, N.; Krop, I.E.; Wilson, T.R.; Cui, N.; Schimmoller, F.; Hsu, J.Y.; He, J.; De Laurentiis, M.; Sousa, S.; Drullinsky, P.; Jacot, W. Phase III randomized study of taselisib or placebo with fulvestrant in estrogen receptor-positive, PIK3CA-mutant, HER2-negative, advanced breast cancer: the SANDPIPER trial.Ann. Oncol.202132219720710.1016/j.annonc.2020.10.596 33186740
    [Google Scholar]
  51. HeffronT.P. HealdR.A. NdubakuC. WeiB. AugistinM. DoS. EdgarK. EigenbrotC. FriedmanL. GanciaE. JacksonP.S. JonesG. KolesnikovA. LeeL.B. LesnickJ.D. LewisC. McLeanN. MörtlM. NonomiyaJ. PangJ. PriceS. PriorW.W. SalphatiL. SiderisS. StabenS.T. SteinbacherS. TsuiV. WallinJ. SampathD. OliveroA.G. The rational design of selective benzoxazepin inhibitors of the α-isoform of phosphoinositide 3-kinase culminating in the identification of (S)-2-((2-(1-Isopropyl-1 H -1,2,4-triazol-5-yl)-5,6-dihydrobenzo[ f]imidazo[1,2- d][1,4]oxazepin-9-yl)oxy)propanamide (GDC-0326).J. Med. Chem.2016593985100210.1021/acs.jmedchem.5b01483 26741947
    [Google Scholar]
  52. HananE.J. BraunM.G. HealdR.A. MacLeodC. ChanC. ClausenS. EdgarK.A. EigenbrotC. ElliottR. EndresN. FriedmanL.S. GogolE. GuX.H. ThibodeauR.H. JacksonP.S. KieferJ.R. KnightJ.D. NanniniM. NarukullaR. PaceA. PangJ. PurkeyH.E. SalphatiL. SampathD. SchmidtS. SiderisS. SongK. Sujatha-BhaskarS. UltschM. WallweberH. XinJ. YeapS. YoungA. ZhongY. StabenS.T. Discovery of GDC-0077 (inavolisib), a highly selective inhibitor and degrader of mutant PI3Kα.J. Med. Chem.20226524165891662110.1021/acs.jmedchem.2c01422 36455032
    [Google Scholar]
  53. TurnerN.C. ImS.A. SauraC. JuricD. LoiblS. KalinskyK. SchmidP. LoiS. SunpaweravongP. MusolinoA. LiH. ZhangQ. NoweckiZ. LeungR. ThanopoulouE. ShankarN. LeiG. StoutT.J. HutchinsonK.E. SchutzmanJ.L. SongC. JhaveriK.L. Inavolisib-based therapy in PIK3CA -mutated advanced breast cancer.N. Engl. J. Med.2024391171584159610.1056/NEJMoa2404625 39476340
    [Google Scholar]
  54. PirozziC.J. YanH. The implications of IDH mutations for cancer development and therapy.Nat. Rev. Clin. Oncol.2021181064566110.1038/s41571‑021‑00521‑0 34131315
    [Google Scholar]
  55. GaiC. ZengH. XuH. ChaiX. ZouY. ZhuangC. GeG. ZhaoQ. Comprehensive exploration of isocitrate dehydrogenase (IDH) mutations: Tumorigenesis, drug discovery, and covalent inhibitor advances.Eur. J. Med. Chem.202528211704110.1016/j.ejmech.2024.117041 39591851
    [Google Scholar]
  56. SolomouG. FinchA. AsgharA. BardellaC. Mutant IDH in gliomas: Role in cancer and treatment options.Cancers20231511288310.3390/cancers15112883 37296846
    [Google Scholar]
  57. YenK. TravinsJ. WangF. DavidM.D. ArtinE. StraleyK. PadyanaA. GrossS. DeLaBarreB. TobinE. ChenY. NagarajaR. ChoeS. JinL. KonteatisZ. CianchettaG. SaundersJ.O. SalituroF.G. QuivoronC. OpolonP. BawaO. SaadaV. PaciA. BroutinS. BernardO.A. de BottonS. MarteynB.S. PilichowskaM. XuY. FangC. JiangF. WeiW. JinS. SilvermanL. LiuW. YangH. DangL. DorschM. Penard-LacroniqueV. BillerS.A. SuS.S.M. AG-221, a first-in-class therapy targeting acute myeloid leukemia harboring oncogenic IDH2 mutations.Cancer Discov.20177547849310.1158/2159‑8290.CD‑16‑1034 28193778
    [Google Scholar]
  58. KonteatisZ. ArtinE. NicolayB. StraleyK. PadyanaA.K. JinL. ChenY. NarayaraswamyR. TongS. WangF. ZhouD. CuiD. CaiZ. LuoZ. FangC. TangH. LvX. NagarajaR. YangH. SuS.S.M. SuiZ. DangL. YenK. Popovici-MullerJ. CodegaP. CamposC. MellinghoffI.K. BillerS.A. Vorasidenib (AG-881): A first-in-class, brain-penetrant dual inhibitor of mutant IDH1 and 2 for treatment of glioma.ACS Med. Chem. Lett.202011210110710.1021/acsmedchemlett.9b00509 32071674
    [Google Scholar]
  59. MaR. YunC.H. Crystal structures of pan-IDH inhibitor AG-881 in complex with mutant human IDH1 and IDH2.Biochem. Biophys. Res. Commun.201850342912291710.1016/j.bbrc.2018.08.068 30131249
    [Google Scholar]
  60. WangQ.X. ZhangP.Y. LiQ.Q. TongZ.J. WuJ.Z. YuS.P. YuY.C. DingN. LengX.J. ChangL. XuJ.G. SunS.L. YangY. LiN.G. ShiZ.H. Challenges for the development of mutant isocitrate dehydrogenases 1 inhibitors to treat glioma.Eur. J. Med. Chem.202325711546410.1016/j.ejmech.2023.115464 37235998
    [Google Scholar]
  61. WellerM. RemonJ. RiekenS. VollmuthP. AhnM.J. MinnitiG. Le RhunE. WestphalM. BrastianosP.K. SooR.A. KirkpatrickJ.P. GoldbergS.B. ÖhrlingK. Hegi-JohnsonF. HendriksL.E.L. Central nervous system metastases in advanced non-small cell lung cancer: A review of the therapeutic landscape.Cancer Treat. Rev.202413010280710.1016/j.ctrv.2024.102807 39151281
    [Google Scholar]
  62. ColcloughN. ChenK. JohnströmP. StrittmatterN. YanY. WrigleyG.L. SchouM. GoodwinR. VarnäsK. AduaS.J. ZhaoM. NguyenD.X. MaglennonG. BartonP. AtkinsonJ. ZhangL. JanefeldtA. WilsonJ. SmithA. TakanoA. ArakawaR. KondrashovM. MalmquistJ. RevunovE. Vazquez-RomeroA. MoeinM.M. WindhorstA.D. KarpN.A. FinlayM.R.V. WardR.A. YatesJ.W.T. SmithP.D. FardeL. ChengZ. CrossD.A.E. Preclinical comparison of the blood–brain barrier permeability of osimertinib with other EGFR TKIs.Clin. Cancer Res.202127118920110.1158/1078‑0432.CCR‑19‑1871 33028591
    [Google Scholar]
  63. BarkerA.J. GibsonK.H. GrundyW. GodfreyA.A. BarlowJ.J. HealyM.P. WoodburnJ.R. AshtonS.E. CurryB.J. ScarlettL. HenthornL. RichardsL. Studies leading to the identification of ZD1839 (iressa™): An orally active, selective epidermal growth factor receptor tyrosine kinase inhibitor targeted to the treatment of cancer.Bioorg. Med. Chem. Lett.200111141911191410.1016/S0960‑894X(01)00344‑4 11459659
    [Google Scholar]
  64. ZengQ. WangJ. ChengZ. ChenK. JohnströmP. VarnäsK. LiD.Y. YangZ.F. ZhangX. Discovery and evaluation of clinical candidate AZD3759, a potent, oral active, central nervous system-penetrant, epidermal growth factor receptor tyrosine kinase inhibitor.J. Med. Chem.201558208200821510.1021/acs.jmedchem.5b01073 26313252
    [Google Scholar]
  65. YangZ. GuoQ. WangY. ChenK. ZhangL. ChengZ. XuY. YinX. BaiY. RabbieS. KimD.W. AhnM.J. YangJ.C.H. ZhangX. AZD3759, a BBB-penetrating EGFR inhibitor for the treatment of EGFR mutant NSCLC with CNS metastases.Sci. Transl. Med.20168368368ra17210.1126/scitranslmed.aag0976 27928026
    [Google Scholar]
  66. ShearerJ. CastroJ.L. LawsonA.D.G. MacCossM. TaylorR.D. Rings in clinical trials and drugs: Present and future.J. Med. Chem.202265138699871210.1021/acs.jmedchem.2c00473 35730680
    [Google Scholar]
  67. MarshallC.M. FedericeJ.G. BellC.N. CoxP.B. NjardarsonJ.T. An update on the nitrogen heterocycle compositions and properties of U.S. FDA-approved pharmaceuticals (2013–2023).J. Med. Chem.20246714116221165510.1021/acs.jmedchem.4c01122 38995264
    [Google Scholar]
  68. KumariS. CarmonaA.V. TiwariA.K. TrippierP.C. Amide bond bioisosteres: Strategies, synthesis, and successes.J. Med. Chem.20206321122901235810.1021/acs.jmedchem.0c00530 32686940
    [Google Scholar]
  69. GuanQ. XingS. WangL. ZhuJ. GuoC. XuC. ZhaoQ. WuY. ChenY. SunH. Triazoles in medicinal chemistry: Physicochemical properties, bioisosterism, and application.J. Med. Chem.202467107788782410.1021/acs.jmedchem.4c00652 38699796
    [Google Scholar]
  70. ChoiK. The structure–property relationships of clinically approved protein kinase inhibitors.Curr. Med. Chem.202330222518254110.2174/0929867329666220822123552 35996243
    [Google Scholar]
  71. ZimmermannJ. BuchdungerE. MettH. MeyerT. LydonN.B. Potent and selective inhibitors of the Abl-kinase: Phenylamino-pyrimidine (PAP) derivatives.Bioorg. Med. Chem. Lett.19977218719210.1016/S0960‑894X(96)00601‑4
    [Google Scholar]
  72. NagarB. BornmannW.G. PellicenaP. SchindlerT. VeachD.R. MillerW.T. ClarksonB. KuriyanJ. Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571).Cancer Res.2002621542364243 12154025
    [Google Scholar]
  73. HuangW.S. MetcalfC.A. SundaramoorthiR. WangY. ZouD. ThomasR.M. ZhuX. CaiL. WenD. LiuS. RomeroJ. QiJ. ChenI. BandaG. LentiniS.P. DasS. XuQ. KeatsJ. WangF. WardwellS. NingY. SnodgrassJ.T. BroudyM.I. RussianK. ZhouT. CommodoreL. NarasimhanN.I. MohemmadQ.K. IuliucciJ. RiveraV.M. DalgarnoD.C. SawyerT.K. ClacksonT. ShakespeareW.C. Discovery of 3-[2-(Imidazo[1,2- b]pyridazin-3-yl)ethynyl]-4-methyl- N -4-[(4-methylpiperazin-1-yl)methyl]-3-(trifluoromethyl)phenylbenzamide (AP24534), a potent, orally active pan-inhibitor of breakpoint cluster region-abelson (BCR-ABL) Kinase Including the T315I Gatekeeper Mutant.J. Med. Chem.201053124701471910.1021/jm100395q 20513156
    [Google Scholar]
  74. O’HareT. ShakespeareW.C. ZhuX. EideC.A. RiveraV.M. WangF. AdrianL.T. ZhouT. HuangW.S. XuQ. MetcalfC.A. TynerJ.W. LoriauxM.M. CorbinA.S. WardwellS. NingY. KeatsJ.A. WangY. SundaramoorthiR. ThomasM. ZhouD. SnodgrassJ. CommodoreL. SawyerT.K. DalgarnoD.C. DeiningerM.W.N. DrukerB.J. ClacksonT. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance.Cancer Cell200916540141210.1016/j.ccr.2009.09.028 19878872
    [Google Scholar]
  75. MurrayC.W. NewellD.R. AngibaudP. A successful collaboration between academia, biotech and pharma led to discovery of erdafitinib, a selective FGFR inhibitor recently approved by the FDA.MedChemComm20191091509151110.1039/C9MD90044F
    [Google Scholar]
  76. PataniH. BunneyT.D. ThiyagarajanN. NormanR.A. OggD. BreedJ. AshfordP. PottertonA. EdwardsM. WilliamsS.V. ThomsonG.S. PangC.S.M. KnowlesM.A. BreezeA.L. OrengoC. PhillipsC. KatanM. Landscape of activating cancer mutations in FGFR kinases and their differential responses to inhibitors in clinical use.Oncotarget2016717242522426810.18632/oncotarget.8132 26992226
    [Google Scholar]
  77. RankovicZ. CNS drug design: Balancing physicochemical properties for optimal brain exposure.J. Med. Chem.20155862584260810.1021/jm501535r 25494650
    [Google Scholar]
  78. XiongB. WangY. ChenY. XingS. LiaoQ. ChenY. LiQ. LiW. SunH. Strategies for structural modification of small molecules to improve blood–brain barrier penetration: A recent perspective.J. Med. Chem.20216418131521317310.1021/acs.jmedchem.1c00910 34505508
    [Google Scholar]
  79. GhoseA.K. HerbertzT. HudkinsR.L. DorseyB.D. MallamoJ.P. Knowledge-based, central nervous system (CNS) lead selection and lead optimization for CNS drug discovery.ACS Chem. Neurosci.201231506810.1021/cn200100h 22267984
    [Google Scholar]
  80. MeanwellN.A. Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design.J. Med. Chem.201861145822588010.1021/acs.jmedchem.7b01788 29400967
    [Google Scholar]
  81. DalvitC. VulpettiA. Intermolecular and intramolecular hydrogen bonds involving fluorine atoms: Implications for recognition, selectivity, and chemical properties.ChemMedChem20127226227210.1002/cmdc.201100483 22262517
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575390155250711072709
Loading
/content/journals/mrmc/10.2174/0113895575390155250711072709
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test