Skip to content
2000
Volume 25, Issue 12
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

This review delves into the potential of nanotechnology for improved lung cancer diagnosis and treatment. A critical focus is placed on various overexpressed biomarkers within lung tumors. These biomarkers serve as potential targets for nanoparticle-based drug delivery strategies. The review explores two main targeting approaches: passive and active (receptor-based) targeting. Active targeting mechanisms like EGFR, folic acid, and CD44 receptor targeting are specifically discussed. Additionally, the review examines stimuli-responsive systems for targeted drug delivery, including pH, temperature, ligand-attached, and multi-stimuli-responsive systems. Moreover, the role of nanotechnology in theranostics, which combines therapeutic and diagnostic capabilities, is explored and different types of nanocarriers, including lipid-based, polymer-based, metal-based, and magnetic nanoparticles, are examined for their potential applications. The review also highlights advancements in lung cancer diagnostic techniques beyond nanotechnology. This includes emerging tools like biomarkers, biosensors, and artificial intelligence, alongside improvements to established methods. Finally, the review provides a glimpse into ongoing clinical trials and concludes by emphasizing the transformative potential of nanotechnology in improving lung cancer patient outcomes.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575338753250228055700
2025-03-07
2025-11-03
Loading full text...

Full text loading...

References

  1. TranS. DeGiovanniP.J. PielB. RaiP. Cancer nanomedicine: A review of recent success in drug delivery.Clin. Transl. Med.201761e4410.1186/s40169‑017‑0175‑0 29230567
    [Google Scholar]
  2. Dela CruzC.S. TanoueL.T. MatthayR.A. Lung cancer: Epidemiology, etiology, and prevention.Clin. Chest Med.201132460564410.1016/j.ccm.2011.09.001 22054876
    [Google Scholar]
  3. BartaJ.A. ZinnerR.G. UngerM. Lung cancer in the older patient.Clin. Geriatr. Med.201733456357710.1016/j.cger.2017.06.008 28991651
    [Google Scholar]
  4. Lung cancer.2018Available from: https://www.cancer.org/cancer/lung-cancer.html(Accessed 13 March 2018).
  5. KumarK. ChawlaR. Nanocarriers-mediated therapeutics as a promising approach for treatment and diagnosis of lung cancer.J. Drug Deliv. Sci. Technol.20216510267710.1016/j.jddst.2021.102677
    [Google Scholar]
  6. RueffJ. RodriguesA.S. Cancer drug resistance: A brief overview from a genetic viewpoint.In: Cancer Drug Resistance. Methods in Molecular Biology.New YorkHumana Press201610.1007/978‑1‑4939‑3347‑1_1
    [Google Scholar]
  7. CryerA.M. ThorleyA.J. Nanotechnology in the diagnosis and treatment of lung cancer.Pharmacol. Ther.201919818920510.1016/j.pharmthera.2019.02.010 30796927
    [Google Scholar]
  8. Lemjabbar-AlaouiH. HassanO.U. YangY.W. BuchananP. Lung cancer: Biology and treatment options. Biochimica et Biophysica Acta (BBA)-.Rev. Can.201518562189210
    [Google Scholar]
  9. GoldstrawP. BallD. JettJ.R. Le ChevalierT. LimE. NicholsonA.G. ShepherdF.A. Non-small-cell lung cancer.Lancet201137898041727174010.1016/S0140‑6736(10)62101‑0 21565398
    [Google Scholar]
  10. CiobanuL.D. Diet in lung cancer: Back to natural and healthy food.Lung Breath J.2017121610.15761/LBJ.1000108
    [Google Scholar]
  11. HutchinsonB.D. ShroffG.S. TruongM.T. KoJ.P. Spectrum of lung adenocarcinoma.emin Ultrasound CT MR.2019403255264
    [Google Scholar]
  12. PalP. CabaneroM. TsaoM.S. Pulmonary adenocarcinoma—pathology and molecular testing.Pulmonary adenocarcinoma: Approaches to treatment.Elsevier2019133310.1016/B978‑0‑323‑55433‑6.00002‑X
    [Google Scholar]
  13. DenisovE.V. SchegolevaA.A. GervasP.A. PonomaryovaA.A. TashirevaL.A. BoyarkoV.V. BukreevaE.B. PankovaO.V. PerelmuterV.M. Premalignant lesions of squamous cell carcinoma of the lung: The molecular make-up and factors affecting their progression.Lung Cancer2019135212810.1016/j.lungcan.2019.07.001 31446997
    [Google Scholar]
  14. ShollL.M. Mino-KenudsonM. Tumors of the lung and pleura.In: Diagnostic Histopathology of Tumors.New YorkSpringer2019225
    [Google Scholar]
  15. HarmsA. EndrisV. WinterH. KriegsmannM. StenzingerA. SchirmacherP. WarthA. KazdalD. Molecular dissection of large cell carcinomas of the lung with null immunophenotype.Pathology201850553053510.1016/j.pathol.2018.03.005 29958730
    [Google Scholar]
  16. NajjarF. AlammarM. Al-MassaraniG. AlmallaN. JapaweA. IkhtiarA. Circulating endothelial cells and microparticles as diagnostic and prognostic biomarkers in small-cell lung cancer.Lung Cancer2018124233010.1016/j.lungcan.2018.06.033 30268466
    [Google Scholar]
  17. WangS. ZimmermannS. ParikhK. MansfieldA.S. AdjeiA.A. Current diagnosis and management of small-cell lung cancer.Mayo Clin. Proc.20199481599162210.1016/j.mayocp.2019.01.034 31378235
    [Google Scholar]
  18. WaqarS.N. MorgenszternD. Treatment advances in small cell lung cancer (SCLC).Pharmacol. Ther.2017180162310.1016/j.pharmthera.2017.06.002 28579387
    [Google Scholar]
  19. BenitezD.A. Cumplido-LasoG. Olivera-GómezM. Del Valle-Del PinoN. Díaz-PizarroA. Mulero-NavarroS. Román-GarcíaA. Carvajal-GonzalezJ.M. p53 genetics and biology in lung carcinomas: Insights, implications and clinical applications.Biomedicines2024127145310.3390/biomedicines12071453 39062026
    [Google Scholar]
  20. ZamayT. ZamayG. KolovskayaO. ZukovR. PetrovaM. GargaunA. BerezovskiM. KichkailoA. Current and prospective protein biomarkers of lung cancer.Cancers201791115510.3390/cancers9110155 29137182
    [Google Scholar]
  21. ShawA.T. EngelmanJ.A. ALK in lung cancer: Past, present, and future.J. Clin. Oncol.20133181105111110.1200/JCO.2012.44.5353 23401436
    [Google Scholar]
  22. ZhangH. MaoF. ShenT. LuoQ. DingZ. QianL. HuangJ. Plasma miR-145, miR-20a, miR-21 and miR-223 as novel biomarkers for screening early-stage non-small cell lung cancer.Oncol. Lett.201713266967610.3892/ol.2016.5462 28356944
    [Google Scholar]
  23. WangW. LiX. LiuC. ZhangX. WuY. DiaoM. TanS. HuangS. ChengY. YouT. MicroRNA-21 as a diagnostic and prognostic biomarker of lung cancer: A systematic review and meta-analysis.Biosci. Rep.2022425BSR2021165310.1042/BSR20211653 35441676
    [Google Scholar]
  24. ZhangL. LiuD. LiL. PuD. ZhouP. JingY. YuH. WangY. ZhuY. HeY. LiY. ZhaoS. QiuZ. LiW. The important role of circulating CYFRA21-1 in metastasis diagnosis and prognostic value compared with carcinoembryonic antigen and neuron-specific enolase in lung cancer patients.BMC Cancer20171719610.1186/s12885‑017‑3070‑6 28152979
    [Google Scholar]
  25. WangG. ZhaoH. ShiX. LiuJ. ChenZ. Serum cyfra21-1 as a biomarker in patients with nonsmall cell lung cancer.J. Cancer Res. Ther.2014107Suppl.21510.4103/0973‑1482.145878 25450285
    [Google Scholar]
  26. SarkarS. OsamaK. JamalQ. KamalM. SayeedU. KhanM. SiddiquiM. AkhtarS. Advances and implications in nanotechnology for lung cancer management.Curr. Drug Metab.2017181303810.2174/1389200218666161114142646 27842486
    [Google Scholar]
  27. SubhanM.A. YalamartyS.S.K. FilipczakN. ParveenF. TorchilinV.P. Recent advances in tumor targeting via EPR effect for cancer treatment.J. Pers. Med.202111657110.3390/jpm11060571 34207137
    [Google Scholar]
  28. AttiaM.F. AntonN. WallynJ. OmranZ. VandammeT.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites.J. Pharm. Pharmacol.20197181185119810.1111/jphp.13098 31049986
    [Google Scholar]
  29. KobayashiH. WatanabeR. ChoykeP.L. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target?Theranostics201441818910.7150/thno.7193 24396516
    [Google Scholar]
  30. AlaviM. HamidiM. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles.Drug Metab. Pers. Ther.20193412018003210.1515/dmpt‑2018‑0032 30707682
    [Google Scholar]
  31. BazakR. HouriM. AchyS.E. HusseinW. RefaatT. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature.Mol. Clin. Oncol.20142690490810.3892/mco.2014.356 25279172
    [Google Scholar]
  32. DanhierF. FeronO. PréatV. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery.J. Control. Release2010148213514610.1016/j.jconrel.2010.08.027 20797419
    [Google Scholar]
  33. Morales-CruzM. DelgadoY. CastilloB. FigueroaC.M. MolinaA. TorresA. MiliánM. GriebenowK. Smart targeting to improve cancer therapeutics.Drug Des. Devel. Ther.2019133753377210.2147/DDDT.S219489 31802849
    [Google Scholar]
  34. MenonI. ZaroudiM. ZhangY. AisenbreyE. HuiL. Fabrication of active targeting lipid nanoparticles: Challenges and perspectives.Materials Today Advances,20221610029910.1016/j.mtadv.2022.100299
    [Google Scholar]
  35. ChenQ. WangH. LiuH. WenS. PengC. ShenM. ZhangG. ShiX. Multifunctional dendrimer-entrapped gold nanoparticles modified with RGD peptide for targeted computed tomography/magnetic resonance dual-modal imaging of tumors.Anal. Chem.20158773949395610.1021/acs.analchem.5b00135 25768040
    [Google Scholar]
  36. ChenD-W. ChengL. HuangF. ChengL. ZhuY. HuQ. LiL. WeiL. GE11-modified liposomes for non-small cell lung cancer targeting: Preparation, ex vitro and in vivo evaluation.Int. J. Nanomedicine2014992193510.2147/IJN.S53310 24611009
    [Google Scholar]
  37. Luria-PérezR. HelgueraG. RodríguezJ.A. Antibody-mediated targeting of the transferrin receptor in cancer cells.Bol. Méd. Hosp. Infant. México201673637237910.1016/j.bmhimx.2016.11.004 29421281
    [Google Scholar]
  38. SalmiM. KarikoskiM. ElimaK. RantakariP. JalkanenS. CD44 binds to macrophage mannose receptor on lymphatic endothelium and supports lymphocyte migration via afferent lymphatics.Circ. Res.2013112121577158210.1161/CIRCRESAHA.111.300476 23603511
    [Google Scholar]
  39. SteinC.A. CastanottoD. FDA-approved oligonucleotide therapies in 2017.Mol. Ther.20172551069107510.1016/j.ymthe.2017.03.023 28366767
    [Google Scholar]
  40. AskarianS. AbnousK. TaghaviS. OskueeR.K. RamezaniM. Cellular delivery of shRNA using aptamer-conjugated PLL-alkyl-PEI nanoparticles.Colloids Surf. B Biointerfaces201513635536410.1016/j.colsurfb.2015.09.023 26433348
    [Google Scholar]
  41. MuthukumarT. ChamundeeswariM. PrabhavathiS. GurunathanB. ChandhuruJ. SastryT.P. Carbon nanoparticle from a natural source fabricated for folate receptor targeting, imaging and drug delivery application in A549 lung cancer cells.Eur. J. Pharm. Biopharm.201488373073610.1016/j.ejpb.2014.09.011 25305584
    [Google Scholar]
  42. LedermannJ.A. CanevariS. ThigpenT. Targeting the folate receptor: Diagnostic and therapeutic approaches to personalize cancer treatments.Ann. Oncol.201526102034204310.1093/annonc/mdv250 26063635
    [Google Scholar]
  43. SudimackJ. LeeR.J. Targeted drug delivery via the folate receptor.Adv. Drug Deliv. Rev.200041214716210.1016/S0169‑409X(99)00062‑9 10699311
    [Google Scholar]
  44. Habban AkhterM Sateesh MadhavN AhmadJ. Epidermal growth factor receptor based active targeting: A paradigm shift towards advance tumor therapy.Artif. Cells Nanomed. Biotechnol.201846sup21188119810.1080/21691401.2018.1481863
    [Google Scholar]
  45. JhaA. ViswanadhM.K. BurandeA.S. MehataA.K. PoddarS. YadavK. MahtoS.K. ParmarA.S. MuthuM.S. DNA biodots based targeted theranostic nanomedicine for the imaging and treatment of non-small cell lung cancer.Int. J. Biol. Macromol.202015041342510.1016/j.ijbiomac.2020.02.075 32057849
    [Google Scholar]
  46. QiY. DengS.M. WangK.S. Receptor tyrosine kinases in breast cancer treatment: Unraveling the potential.Am. J. Cancer Res.20241494172419610.62347/KIVS3169 39417188
    [Google Scholar]
  47. AgustoniF. SudaK. YuH. RenS. RivardC.J. EllisonK. CaldwellC.Jr RozeboomL. BrovskyK. HirschF.R. EGFR-directed monoclonal antibodies in combination with chemotherapy for treatment of non-small-cell lung cancer: An updated review of clinical trials and new perspectives in biomarkers analysis.Cancer Treat. Rev.201972152710.1016/j.ctrv.2018.08.002 30445271
    [Google Scholar]
  48. BethuneG. BethuneD. RidgwayN. XuZ. Epidermal growth factor receptor (EGFR) in lung cancer: An overview and update.J. Thorac. Dis.2010214851 22263017
    [Google Scholar]
  49. PaoW. ChmieleckiJ. Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer.Nat. Rev. Cancer2010101176077410.1038/nrc2947 20966921
    [Google Scholar]
  50. BarzamanK. VafaeiR. SamadiM. KazemiM.H. HosseinzadehA. MerikhianP. Moradi-KalbolandiS. EisavandM.R. DinvariH. FarahmandL. Anti-cancer therapeutic strategies based on HGF/MET, EpCAM, and tumor-stromal cross talk.Cancer Cell Int.202222125910.1186/s12935‑022‑02658‑z 35986321
    [Google Scholar]
  51. HolmJ. HansenS.I. Characterization of soluble folate receptors (folate binding proteins) in humans. Biological roles and clinical potentials in infection and malignancy.Biochim. Biophys. Acta. Proteins Proteomics202018681014046610.1016/j.bbapap.2020.140466 32526472
    [Google Scholar]
  52. MehraN.K. JainK. JainN.K. Multifunctional carbon nanotubes in cancer therapy and imaging.In: Nanobiomaterials in Medical Imaging.William Andrew Publishing201642145310.1016/B978‑0‑323‑41736‑5.00014‑5
    [Google Scholar]
  53. JagerN.A. TeteloshviliN. ZeebregtsC.J. WestraJ. BijlM. Macrophage folate receptor-β (FR-β) expression in auto-immune inflammatory rheumatic diseases: A forthcoming marker for cardiovascular risk?Autoimmun. Rev.201211962162610.1016/j.autrev.2011.11.002 22094710
    [Google Scholar]
  54. GonenN. AssarafY.G. Antifolates in cancer therapy: Structure, activity and mechanisms of drug resistance.Drug Resist. Updat.201215418321010.1016/j.drup.2012.07.002 22921318
    [Google Scholar]
  55. GonzalezT. MuminovicM. NanoO. VulfovichM. Folate receptor alpha—a novel approach to cancer therapy.Int. J. Mol. Sci.2024252104610.3390/ijms25021046 38256120
    [Google Scholar]
  56. YoungO. NgoN. LinL. StanberyL. CreedenJ.F. HamoudaD. NemunaitisJ. Folate receptor as a biomarker and therapeutic target in solid tumors.Curr. Probl. Cancer202347110091710.1016/j.currproblcancer.2022.100917 36508886
    [Google Scholar]
  57. MehraN.K. MishraV. JainN.K. Receptor-based targeting of therapeutics.Ther. Deliv.20134336939410.4155/tde.13.6 23442082
    [Google Scholar]
  58. MonteiroC.A.P. OliveiraA.D.P.R. SilvaR.C. LimaR.R.M. SoutoF.O. BarattiM.O. CarvalhoH.F. SantosB.S. Cabral FilhoP.E. FontesA. Evaluating internalization and recycling of folate receptors in breast cancer cells using quantum dots.J. Photochem. Photobiol. B202020911191810.1016/j.jphotobiol.2020.111918 32531690
    [Google Scholar]
  59. ShenY. WangB. LuY. OuahabA. LiQ. TuJ. A novel tumor-targeted delivery system with hydrophobized hyaluronic acid–spermine conjugates (HHSCs) for efficient receptor-mediated siRNA delivery.Int. J. Pharm.20114141-223324310.1016/j.ijpharm.2011.04.049 21545832
    [Google Scholar]
  60. KesharwaniP. ChadarR. SheikhA. RizgW.Y. SafhiA.Y. CD44-targeted nanocarrier for cancer therapy.Front. Pharmacol.20221280048110.3389/fphar.2021.800481 35431911
    [Google Scholar]
  61. SchantéC.E. ZuberG. HerlinC. VandammeT.F. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications.Carbohydr. Polym.201185346948910.1016/j.carbpol.2011.03.019
    [Google Scholar]
  62. MattheolabakisG. MilaneL. SinghA. AmijiM.M. Hyaluronic acid targeting of CD44 for cancer therapy: From receptor biology to nanomedicine.J. Drug Target.2015237-860561810.3109/1061186X.2015.1052072 26453158
    [Google Scholar]
  63. WuS. TanY. LiF. HanY. ZhangS. LinX. CD44: A cancer stem cell marker and therapeutic target in leukemia treatment.Front. Immunol.202415135499210.3389/fimmu.2024.1354992 38736891
    [Google Scholar]
  64. McAteeC.O. BaryckiJ.J. SimpsonM.A. Emerging roles for hyaluronidase in cancer metastasis and therapy.Adv. Cancer Res.201412313410.1016/B978‑0‑12‑800092‑2.00001‑0 25081524
    [Google Scholar]
  65. LuoZ. DaiY. GaoH. Development and application of hyaluronic acid in tumor targeting drug delivery.Acta Pharm. Sin. B2019961099111210.1016/j.apsb.2019.06.004 31867159
    [Google Scholar]
  66. Maciej-HulmeM.L. New insights into human hyaluronidase 4/chondroitin sulphate hydrolase.Front. Cell Dev. Biol.2021976792410.3389/fcell.2021.767924 34746156
    [Google Scholar]
  67. ChenX. YuC. KangR. TangD. Iron metabolism in ferroptosis.Front. Cell Dev. Biol.2020859022610.3389/fcell.2020.590226 33117818
    [Google Scholar]
  68. DanielsT.R. BernabeuE. RodríguezJ.A. PatelS. KozmanM. ChiappettaD.A. HollerE. LjubimovaJ.Y. HelgueraG. PenichetM.L. The transferrin receptor and the targeted delivery of therapeutic agents against cancer.Biochim. Biophys. Acta, Gen. Subj.20121820329131710.1016/j.bbagen.2011.07.016 21851850
    [Google Scholar]
  69. WilnerS.E. WengerterB. MaierK. de Lourdes Borba MagalhãesM. Del AmoD.S. PaiS. OpazoF. RizzoliS.O. YanA. LevyM. An RNA alternative to human transferrin: A new tool for targeting human cells.Mol. Ther. Nucleic Acids201215e2110.1038/mtna.2012.14 23344001
    [Google Scholar]
  70. KawabataH. Transferrin and transferrin receptors update.Free Radic. Biol. Med.2019133465410.1016/j.freeradbiomed.2018.06.037 29969719
    [Google Scholar]
  71. TortorellaS. KaragiannisT.C. Transferrin receptor-mediated endocytosis: A useful target for cancer therapy.J. Membr. Biol.2014247429130710.1007/s00232‑014‑9637‑0 24573305
    [Google Scholar]
  72. GammellaE. BurattiP. CairoG. RecalcatiS. The transferrin receptor: The cellular iron gate.Metallomics20179101367137510.1039/C7MT00143F 28671201
    [Google Scholar]
  73. ChengT.M. ChangW.J. ChuH.Y. De LucaR. PedersenJ.Z. IncerpiS. LiZ.L. ShihY.J. LinH.Y. WangK. Whang-PengJ. Nano-strategies targeting the integrin αvβ3 network for cancer therapy.Cells2021107168410.3390/cells10071684 34359854
    [Google Scholar]
  74. Winograd-KatzS.E. FässlerR. GeigerB. LegateK.R. The integrin adhesome: From genes and proteins to human disease.Nat. Rev. Mol. Cell Biol.201415427328810.1038/nrm3769 24651544
    [Google Scholar]
  75. GuY. DongB. HeX. QiuZ. ZhangJ. ZhangM. LiuH. PangX. CuiY. The challenges and opportunities of αvβ3-based therapeutics in cancer: From bench to clinical trials.Pharmacol. Res.202318910669410.1016/j.phrs.2023.106694 36775082
    [Google Scholar]
  76. PangX. HeX. QiuZ. ZhangH. XieR. LiuZ. GuY. ZhaoN. XiangQ. CuiY. Targeting integrin pathways: Mechanisms and advances in therapy.Signal Transduct. Target. Ther.202381110.1038/s41392‑022‑01259‑6 36588107
    [Google Scholar]
  77. LudwigB.S. KesslerH. KossatzS. ReuningU. RGD-binding integrins revisited: How recently discovered functions and novel synthetic ligands (re-) shape an ever-evolving field.Cancers2021137171110.3390/cancers13071711 33916607
    [Google Scholar]
  78. BachmannM. KukkurainenS. HytönenV.P. Wehrle-HallerB. Cell adhesion by integrins.Physiol. Rev.20199941655169910.1152/physrev.00036.2018 31313981
    [Google Scholar]
  79. TuckerR.P. Chiquet-EhrismannR. Tenascin-C: Its functions as an integrin ligand.Int. J. Biochem. Cell Biol.20156516516810.1016/j.biocel.2015.06.003 26055518
    [Google Scholar]
  80. WangJ. SuY. IacobR.E. EngenJ.R. SpringerT.A. General structural features that regulate integrin affinity revealed by atypical αVβ8.Nat. Commun.2019101548110.1038/s41467‑019‑13248‑5 31792290
    [Google Scholar]
  81. KilincA.N. HanS. BarrettL.A. AnandasivamN. NelsonC.M. Integrin-linked kinase tunes cell–cell and cell-matrix adhesions to regulate the switch between apoptosis and EMT downstream of TGFβ1.Mol. Biol. Cell202132540241210.1091/mbc.E20‑02‑0092 33405954
    [Google Scholar]
  82. JainS.K. JainA. GulbakeA. ShilpiS. KhareP. Steroid-coupled liposomes for targeted delivery to tumor.Ther. Deliv.20101234535710.4155/tde.10.33 22816137
    [Google Scholar]
  83. JainK. KesharwaniP. GuptaU. JainN.K. A review of glycosylated carriers for drug delivery.Biomaterials201233164166418610.1016/j.biomaterials.2012.02.033 22398205
    [Google Scholar]
  84. JingH. WuX. XiangM. WangC. NovakovicV.A. ShiJ. Microparticle phosphatidylserine mediates coagulation: involvement in tumor progression and metastasis.Cancers2023157195710.3390/cancers15071957 37046617
    [Google Scholar]
  85. PrajapatiA. RangraS. PatilR. DesaiN. JyothiV.G.S.S. SalaveS. AmateP. BenivalD. KommineniN. Receptor-targeted nanomedicine for cancer therapy.Receptors20243332336110.3390/receptors3030016
    [Google Scholar]
  86. PaurevićM. Šrajer GajdošikM. RibićR. Mannose ligands for mannose receptor targeting.Int. J. Mol. Sci.2024253137010.3390/ijms25031370 38338648
    [Google Scholar]
  87. Dalle VedoveE. CostabileG. MerkelO.M. Mannose and mannose‐6‐phosphate receptor–targeted drug delivery systems and their application in cancer therapy.Adv. Healthc. Mater.2018714170139810.1002/adhm.201701398 29719138
    [Google Scholar]
  88. WillmentJ.A. Fc‐conjugated C‐type lectin receptors: Tools for understanding host–pathogen interactions.Mol. Microbiol.2022117363266010.1111/mmi.14837 34709692
    [Google Scholar]
  89. LokeI. KolarichD. PackerN.H. Thaysen-AndersenM. Emerging roles of protein mannosylation in inflammation and infection.Mol. Aspects Med.201651315510.1016/j.mam.2016.04.004 27086127
    [Google Scholar]
  90. LiuZ. HanC. FuY.X. Targeting innate sensing in the tumor microenvironment to improve immunotherapy.Cell. Mol. Immunol.2020171132610.1038/s41423‑019‑0341‑y 31844141
    [Google Scholar]
  91. SilvaJ.M. ZupancicE. VandermeulenG. OliveiraV.G. SalgadoA. VideiraM. GasparM. GracaL. PréatV. FlorindoH.F. In vivo delivery of peptides and Toll-like receptor ligands by mannose-functionalized polymeric nanoparticles induces prophylactic and therapeutic anti-tumor immune responses in a melanoma model.J. Control. Release20151989110310.1016/j.jconrel.2014.11.033 25483429
    [Google Scholar]
  92. VhoraI. PatilS. BhattP. GandhiR. BaradiaD. MisraA. Receptor-targeted drug delivery: Current perspective and challenges.Ther. Deliv.2014591007102410.4155/tde.14.63 25375343
    [Google Scholar]
  93. VolpedoG. CostaL. RyanN. HalseyG. SatoskarA. OghumuS. Nanoparticulate drug delivery systems for the treatment of neglected tropical protozoan diseases.J. Venom. Anim. Toxins Incl. Trop. Dis.201925e14411810.1590/1678‑9199‑jvatitd‑1441‑18 31130996
    [Google Scholar]
  94. YeZ. ZhangQ. WangS. BharateP. Varela-AramburuS. LuM. SeebergerP.H. YinJ. Tumour‐targeted drug delivery with mannose‐functionalized nanoparticles self‐assembled from amphiphilic β‐cyclodextrins.Chemistry20162243152161522110.1002/chem.201603294 27714939
    [Google Scholar]
  95. XiongM. LeiQ. YouX. GaoT. SongX. XiaY. YeT. ZhangL. WangN. YuL. Mannosylated liposomes improve therapeutic effects of paclitaxel in colon cancer models.J. Microencapsul.201734651352110.1080/02652048.2017.1339739 28705043
    [Google Scholar]
  96. ZhangW. LiuM. LiuA. ZhaiG. Advances in functionalized mesoporous silica nanoparticles for tumor targeted drug delivery and theranostics.Curr. Pharm. Des.2017232333673382 27784244
    [Google Scholar]
  97. ZhouM. WenK. BiY. LuH. ChenJ. HuY. ChaiZ. The application of stimuli-responsive nanocarriers for targeted drug delivery.Curr. Top. Med. Chem.2017172023192334 28240179
    [Google Scholar]
  98. MuraS. NicolasJ. CouvreurP. Stimuli-responsive nanocarriers for drug delivery.Nat. Mater.20131211991100310.1038/nmat3776 24150417
    [Google Scholar]
  99. DingC. TongL. FengJ. FuJ. Recent advances in stimuli-responsive release function drug delivery systems for tumor treatment.Molecules20162112171510.3390/molecules21121715 27999414
    [Google Scholar]
  100. QuQ. WangY. ZhangL. ZhangX. ZhouS. A nanoplatform with precise control over release of cargo for enhanced cancer therapy.Small201612101378139010.1002/smll.201503292 26763197
    [Google Scholar]
  101. AbouelmagdS.A. HyunH. YeoY. Extracellularly activatable nanocarriers for drug delivery to tumors.Expert Opin. Drug Deliv.201411101601161810.1517/17425247.2014.930434 24950343
    [Google Scholar]
  102. HatakeyamaH. Recent advances in endogenous and exogenous stimuli-responsive nanocarriers for drug delivery and therapeutics.Chem. Pharm. Bull.201765761261710.1248/cpb.c17‑00068 28674332
    [Google Scholar]
  103. TaghizadehB. TaranejooS. MonemianS.A. Salehi MoghaddamZ. DaliriK. DerakhshankhahH. DerakhshaniZ. Classification of stimuli–responsive polymers as anticancer drug delivery systems.Drug Deliv.201522214515510.3109/10717544.2014.887157 24547737
    [Google Scholar]
  104. LiJ. KeW. LiH. ZhaZ. HanY. GeZ. Endogenous stimuli-sensitive multistage polymeric micelleplex anticancer drug delivery system for efficient tumor penetration and cellular internalization.Adv. Healthc. Mater.20154152206221910.1002/adhm.201500379 26346421
    [Google Scholar]
  105. FatimaM. AlmalkiW.H. KhanT. SahebkarA. KesharwaniP. Harnessing the power of stimuli‐responsive nanoparticles as an effective therapeutic drug delivery system.Adv. Mater.20243624231293910.1002/adma.202312939 38447161
    [Google Scholar]
  106. HeH. SunL. YeJ. LiuE. ChenS. LiangQ. ShinM.C. YangV.C. Enzyme-triggered, cell penetrating peptide-mediated delivery of anti-tumor agents.J. Control. Release2016240677610.1016/j.jconrel.2015.10.040 26514292
    [Google Scholar]
  107. XiaoD. JiaH.Z. MaN. ZhuoR.X. ZhangX.Z. A redox-responsive mesoporous silica nanoparticle capped with amphiphilic peptides by self-assembly for cancer targeting drug delivery.Nanoscale2015722100711007710.1039/C5NR02247A 25978679
    [Google Scholar]
  108. YinS. HuaiJ. ChenX. YangY. ZhangX. GanY. WangG. GuX. LiJ. Intracellular delivery and antitumor effects of a redox-responsive polymeric paclitaxel conjugate based on hyaluronic acid.Acta Biomater.20152627428510.1016/j.actbio.2015.08.029 26300335
    [Google Scholar]
  109. KothawadeS. ShendeP. Coordination bonded stimuli-responsive drug delivery system of chemical actives with metal in pharmaceutical applications.Coord. Chem. Rev.202451021585110.1016/j.ccr.2024.215851
    [Google Scholar]
  110. MovahediF. HuR.G. BeckerD.L. XuC. Stimuli-responsive liposomes for the delivery of nucleic acid therapeutics.Nanomedicine20151161575158410.1016/j.nano.2015.03.006 25819885
    [Google Scholar]
  111. ChenK.J. LiangH.F. ChenH.L. WangY. ChengP.Y. LiuH.L. XiaY. SungH.W. A thermoresponsive bubble-generating liposomal system for triggering localized extracellular drug delivery.ACS Nano20137143844610.1021/nn304474j 23240550
    [Google Scholar]
  112. ShenB. MaY. YuS. JiC. Smart multifunctional magnetic nanoparticle-based drug delivery system for cancer thermo-chemotherapy and intracellular imaging.ACS Appl. Mater. Interfaces2016837245022450810.1021/acsami.6b09772 27573061
    [Google Scholar]
  113. PoelmaS.O. OhS.S. HelmyS. KnightA.S. BurnettG.L. SohH.T. HawkerC.J. Read de AlanizJ. Controlled drug release to cancer cells from modular one-photon visible light-responsive micellar system.Chem. Commun.20165269105251052810.1039/C6CC04127B 27491357
    [Google Scholar]
  114. RweiA.Y. WangW. KohaneD.S. Photoresponsive nanoparticles for drug delivery.Nano Today201510445146710.1016/j.nantod.2015.06.004 26644797
    [Google Scholar]
  115. TaurinS. AlmomenA.A. PollakT. KimS.J. MaxwellJ. PetersonC.M. OwenS.C. Janát-AmsburyM.M. Thermo-sensitive hydrogels a versatile concept adapted to vaginal drug delivery.J. Drug Target.201826753355010.1080/1061186X.2017.1400551 29096548
    [Google Scholar]
  116. LuoG.F. XuX.D. ZhangJ. YangJ. GongY.H. LeiQ. JiaH.Z. LiC. ZhuoR.X. ZhangX.Z. Encapsulation of an adamantane-doxorubicin prodrug in pH-responsive polysaccharide capsules for controlled release.ACS Appl. Mater. Interfaces20124105317532410.1021/am301258a 23009157
    [Google Scholar]
  117. WangM. GongG. FengJ. WangT. DingC. ZhouB. JiangW. FuJ. Dual pH-mediated mechanized hollow zirconia nanospheres.ACS Appl. Mater. Interfaces2016835232892330110.1021/acsami.6b07603 27523904
    [Google Scholar]
  118. DaiY. CaiH. DuanZ. MaX. GongQ. LuoK. GuZ. Effect of polymer side chains on drug delivery properties for cancer therapy.J. Biomed. Nanotechnol.201713111369138510.1166/jbn.2017.2466 31271125
    [Google Scholar]
  119. ZhongJ. LiL. ZhuX. GuanS. YangQ. ZhouZ. ZhangZ. HuangY. A smart polymeric platform for multistage nucleus-targeted anticancer drug delivery.Biomaterials201565435510.1016/j.biomaterials.2015.06.042 26142775
    [Google Scholar]
  120. ChenB. DaiW. HeB. ZhangH. WangX. WangY. ZhangQ. Current multistage drug delivery systems based on the tumor microenvironment.Theranostics20177353855810.7150/thno.16684 28255348
    [Google Scholar]
  121. SwietachP. Vaughan-JonesR.D. HarrisA.L. HulikovaA. The chemistry, physiology and pathology of pH in cancer.Philos. Trans. R. Soc. Lond. B Biol. Sci.201436916382013009910.1098/rstb.2013.0099 24493747
    [Google Scholar]
  122. LiangW. KwokP.C.L. ChowM.Y.T. TangP. MasonA.J. ChanH.K. LamJ.K.W. Formulation of pH responsive peptides as inhalable dry powders for pulmonary delivery of nucleic acids.Eur. J. Pharm. Biopharm.2014861647310.1016/j.ejpb.2013.05.006 23702276
    [Google Scholar]
  123. DanZ. CaoH. HeX. ZhangZ. ZouL. ZengL. XuY. YinQ. XuM. ZhongD. YuH. ShenQ. ZhangP. LiY. A pH-responsive host-guest nanosystem loading succinobucol suppresses lung metastasis of breast cancer.Theranostics20166343544510.7150/thno.13896 26909117
    [Google Scholar]
  124. DeirramN. ZhangC. KermaniyanS.S. JohnstonA.P.R. SuchG.K. pH‐responsive polymer nanoparticles for drug delivery.Macromol. Rapid Commun.20194010180091710.1002/marc.201800917 30835923
    [Google Scholar]
  125. BalamuraliV. PramodkumaT.M. SrujanaN. VenkateshM.P. GuptaN.V. KrishnaK.L. GangadharaH.V. pH sensitive drug delivery systems: A review. American J. Drug.Discov. Develop.201011244810.3923/ajdd.2011.24.48
    [Google Scholar]
  126. LiuM. DuH. ZhangW. ZhaiG. Internal stimuli-responsive nanocarriers for drug delivery: Design strategies and applications.Mater. Sci. Eng. C2017711267128010.1016/j.msec.2016.11.030 27987683
    [Google Scholar]
  127. TangH. ZhaoW. YuJ. LiY. ZhaoC. Recent development of pH-responsive polymers for cancer nanomedicine.Molecules2018241410.3390/molecules24010004 30577475
    [Google Scholar]
  128. KarimiM. Sahandi ZangabadP. GhasemiA. AmiriM. BahramiM. MalekzadH. Ghahramanzadeh AslH. MahdiehZ. BozorgomidM. GhasemiA. Rahmani Taji BoyukM.R. HamblinM.R. Temperature-responsive smart nanocarriers for delivery of therapeutic agents: Applications and recent advances.ACS Appl. Mater. Interfaces2016833211072113310.1021/acsami.6b00371 27349465
    [Google Scholar]
  129. SoniG. YadavK.S. High encapsulation efficiency of poloxamer-based injectable thermoresponsive hydrogels of etoposide.Pharm. Dev. Technol.201419665166110.3109/10837450.2013.819014 23879721
    [Google Scholar]
  130. HaW. YuJ. SongX. ChenJ. ShiY. Tunable temperature-responsive supramolecular hydrogels formed by prodrugs as a codelivery system.ACS Appl. Mater. Interfaces2014613106231063010.1021/am5022864 24919142
    [Google Scholar]
  131. GuoX. LiD. YangG. ShiC. TangZ. WangJ. ZhouS. Thermo-triggered drug release from actively targeting polymer micelles.ACS Appl. Mater. Interfaces20146118549855910.1021/am501422r 24804870
    [Google Scholar]
  132. XuS. FanH. YinL. ZhangJ. DongA. DengL. TangH. Thermosensitive hydrogel system assembled by PTX-loaded copolymer nanoparticles for sustained intraperitoneal chemotherapy of peritoneal carcinomatosis.Eur. J. Pharm. Biopharm.201610425125910.1016/j.ejpb.2016.05.010 27185379
    [Google Scholar]
  133. NohM.S. LeeS. KangH. YangJ.K. LeeH. HwangD. LeeJ.W. JeongS. JangY. JunB.H. JeongD.H. KimS.K. LeeY.S. ChoM.H. Target-specific near-IR induced drug release and photothermal therapy with accumulated Au/Ag hollow nanoshells on pulmonary cancer cell membranes.Biomaterials201545819210.1016/j.biomaterials.2014.12.036 25662498
    [Google Scholar]
  134. WangF. HuangQ. WangY. ShiL. ShenY. GuoS. NIR-light and GSH activated cytosolic p65-shRNA delivery for precise treatment of metastatic cancer.J. Control. Release201828812613510.1016/j.jconrel.2018.09.002 30194946
    [Google Scholar]
  135. KumarM. JhaA. DrM. MishraB. Targeted drug nanocrystals for pulmonary delivery: A potential strategy for lung cancer therapy.Expert Opin. Drug Deliv.202017101459147210.1080/17425247.2020.1798401 32684002
    [Google Scholar]
  136. De BackerL. BraeckmansK. StuartM.C.A. DemeesterJ. De SmedtS.C. RaemdonckK. Bio-inspired pulmonary surfactant-modified nanogels: A promising siRNA delivery system.J. Control. Release201520617718610.1016/j.jconrel.2015.03.015 25791835
    [Google Scholar]
  137. de Oliveira SilvaJ. FernandesR.S. Ramos OdaC.M. FerreiraT.H. Machado BotelhoA.F. Martins MeloM. de MirandaM.C. Assis GomesD. Dantas CassaliG. TownsendD.M. RubelloD. OliveiraM.C. de BarrosA.L.B. Folate-coated, long-circulating and pH-sensitive liposomes enhance doxorubicin antitumor effect in a breast cancer animal model.Biomed. Pharmacother.201911810932310.1016/j.biopha.2019.109323 31400669
    [Google Scholar]
  138. YuM. GuoF. WangJ. TanF. LiN. A pH-Driven and photoresponsive nanocarrier: Remotely-controlled by near-infrared light for stepwise antitumor treatment.Biomaterials201679253510.1016/j.biomaterials.2015.11.049 26686979
    [Google Scholar]
  139. HouL. YangX. RenJ. WangY. ZhangH. FengQ. ShiY. ShanX. YuanY. ZhangZ. A novel redox-sensitive system based on single-walled carbon nanotubes for chemo-photothermal therapy and magnetic resonance imaging.Int. J. Nanomedicine201611607624 26917960
    [Google Scholar]
  140. XiaoD. JiaH.Z. ZhangJ. LiuC.W. ZhuoR.X. ZhangX.Z. A dual-responsive mesoporous silica nanoparticle for tumor-triggered targeting drug delivery.Small201410359159810.1002/smll.201301926 24106109
    [Google Scholar]
  141. LiD. BuY. ZhangL. WangX. YangY. ZhuangY. YangF. ShenH. WuD. Facile construction of pH-and redox-responsive micelles from a biodegradable poly (β-hydroxyl amine) for drug delivery.Biomacromolecules201617129130010.1021/acs.biomac.5b01394 26682612
    [Google Scholar]
  142. ChenC.Y. KimT.H. WuW.C. HuangC.M. WeiH. MountC.W. TianY. JangS.H. PunS.H. JenA.K.Y. pH-dependent, thermosensitive polymeric nanocarriers for drug delivery to solid tumors.Biomaterials201334184501450910.1016/j.biomaterials.2013.02.049 23498892
    [Google Scholar]
  143. DuttaS. SamantaP. DharaD. Temperature, pH and redox responsive cellulose based hydrogels for protein delivery.Int. J. Biol. Macromol.2016879210010.1016/j.ijbiomac.2016.02.042 26896728
    [Google Scholar]
  144. HanL. TangC. YinC. Dual-targeting and pH/redox-responsive multi-layered nanocomplexes for smart co-delivery of doxorubicin and siRNA.Biomaterials201560425210.1016/j.biomaterials.2015.05.001 25982552
    [Google Scholar]
  145. WuX. LiY. LinC. HuX.Y. WangL. GSH- and pH-responsive drug delivery system constructed by water-soluble pillar [5] arene and lysine derivative for controllable drug release.Chem. Commun.201551316832683510.1039/C5CC01393C 25790033
    [Google Scholar]
  146. QuY. ChuB. WeiX. LeiM. HuD. ZhaR. ZhongL. WangM. WangF. QianZ. Redox/pH dual-stimuli responsive camptothecin prodrug nanogels for “on-demand” drug delivery.J. Control. Release20192969310610.1016/j.jconrel.2019.01.016 30664976
    [Google Scholar]
  147. Guardado-AlvarezT.M. ChenW. NortonA.E. RussellM.M. ConnickW.B. ZinkJ.I. Analyte-responsive gated hollow mesoporous silica nanoparticles exhibiting inverse functionality and an AND logic response.Nanoscale2016843182961830010.1039/C6NR01640E 27779267
    [Google Scholar]
  148. KiryukhinM.V. Active drug release systems: Current status, applications and perspectives.Curr. Opin. Pharmacol.201418697510.1016/j.coph.2014.09.010 25265597
    [Google Scholar]
  149. FengL. ChengL. DongZ. TaoD. BarnhartT.E. CaiW. ChenM. LiuZ. Theranostic liposomes with hypoxia-activated prodrug to effectively destruct hypoxic tumors post-photodynamic therapy.ACS Nano201711192793710.1021/acsnano.6b07525 28027442
    [Google Scholar]
  150. PoonZ. ChangD. ZhaoX. HammondP.T. Layer-by-layer nanoparticles with a pH-sheddable layer for in vivo targeting of tumor hypoxia.ACS Nano2011564284429210.1021/nn200876f 21513353
    [Google Scholar]
  151. KulkarniP. HaldarM.K. KarandishF. ConfeldM. HossainR. BorowiczP. GangeK. XiaL. SarkarK. MallikS. Tissue‐penetrating, hypoxia‐responsive echogenic polymersomes for drug delivery to solid tumors.Chemistry20182448124901249410.1002/chem.201802229 29968262
    [Google Scholar]
  152. YinW. QiangM. KeW. HanY. MukerabigwiJ.F. GeZ. Hypoxia-responsive block copolymer radiosensitizers as anticancer drug nanocarriers for enhanced chemoradiotherapy of bulky solid tumors.Biomaterials201818136037110.1016/j.biomaterials.2018.08.014 30098571
    [Google Scholar]
  153. LuckanagulJ.A. PitakchatwongC. Ratnatilaka Na BhuketP. MuangnoiC. RojsitthisakP. ChirachanchaiS. WangQ. RojsitthisakP. Chitosan-based polymer hybrids for thermo-responsive nanogel delivery of curcumin.Carbohydr. Polym.20181811119112710.1016/j.carbpol.2017.11.027 29253940
    [Google Scholar]
  154. ZhengM. JiangT. YangW. ZouY. WuH. LiuX. ZhuF. QianR. LingD. McDonaldK. ShiJ. ShiB. The siRNAsome: A cation‐free and versatile nanostructure for siRNA and drug co‐delivery.Angew. Chem. Int. Ed.201958154938494210.1002/anie.201814289 30737876
    [Google Scholar]
  155. OroojalianF. BabaeiM. TaghdisiS.M. AbnousK. RamezaniM. AlibolandiM. Encapsulation of thermo-responsive gel in pH-sensitive polymersomes as dual-responsive smart carriers for controlled release of doxorubicin.J. Control. Release2018288456110.1016/j.jconrel.2018.08.039 30171978
    [Google Scholar]
  156. Al-AhmadyZ.S. Al-JamalW.T. BosscheJ.V. BuiT.T. DrakeA.F. MasonA.J. KostarelosK. Lipid-peptide vesicle nanoscale hybrids for triggered drug release by mild hyperthermia in vitro and in vivo.ACS Nano20126109335934610.1021/nn302148p 22857653
    [Google Scholar]
  157. XinX. TengC. DuX. LvY. XiaoQ. WuY. HeW. YinL. Drug-delivering-drug platform-mediated potent protein therapeutics via a non-endo-lysosomal route.Theranostics20188133474348910.7150/thno.23804 30026860
    [Google Scholar]
  158. YingyuadP. MévelM. PrataC. FuregatiS. KontogiorgisC. ThanouM. MillerA.D. Enzyme-triggered PEGylated pDNA-nanoparticles for controlled release of pDNA in tumors.Bioconjug. Chem.201324334336210.1021/bc300419g 23305338
    [Google Scholar]
  159. ByrneM. ThorntonP.D. CryanS.A. HeiseA. Star polypeptides by NCA polymerisation from dendritic initiators: synthesis and enzyme controlled payload release.Polym. Chem.20123102825283110.1039/c2py20327h
    [Google Scholar]
  160. KhatunZ. NurunnabiM. NafiujjamanM. ReeckG.R. KhanH.A. ChoK.J. LeeY. A hyaluronic acid nanogel for photo–chemo theranostics of lung cancer with simultaneous light-responsive controlled release of doxorubicin.Nanoscale2015724106801068910.1039/C5NR01075F 26030737
    [Google Scholar]
  161. BaskaranS. SiewQ.Y. TanM.T. LohH.S. Theranostic tools against lung and breast cancers: Through the lens of mature gold nanoparticles and emerging graphene.RPS Pharm. Pharmacol. Rep.202431rqae00310.1093/rpsppr/rqae003
    [Google Scholar]
  162. ZhangW. WangF. WangY. WangJ. YuY. GuoS. ChenR. ZhouD. pH and near-infrared light dual-stimuli responsive drug delivery using DNA-conjugated gold nanorods for effective treatment of multidrug resistant cancer cells.J. Control. Release201623291910.1016/j.jconrel.2016.04.001 27072026
    [Google Scholar]
  163. ChiangC.S. ShenY.S. LiuJ.J. ShyuW.C. ChenS.Y. Synergistic combination of multistage magnetic guidance and optimized ligand density in targeting a nanoplatform for enhanced cancer therapy.Adv. Healthc. Mater.20165162131214110.1002/adhm.201600479 27337051
    [Google Scholar]
  164. LiZ. YangT. LinC. LiQ. LiuS. XuF. WangH. CuiX. Sonochemical synthesis of hydrophilic drug loaded multifunctional bovine serum albumin nanocapsules.ACS Appl. Mater. Interfaces2015734193901939710.1021/acsami.5b05558 26271517
    [Google Scholar]
  165. YooD. JeongH. NohS.H. LeeJ.H. CheonJ. Magnetically triggered dual functional nanoparticles for resistance-free apoptotic hyperthermia.Angew. Chem. Int. Ed.20135249130471305110.1002/anie.201306557 24281889
    [Google Scholar]
  166. PapaA.L. KorinN. KanapathipillaiM. MammotoA. MammotoT. JiangA. MannixR. UzunO. JohnsonC. BhattaD. CuneoG. IngberD.E. Ultrasound-sensitive nanoparticle aggregates for targeted drug delivery.Biomaterials201713918719410.1016/j.biomaterials.2017.06.003 28618348
    [Google Scholar]
  167. ZhaoQ. LiuJ. ZhuW. SunC. DiD. ZhangY. WangP. WangZ. WangS. Dual-stimuli responsive hyaluronic acid-conjugated mesoporous silica for targeted delivery to CD44-overexpressing cancer cells.Acta Biomater.20152314715610.1016/j.actbio.2015.05.010 25985912
    [Google Scholar]
  168. DaundV. ChalkeS. SherjeA.P. KaleP.P. ROS responsive mesoporous silica nanoparticles for smart drug delivery: A review.J. Drug Deliv. Sci. Technol.20216410259910.1016/j.jddst.2021.102599
    [Google Scholar]
  169. MusumeciT. BonaccorsoA. CarboneC. Basic concepts of liposomes: Components, structures, properties and classification.In: Liposomes in Drug Delivery.Academic Press20241948
    [Google Scholar]
  170. SonninoS. ChiricozziE. GrassiS. MauriL. PrioniS. PrinettiA. Gangliosides in membrane organization.Prog. Mol. Biol. Transl. Sci.20181568312010.1016/bs.pmbts.2017.12.007 29747825
    [Google Scholar]
  171. TharmalingamN. JayanthanH.S. PortJ. RossattoF.C. MylonakisE. Mefloquine reduces the bacterial membrane fluidity of Acinetobacter baumannii and distorts the bacterial membrane when combined with polymyxin B.mBio2025e04016e0402410.3389/fbioe.2021.705886 34568298
    [Google Scholar]
  172. AssoliniJ.P. CarlotoA.C.M. BortoletiB.T.S. GonçalvesM.D. Tomiotto PellissierF. FeuserP.E. CordeiroA.P. Hermes de AraújoP.H. SayerC. Miranda SaplaM.M. PavanelliW.R. Nanomedicine in leishmaniasis: A promising tool for diagnosis, treatment and prevention of disease - An update overview.Eur. J. Pharmacol.202292317493410.1016/j.ejphar.2022.174934 35367420
    [Google Scholar]
  173. LeN.T.T. CaoV.D. NguyenT.N.Q. LeT.T.H. TranT.T. Hoang ThiT.T. Soy lecithin-derived liposomal delivery systems: Surface modification and current applications.Int. J. Mol. Sci.20192019470610.3390/ijms20194706 31547569
    [Google Scholar]
  174. IchiharaH. KomizuY. UeokaR. MatsumotoY. Inhibitory effects of hybrid liposomes on the growth of non-small cell lung carcinoma cells and anti-invasive activity by ceramide generation without any drugs.J. Carcinog. Mutagen.201562302
    [Google Scholar]
  175. OnziG. GuterresS.S. PohlmannA.R. FrankL.A. Passive targeting and the enhanced permeability and retention (EPR) effect.In: The ADME Encyclopedia: A Comprehensive Guide on Biopharmacy and Pharmacokinetics.ChamSpringer2020113
    [Google Scholar]
  176. Dragicevic-CuricN. FahrA. Liposomes in topical photodynamic therapy.Expert Opin. Drug Deliv.2012981015103210.1517/17425247.2012.697894 22731896
    [Google Scholar]
  177. BozzutoG. MolinariA. Liposomes as nanomedical devices.Int. J. Nanomedicine20151097599910.2147/IJN.S68861 25678787
    [Google Scholar]
  178. JabirN. TabrezS. FirozC.K. ZaidiS. BaeesaS. GanS. ShakilS. KamalM. A synopsis of nano-technological approaches toward anti-epilepsy therapy: Present and future research implications.Curr. Drug Metab.201516533634510.2174/1389200215666141125142605 25429676
    [Google Scholar]
  179. MuthuM.S. FengS.S. Theranostic liposomes for cancer diagnosis and treatment: Current development and pre-clinical success.Expert Opin. Drug Deliv.201310215115510.1517/17425247.2013.729576 23061654
    [Google Scholar]
  180. AlwattarJ.K. MneimnehA.T. AblaK.K. MehannaM.M. AllamA.N. Smart stimuli-responsive liposomal nanohybrid systems: A critical review of theranostic behavior in cancer.Pharmaceutics202113335510.3390/pharmaceutics13030355 33800292
    [Google Scholar]
  181. WangF. PorterM. KonstantopoulosA. ZhangP. CuiH. Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy.J. Control. Release201726710011810.1016/j.jconrel.2017.09.026 28958854
    [Google Scholar]
  182. LiuD. LiuZ. WangL. ZhangC. ZhangN. Nanostructured lipid carriers as novel carrier for parenteral delivery of docetaxel.Colloids Surf. B Biointerfaces201185226226910.1016/j.colsurfb.2011.02.038 21435845
    [Google Scholar]
  183. Mohammadi-SamaniS. GhasemiyehP. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages.Res. Pharm. Sci.201813428830310.4103/1735‑5362.235156 30065762
    [Google Scholar]
  184. de JesusM.B. ZuhornI.S. Solid lipid nanoparticles as nucleic acid delivery system: Properties and molecular mechanisms.J. Control. Release201520111310.1016/j.jconrel.2015.01.010 25578828
    [Google Scholar]
  185. AndreozziE. SeoJ.W. FerraraK. LouieA. Novel method to label solid lipid nanoparticles with 64cu for positron emission tomography imaging.Bioconjug. Chem.201122480881810.1021/bc100478k 21388194
    [Google Scholar]
  186. LeivaM.C. OrtizR. Contreras-CáceresR. PerazzoliG. MayevychI. López-RomeroJ.M. SarabiaF. BaeyensJ.M. MelguizoC. PradosJ. Tripalmitin nanoparticle formulations significantly enhance paclitaxel antitumor activity against breast and lung cancer cells in vitro.Sci. Rep.2017711350610.1038/s41598‑017‑13816‑z 29044153
    [Google Scholar]
  187. BabuA. TempletonA.K. MunshiA. RameshR. Nanoparticle-based drug delivery for therapy of lung cancer: Progress and challenges.J. Nanomater.20132013186395110.1155/2013/863951
    [Google Scholar]
  188. ShuklaR. HandaM. LokeshS.B. RuwaliM. KohliK. KesharwaniP. Conclusion and future prospective of polymeric nanoparticles for cancer therapy.In: InPolymeric nanoparticles as a promising tool for anti-cancer therapeutics.Academic Press201938940810.1016/B978‑0‑12‑816963‑6.00018‑2
    [Google Scholar]
  189. TosiG. BortotB. RuoziB. DolcettaD. VandelliM.A. ForniF. SeveriniG.M. Potential use of polymeric nanoparticles for drug delivery across the blood-brain barrier.Curr. Med. Chem.201320172212222510.2174/0929867311320170006 23458620
    [Google Scholar]
  190. SunR. ChenY. PeiY. WangW. ZhuZ. ZhengZ. YangL. SunL. The drug release of PLGA-based nanoparticles and their application in treatment of gastrointestinal cancers.Heliyon20241018e3816510.1016/j.heliyon.2024.e38165 39364250
    [Google Scholar]
  191. FriedD.B. MorrisD.E. PooleC. RosenmanJ.G. HalleJ.S. DetterbeckF.C. HensingT.A. SocinskiM.A. Systematic review evaluating the timing of thoracic radiation therapy in combined modality therapy for limited-stage small-cell lung cancer.J. Clin. Oncol.200422234837484510.1200/JCO.2004.01.178
    [Google Scholar]
  192. JainK. JainN.K. KesharwaniP. Types of dendrimers.In: Dendrimer-based nanotherapeutics.Academic Press20219512310.1016/B978‑0‑12‑821250‑9.00007‑X
    [Google Scholar]
  193. DinF. AmanW. UllahI. QureshiO.S. MustaphaO. ShafiqueS. ZebA. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors.Int. J. Nanomedicine2017127291730910.2147/IJN.S146315 29042776
    [Google Scholar]
  194. KumariP. GhoshB. BiswasS. Nanocarriers for cancer-targeted drug delivery.J. Drug Target.201624317919110.3109/1061186X.2015.1051049 26061298
    [Google Scholar]
  195. HuangY. JiangK. ZhangX. ChungE.J. The effect of size, charge, and peptide ligand length on kidney targeting by small, organic nanoparticles.Bioeng. Transl. Med.202053e1017310.1002/btm2.10173 33005739
    [Google Scholar]
  196. GhezziM. PescinaS. PadulaC. SantiP. Del FaveroE. CantùL. NicoliS. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions.J. Control. Release202133231233610.1016/j.jconrel.2021.02.031 33652113
    [Google Scholar]
  197. BandyopadhyayD. GranadosJ.C. ShortJ.D. BanikB.K. Polycyclic aromatic compounds as anticancer agents: Evaluation of synthesis and in vitro cytotoxicity.Oncol. Lett.201231454910.3892/ol.2011.436 22740854
    [Google Scholar]
  198. PerumalS. AtchudanR. LeeW. A review of polymeric micelles and their applications.Polymers20221412251010.3390/polym14122510 35746086
    [Google Scholar]
  199. OerlemansC. BultW. BosM. StormG. NijsenJ.F.W. HenninkW.E. Polymeric micelles in anticancer therapy: Targeting, imaging and triggered release.Pharm. Res.201027122569258910.1007/s11095‑010‑0233‑4 20725771
    [Google Scholar]
  200. AnsariS.A. SatarR. JafriM.A. RasoolM. AhmadW. Kashif ZaidiS. Role of nanodiamonds in drug delivery and stem cell therapy.Iran. J. Biotechnol.201614313014110.15171/ijb.1320 28959329
    [Google Scholar]
  201. KumarJ.A. KrithigaT. ManigandanS. SathishS. RenitaA.A. PrakashP. PrasadB.S.N. KumarT.R.P. RajasimmanM. Hosseini-BandegharaeiA. PrabuD. CrispinS. A focus to green synthesis of metal/metal based oxide nanoparticles: Various mechanisms and applications towards ecological approach.J. Clean. Prod.202132412919810.1016/j.jclepro.2021.129198
    [Google Scholar]
  202. ZahednezhadF. Zakeri-MilaniP. Shahbazi MojarradJ. ValizadehH. The latest advances of cisplatin liposomal formulations: Essentials for preparation and analysis.Expert Opin. Drug Deliv.202017452354110.1080/17425247.2020.1737672 32116060
    [Google Scholar]
  203. SzupryczyńskiK. CzeleńP. JelińskiT. SzeflerB. What is the reason that the pharmacological future of chemotherapeutics in the treatment of lung cancer could be most closely related to nanostructures? Platinum drugs in therapy of non-small and small cell lung cancer and their unexpected, possible interactions.Rev. Int. J. Nanomedicine2024199503954710.2147/IJN.S469217 39296940
    [Google Scholar]
  204. ZhouJ. ZhaoW.Y. MaX. JuR.J. LiX.Y. LiN. SunM.G. ShiJ.F. ZhangC.X. LuW.L. The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer.Biomaterials201334143626363810.1016/j.biomaterials.2013.01.078 23422592
    [Google Scholar]
  205. StathopoulosG.P. AntoniouD. DimitroulisJ. MichalopoulouP. BastasA. MarosisK. StathopoulosJ. ProvataA. YiamboudakisP. VeldekisD. LolisN. GeorgatouN. ToubisM. PappasC. TsoukalasG. Liposomal cisplatin combined with paclitaxel versus cisplatin and paclitaxel in non-small-cell lung cancer: A randomized phase III multicenter trial.Ann. Oncol.201021112227223210.1093/annonc/mdq234 20439345
    [Google Scholar]
  206. ZhangJ. PanY. ShiQ. ZhangG. JiangL. DongX. GuK. WangH. ZhangX. YangN. LiY. XiongJ. YiT. PengM. SongY. FanY. CuiJ. ChenG. TanW. ZangA. GuoQ. ZhaoG. WangZ. HeJ. YaoW. WuX. ChenK. HuX. HuC. YueL. JiangD. WangG. LiuJ. YuG. LiJ. BaiJ. XieW. ZhaoW. WuL. ZhouC. Paclitaxel liposome for injection (Lipusu) plus cisplatin versus gemcitabine plus cisplatin in the first‐line treatment of locally advanced or metastatic lung squamous cell carcinoma: A multicenter, randomized, open‐label, parallel controlled clinical study.Cancer Commun.202242131610.1002/cac2.12225 34699693
    [Google Scholar]
  207. BaeK.H. LeeJ.Y. LeeS.H. ParkT.G. NamY.S. Optically traceable solid lipid nanoparticles loaded with siRNA and paclitaxel for synergistic chemotherapy with in situ imaging.Adv. Healthc. Mater.20132457658410.1002/adhm.201200338 23184673
    [Google Scholar]
  208. WangA.Z. YuetK. ZhangL. GuF.X. Huynh-LeM. Radovic-MorenoA.F. KantoffP.W. BanderN.H. LangerR. FarokhzadO.C. ChemoRad nanoparticles: A novel multifunctional nanoparticle platform for targeted delivery of concurrent chemoradiation.Nanomedicine20105336136810.2217/nnm.10.6 20394530
    [Google Scholar]
  209. JungJ. ParkS.J. ChungH.K. KangH.W. LeeS.W. SeoM.H. ParkH.J. SongS.Y. JeongS.Y. ChoiE.K. Polymeric nanoparticles containing taxanes enhance chemoradiotherapeutic efficacy in non-small cell lung cancer.Int. J. Radiat. Oncol. Biol. Phys.2012841e77e8310.1016/j.ijrobp.2012.02.030 22795728
    [Google Scholar]
  210. JiangL. LiX. LiuL. ZhangQ. Thiolated chitosan-modified PLA-PCL-TPGS nanoparticles for oral chemotherapy of lung cancer.Nanoscale Res. Lett.2013816610.1186/1556‑276X‑8‑66 23394588
    [Google Scholar]
  211. MehrotraA. NagarwalR.C. PanditJ.K. Lomustine loaded chitosan nanoparticles: Characterization and in-vitro cytotoxicity on human lung cancer cell line L132.Chem. Pharm. Bull.201159331532010.1248/cpb.59.315 21372411
    [Google Scholar]
  212. LiuR. KhullarO.V. GrisetA.P. WadeJ.E. ZubrisK.A.V. GrinstaffM.W. ColsonY.L. Paclitaxel-loaded expansile nanoparticles delay local recurrence in a heterotopic murine non-small cell lung cancer model.Ann. Thorac. Surg.20119141077108410.1016/j.athoracsur.2010.12.040 21440127
    [Google Scholar]
  213. LiJ. ZhuL. KwokH.F. Nanotechnology-based approaches overcome lung cancer drug resistance through diagnosis and treatment.Drug Resist. Updat.20236610090410.1016/j.drup.2022.100904 36462375
    [Google Scholar]
  214. KarthikeyanS. Rajendra PrasadN. GanamaniA. BalamuruganE. Anticancer activity of resveratrol-loaded gelatin nanoparticles on NCI-H460 non-small cell lung cancer cells.Biomed. Prev. Nutr.201331647310.1016/j.bionut.2012.10.009
    [Google Scholar]
  215. LiuJ. LiuJ. ChuL. WangY. DuanY. FengL. YangC. WangL. KongD. Novel peptide-dendrimer conjugates as drug carriers for targeting nonsmall cell lung cancer.Int. J. Nanomedicine201065969 21289982
    [Google Scholar]
  216. ThakkarA.B. SubramanianR.B. ThakkarV.R. ThakorP. Applications of nanotechnology in lung cancer.In: Applications of nanotechnology in drug discovery and delivery.Elsevier202232934310.1016/B978‑0‑12‑824408‑1.00010‑7
    [Google Scholar]
  217. AroraV. AbourehabM.A.S. ModiG. KesharwaniP. Dendrimers as prospective nanocarrier for targeted delivery against lung cancer.Eur. Polym. J.202218011163510.1016/j.eurpolymj.2022.111635
    [Google Scholar]
  218. JiangZ. FengX. ZouH. XuW. ZhuangX. Poly(l-glutamic acid)-cisplatin nanoformulations with detachable PEGylation for prolonged circulation half-life and enhanced cell internalization.Bioact. Mater.2021692688269710.1016/j.bioactmat.2021.01.034 33665501
    [Google Scholar]
  219. NarayanaswamyR. TorchilinV.P. Targeted delivery of combination therapeutics using monoclonal antibody 2C5-modified immunoliposomes for cancer therapy.Pharm. Res.202138342945010.1007/s11095‑021‑02986‑1 33655395
    [Google Scholar]
  220. LiK. ChenB. XuL. FengJ. XiaG. ChengJ. WangJ. GaoF. WangX. Reversal of multidrug resistance by cisplatin-loaded magnetic Fe3O4 nanoparticles in A549/DDP lung cancer cells in vitro and in vivo.Int. J. Nanomedicine2013818671877 23690684
    [Google Scholar]
  221. VermaN.K. Crosbie-StauntonK. SattiA. GallagherS. RyanK.B. DoodyT. McAtamneyC. MacLoughlinR. GalvinP. BurkeC.S. VolkovY. Gun’koY.K. Magnetic core-shell nanoparticles for drug delivery by nebulization.J. Nanobiotechnology20131111210.1186/1477‑3155‑11‑1 23343139
    [Google Scholar]
  222. PrabhakarB. ShendeP. AugustineS. Current trends and emerging diagnostic techniques for lung cancer.Biomed. Pharmacother.20181061586159910.1016/j.biopha.2018.07.145 30119234
    [Google Scholar]
  223. MukherjeeA. PaulM. MukherjeeS. Recent progress in the theranostics application of nanomedicine in lung cancer.Cancers201911559710.3390/cancers11050597 31035440
    [Google Scholar]
  224. KashyapB.K. SinghV.V. SolankiM.K. KumarA. RuokolainenJ. KesariK.K. Smart nanomaterials in cancer theranostics: Challenges and opportunities.ACS Omega2023816142901432010.1021/acsomega.2c07840 37125102
    [Google Scholar]
  225. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  226. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.21708 35020204
    [Google Scholar]
  227. LiY. WangN. HuangY. HeS. BaoM. WenC. WuL. CircMYBL1 suppressed acquired resistance to osimertinib in non-small-cell lung cancer.Cancer Genet.2024284-285344210.1016/j.cancergen.2024.04.001 38626533
    [Google Scholar]
  228. LouY. ZouX. PanZ. HuangZ. ZhengS. ZhengX. YangX. BaoM. ZhangY. GuJ. ZhangY. The mechanism of action of Botrychium (Thunb.) Sw. for prevention of idiopathic pulmonary fibrosis based on 1H-NMR-based metabolomics.J. Pharm. Pharmacol.20247681018102710.1093/jpp/rgae058 38776436
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575338753250228055700
Loading
/content/journals/mrmc/10.2174/0113895575338753250228055700
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test