Skip to content
2000
Volume 25, Issue 12
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

DNA topoisomerases, particularly type II, are crucial for DNA processes, such as replication, transcription, and chromosome segregation, making them prime targets for cancer therapy. This review delves into the multifaceted mechanisms of action of type II topoisomerases, highlighting their essential roles beyond cancer progression. It explores recent advancements in screening and designing metallic complexes as inhibitors of topoisomerase II activity. Emphasizing the structural and functional diversity between alpha and beta isoforms, it elucidates their significance in DNA metabolism and genome integrity. Additionally, this review discusses the interplay of topoisomerase II with cellular components, underscoring its regulatory roles in gene expression. Insights into screening and design strategies for metallic complex inhibitors are provided, showcasing their therapeutic potential against cancer. Overall, this review highlights the importance of understanding topoisomerase II inhibition mechanisms and the versatility of metallic complexes in biomedical research, paving the way for novel therapeutic strategies and broader applications beyond cancer therapy.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575370547250526062144
2025-06-05
2025-10-31
Loading full text...

Full text loading...

References

  1. NitissJ.L. DNA topoisomerase II and its growing repertoire of biological functions.Nat. Rev. Cancer20099532733710.1038/nrc2608 19377505
    [Google Scholar]
  2. DelgadoJ.L. HsiehC.M. ChanN.L. HiasaH. Topoisomerases as anticancer targets.Biochem. J.2018475237339810.1042/BCJ20160583 29363591
    [Google Scholar]
  3. ChenS.H. ChanN.L. HsiehT. New mechanistic and functional insights into DNA topoisomerases.Annu. Rev. Biochem.201382113917010.1146/annurev‑biochem‑061809‑100002 23495937
    [Google Scholar]
  4. Uusküla-ReimandL. WilsonM.D. Untangling the roles of TOP2A and TOP2B in transcription and cancer.Sci. Adv.2022844eadd492010.1126/sciadv.add4920 36322662
    [Google Scholar]
  5. PendletonM. LindseyR.H. FelixC.A. GrimwadeD. OsheroffN. Topoisomerase II and leukemia.Ann. N. Y. Acad. Sci.2014131019811010.1111/nyas.12358 24495080
    [Google Scholar]
  6. PogorelčnikB. PerdihA. SolmajerT. Recent advances in the development of catalytic inhibitors of human DNA topoisomerase IIα as novel anticancer agents.Curr. Med. Chem.201320569470910.2174/092986713804999402 23210851
    [Google Scholar]
  7. GaikwadM. KonkimallaV.B. Salunke-GawaliS. Metal complexes as topoisomerase inhibitors.Inorg. Chim. Acta202254212108910.1016/j.ica.2022.121089
    [Google Scholar]
  8. JiangX. FieldingL.A. DavisH. CarrollW. LisicE.C. DeweeseJ.E. Inhibition of topoisomerases by metal thiosemicarbazone complexes.Int. J. Mol. Sci.202324151201010.3390/ijms241512010 37569386
    [Google Scholar]
  9. OkoroC.O. FatokiT.H. A mini review of novel topoisomerase II inhibitors as future anticancer agents.Int. J. Mol. Sci.2023243253210.3390/ijms24032532 36768852
    [Google Scholar]
  10. VannK.R. OviattA.A. OsheroffN. Topoisomerase II poisons: Converting essential enzymes into molecular scissors.Biochemistry202160211630164110.1021/acs.biochem.1c00240 34008964
    [Google Scholar]
  11. Matias-BarriosV.M. RadaevaM. HoC.H. LeeJ. AdomatH. LallousN. CherkasovA. DongX. Optimization of new catalytic topoisomerase II inhibitors as an anti-cancer therapy.Cancers (Basel)20211315367510.3390/cancers13153675 34359577
    [Google Scholar]
  12. Matias-BarriosV.M. RadaevaM. SongY. AlpersteinZ. LeeA.R. SchmittV. LeeJ. BanF. XieN. QiJ. LallousN. GleaveM.E. CherkasovA. DongX. Discovery of new catalytic topoisomerase II inhibitors for anticancer therapeutics.Front. Oncol.20211063314210.3389/fonc.2020.633142 33598437
    [Google Scholar]
  13. McKieS.J. NeumanK.C. MaxwellA. DNA topoisomerases: Advances in understanding of cellular roles and multi‐protein complexes via structure‐function analysis.BioEssays2021434200028610.1002/bies.202000286 33480441
    [Google Scholar]
  14. SchmidtB.H. OsheroffN. BergerJ.M. Structure of a topoisomerase II–DNA–nucleotide complex reveals a new control mechanism for ATPase activity.Nat. Struct. Mol. Biol.201219111147115410.1038/nsmb.2388 23022727
    [Google Scholar]
  15. ClassenS. OllandS. BergerJ.M. Structure of the topoisomerase II ATPase region and its mechanism of inhibition by the chemotherapeutic agent ICRF-187.Proc. Natl. Acad. Sci. USA200310019106291063410.1073/pnas.1832879100 12963818
    [Google Scholar]
  16. WilliamsN.L. MaxwellA. Probing the two-gate mechanism of DNA gyrase using cysteine cross-linking.Biochemistry19993841135021351110.1021/bi9912488 10521257
    [Google Scholar]
  17. RocaJ. BergerJ.M. HarrisonS.C. WangJ.C. DNA transport by a type II topoisomerase: Direct evidence for a two-gate mechanism.Proc. Natl. Acad. Sci. USA19969394057406210.1073/pnas.93.9.4057 8633016
    [Google Scholar]
  18. DuttaR. InouyeM. GHKL, an emergent ATPase/kinase superfamily.Trends Biochem. Sci.2000251242810.1016/S0968‑0004(99)01503‑0 10637609
    [Google Scholar]
  19. BergerJ.M. GamblinS.J. HarrisonS.C. WangJ.C. Structure and mechanism of DNA topoisomerase II.Nature1996379656222523210.1038/379225a0 8538787
    [Google Scholar]
  20. CabralJ.H.M. JacksonA.P. SmithC.V. ShikotraN. MaxwellA. LiddingtonR.C. Crystal structure of the breakage–reunion domain of DNA gyrase.Nature1997388664590390610.1038/42294 9278055
    [Google Scholar]
  21. BushN.G. Evans-RobertsK. MaxwellA. DNA topoisomerases.EcoSal Plus20156210.1128/ecosalplus.esp‑0010‑2014 26435256
    [Google Scholar]
  22. BauerD.L.V. MarieR. RasmussenK.H. KristensenA. MirK.U. DNA catenation maintains structure of human metaphase chromosomes.Nucleic Acids Res.20124022114281143410.1093/nar/gks931 23066100
    [Google Scholar]
  23. GonzalezR.E. LimC.U. ColeK. BianchiniC.H. SchoolsG.P. DavisB.E. WadaI. RoninsonI.B. BroudeE.V. Effects of conditional depletion of topoisomerase II on cell cycle progression in mammalian cells.Cell Cycle201110203505351410.4161/cc.10.20.17778 22067657
    [Google Scholar]
  24. ChenT. SunY. JiP. KopetzS. ZhangW. Topoisomerase IIα in chromosome instability and personalized cancer therapy.Oncogene201534314019403110.1038/onc.2014.332 25328138
    [Google Scholar]
  25. SinghB.N. AcharyV.M.M. PanditiV. SoporyS.K. ReddyM.K. Dynamics of tobacco DNA topoisomerases II in cell cycle regulation: To manage topological constrains during replication, transcription and mitotic chromosome condensation and segregation.Plant Mol. Biol.201794659560710.1007/s11103‑017‑0626‑4 28634865
    [Google Scholar]
  26. LeeJ.H. BergerJ.M. Cell cycle-dependent control and roles of DNA topoisomerase II.Genes (Basel)2019101185910.3390/genes10110859 31671531
    [Google Scholar]
  27. ZaimM. IsikS. DNA topoisomerase IIβ stimulates neurite outgrowth in neural differentiated human mesenchymal stem cells through regulation of Rho-GTPases (RhoA/Rock2 pathway) and Nurr1 expression.Stem Cell Res. Ther.20189111410.1186/s13287‑018‑0859‑4 29695291
    [Google Scholar]
  28. IsikS. ZaimM. YildizM.T. NegisY. KunduraciT. KarakasN. ArikanG. CetinG. DNA topoisomerase IIβ as a molecular switch in neural differentiation of mesenchymal stem cells.Ann. Hematol.201594230731810.1007/s00277‑014‑2209‑7 25217229
    [Google Scholar]
  29. BedezC. LotzC. BatisseC. BroeckA.V. StoteR.H. HowardE. Pradeau-AubretonK. RuffM. LamourV. Post-translational modifications in DNA topoisomerase 2α highlight the role of a eukaryote-specific residue in the ATPase domain.Sci. Rep.201881927210.1038/s41598‑018‑27606‑8 29915179
    [Google Scholar]
  30. AshourM.E. AtteyaR. El-KhamisyS.F. Topoisomerase-mediated chromosomal break repair: An emerging player in many games.Nat. Rev. Cancer201515313715110.1038/nrc3892 25693836
    [Google Scholar]
  31. SchmidtB.H. BurginA.B. DeweeseJ.E. OsheroffN. BergerJ.M. A novel and unified two-metal mechanism for DNA cleavage by type II and IA topoisomerases.Nature2010465729864164410.1038/nature08974 20485342
    [Google Scholar]
  32. WendorffT.J. SchmidtB.H. HeslopP. AustinC.A. BergerJ.M. The structure of DNA-bound human topoisomerase II alpha: Conformational mechanisms for coordinating inter-subunit interactions with DNA cleavage.J. Mol. Biol.20124243-410912410.1016/j.jmb.2012.07.014 22841979
    [Google Scholar]
  33. PommierY. LeoE. ZhangH. MarchandC. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs.Chem. Biol.201017542143310.1016/j.chembiol.2010.04.012 20534341
    [Google Scholar]
  34. FortuneJ.M. OsheroffN. Topoisomerase II as a target for anticancer drugs: When enzymes stop being nice.Prog. Nucleic Acid Res. Mol. Biol.20006422125310.1016/S0079‑6603(00)64006‑0 10697411
    [Google Scholar]
  35. Gómez-HerrerosF. Romero-GranadosR. ZengZ. Álvarez-QuilónA. QuinteroC. JuL. UmansL. VermeireL. HuylebroeckD. CaldecottK.W. Cortés-LedesmaF. TDP2-dependent non-homologous end-joining protects against topoisomerase II-induced DNA breaks and genome instability in cells and in vivo.PLoS Genet.201393e100322610.1371/journal.pgen.1003226 23505375
    [Google Scholar]
  36. StinsonB.M. LoparoJ.J. Repair of DNA double-strand breaks by the nonhomologous end joining pathway.Annu. Rev. Biochem.202190113716410.1146/annurev‑biochem‑080320‑110356 33556282
    [Google Scholar]
  37. SchellenbergM.J. AppelC.D. AdhikariS. RobertsonP.D. RamsdenD.A. WilliamsR.S. Mechanism of repair of 5′-topoisomerase II–DNA adducts by mammalian tyrosyl-DNA phosphodiesterase 2.Nat. Struct. Mol. Biol.201219121363137110.1038/nsmb.2418 23104055
    [Google Scholar]
  38. OngK.H. LaiH.Y. SunD.P. ChenT.J. HuangS.K.H. TianY.F. ChouC.L. ShiueY.L. ChanT.C. LiC.F. KuoY.H. Prognostic significance of DNA topoisomerase II Alpha (TOP2A) in cholangiocarcinoma.Front. Biosci. (Landmark Ed.)20232847510.31083/j.fbl2804075 37114547
    [Google Scholar]
  39. YakkalaP.A. PenumalluN.R. ShafiS. KamalA. Prospects of topoisomerase inhibitors as promising anti-cancer agents.Pharmaceuticals (Basel)20231610145610.3390/ph16101456 37895927
    [Google Scholar]
  40. DolanbayS.N. YilmazZ.K. KayaB. AslimB. ÜlküsevenB. In vitro biological and in silico screening of novel iron(iii) complexes for DNA-targeted antitumor drug component.New J. Chem.20234730142251424110.1039/D3NJ00016H
    [Google Scholar]
  41. RaoV.A. KleinS.R. AgamaK.K. ToyodaE. AdachiN. PommierY. ShacterE.B. The iron chelator Dp44mT causes DNA damage and selective inhibition of topoisomerase II alpha in breast cancer cells.Cancer Res.200969394895710.1158/0008‑5472.CAN‑08‑1437 19176392
    [Google Scholar]
  42. BrabecV. KasparkovaJ. Ruthenium coordination compounds of biological and biomedical significance. DNA binding agents.Coord. Chem. Rev.2018376759410.1016/j.ccr.2018.07.012
    [Google Scholar]
  43. SkoczynskaA. LewinskiA. PokoraM. PanethP. BudziszE. An overview of the potential medicinal and pharmaceutical properties of Ru (II)/(III) complexes.Int. J. Mol. Sci.20232411951210.3390/ijms24119512 37298471
    [Google Scholar]
  44. TangH. GuoX. YuW. GaoJ. ZhuX. HuangZ. OuW. ZhangH. ChenL. ChenJ. Ruthenium(II) complexes as mitochondrial inhibitors of topoisomerase induced A549 cell apoptosis.J. Inorg. Biochem.202324611229510.1016/j.jinorgbio.2023.112295 37348172
    [Google Scholar]
  45. LeeS.Y. KimC.Y. NamT.G. Ruthenium complexes as anticancer agents: A brief history and perspectives.Drug Des. Dev. Ther.2020145375539210.2147/DDDT.S275007 33299303
    [Google Scholar]
  46. MatveevskayaV.V. PavlovD.I. SukhikhT.S. GushchinA.L. IvanovA.Y. TennikovaT.B. SharoykoV.V. BaykovS.V. BenassiE. PotapovA.S. Arene–Ruthenium(II) complexes containing 11 H -Indeno[1,2- b]quinoxalin-11-one derivatives and tryptanthrin-6-oxime: Synthesis, characterization, cytotoxicity, and catalytic transfer hydrogenation of aryl ketones.ACS Omega2020519111671117910.1021/acsomega.0c01204 32455240
    [Google Scholar]
  47. ZengL. GuptaP. ChenY. WangE. JiL. ChaoH. ChenZ.S. The development of anticancer ruthenium(ii) complexes: From single molecule compounds to nanomaterials.Chem. Soc. Rev.201746195771580410.1039/C7CS00195A 28654103
    [Google Scholar]
  48. AnnunziataA. CucciolitoM.E. Di RonzaM. FerraroG. HadijiM. MerlinoA. OrtizD. ScopellitiR. TiraniF.F. DysonP.J. RuffoF. Ruthenium(II)–arene complexes with glycosylated nhc-carbene co-ligands: Synthesis, hydrolytic behavior, and binding to biological molecules.Organometallics2023421095296410.1021/acs.organomet.3c00128
    [Google Scholar]
  49. AdhikariS. NathP. DasA. DattaA. BaildyaN. DuttaroyA.K. PathakS. A review on metal complexes and its anti-cancer activities: Recent updates from in vivo studies.Biomed. Pharmacother.202417111621110.1016/j.biopha.2024.116211 38290253
    [Google Scholar]
  50. KanaoujiyaR. Meenakshi; Srivastava, S.; Singh, R.; Mustafa, G. Recent advances and application of ruthenium complexes in tumor malignancy.Mater. Today Proc.2023722822282710.1016/j.matpr.2022.07.098
    [Google Scholar]
  51. HildebrandtJ. HäfnerN. KritschD. GörlsH. DürstM. RunnebaumI.B. WeigandW. Highly cytotoxic osmium (II) compounds and their ruthenium (II) analogues targeting ovarian carcinoma cell lines and evading cisplatin resistance mechanisms.Int. J. Mol. Sci.2022239497610.3390/ijms23094976 35563367
    [Google Scholar]
  52. ZhangP. HuangH. Future potential of osmium complexes as anticancer drug candidates, photosensitizers and organelle-targeted probes.Dalton Trans.20184742148411485410.1039/C8DT03432J 30325378
    [Google Scholar]
  53. HuangC. HuangW. JiP. SongF. LiuT. LiM. GuoH. HuangY. YuC. WangC. NiW. A pyrazolate osmium (VI) nitride exhibits anticancer activity through modulating protein homeostasis in HepG2 Cells.Int. J. Mol. Sci.202223211277910.3390/ijms232112779 36361570
    [Google Scholar]
  54. CarterA. RaceyS. VeugerS. The role of iron in DNA and genomic instability in cancer, a target for iron chelators that can induce ROS.Appl. Sci. (Basel)202212191016110.3390/app121910161
    [Google Scholar]
  55. BauJ.T. KangZ. AustinC.A. KurzE.U. Salicylate, a catalytic inhibitor of topoisomerase II, inhibits DNA cleavage and is selective for the α isoform.Mol. Pharmacol.201485219820710.1124/mol.113.088963 24220011
    [Google Scholar]
  56. Van der HornJ. SouvignierB. LutzM. Crystallization, structure determination and reticular twinning in iron(III) salicylate: Fe.[(HSal)(Sal)(H2O)2]Crystals (Basel)201771237710.3390/cryst7120377
    [Google Scholar]
  57. RaoV.A. Iron chelators with topoisomerase-inhibitory activity and their anticancer applications.Antioxid. Redox Signal.201318893095510.1089/ars.2012.4877 22900902
    [Google Scholar]
  58. VejpongsaP. YehE.T.H. Topoisomerase 2β: A promising molecular target for primary prevention of anthracycline-induced cardiotoxicity.Clin. Pharmacol. Ther.2013951455210.1038/clpt.2013.201 24091715
    [Google Scholar]
  59. XuX. PerssonH.L. RichardsonD.R. Molecular pharmacology of the interaction of anthracyclines with iron.Mol. Pharmacol.200568226127110.1124/mol.105.013383 15883202
    [Google Scholar]
  60. MordenteA. MeucciE. MartoranaG.E. TavianD. SilvestriniA. Topoisomerases and anthracyclines: Recent advances and perspectives in anticancer therapy and prevention of cardiotoxicity.Curr. Med. Chem.2017241516071626 27978799
    [Google Scholar]
  61. ZeglisB.M. DivilovV. LewisJ.S. Role of metalation in the topoisomerase IIα inhibition and antiproliferation activity of a series of α-heterocyclic-N4-substituted thiosemicarbazones and their Cu(II) complexes.J. Med. Chem.20115472391239810.1021/jm101532u 21391686
    [Google Scholar]
  62. ShiR. HouW. WangZ.Q. XuX. Biogenesis of iron–sulfur clusters and their role in DNA metabolism.Front. Cell Dev. Biol.2021973567810.3389/fcell.2021.735678 34660592
    [Google Scholar]
  63. VančoJ. ŠindelářZ. DvořákZ. TrávníčekZ. Iron-salophen complexes involving azole-derived ligands: A new group of compounds with high-level and broad-spectrum in vitro antitumor activity.J. Inorg. Biochem.20151429210010.1016/j.jinorgbio.2014.10.002 25450023
    [Google Scholar]
  64. GaurK. Pérez OteroS.C. Benjamín-RiveraJ.A. RodríguezI. Loza-RosasS.A. Vázquez SalgadoA.M. AkamE.A. Hernández-MatiasL. SharmaR.K. AliceaN. KowaleffM. WashingtonA.V. AstashkinA.V. TomatE. TinocoA.D. Iron chelator transmetalative approach to inhibit human ribonucleotide reductase.JACS Au20211686587810.1021/jacsau.1c00078 34240081
    [Google Scholar]
  65. LinM.H.C. ChangL.C. ChungC.Y. HuangW.C. LeeM.H. ChenK.T. LaiP.S. YangJ.T. Photochemical internalization of etoposide using dendrimer nanospheres loaded with etoposide and protoporphyrin IX on a glioblastoma cell line.Pharmaceutics20211311187710.3390/pharmaceutics13111877 34834292
    [Google Scholar]
  66. ChikateR.C. PadhyeS.B. Transition metal quinone–thiosemicarbazone complexes 2: Magnetism, ESR and redox behavior of iron (II), iron (III), cobalt (II) and copper (II) complexes of 2-thiosemicarbazido-1,4-naphthoquinone.Polyhedron200524131689170010.1016/j.poly.2005.04.037
    [Google Scholar]
  67. LeeW-C.C. ZhangX.P. Iron(iii) porphyrin complexes as metalloradical catalysts.Nat. Chem.202315111499150010.1038/s41557‑023‑01318‑7 37710050
    [Google Scholar]
  68. SalimiZ. AfsharinasabM. RostamiM. MilasiY.E. EzmarehS.F.M. SakhaeiF. Mohammad-SadeghipourM. ManeshS.M.R. AsemiZ. Iron chelators: As therapeutic agents in diseases.Ann. Med. Surg.20248652759277610.1097/MS9.0000000000001717 38694398
    [Google Scholar]
  69. YeoJ.H. BegamN. LeowW.T. GohJ.X. ZhongY. CaiY. KwaA.L.H. Ironing out persisters? revisiting the iron chelation strategy to target planktonic bacterial persisters harboured in carbapenem-resistant Escherichia coli.Microorganisms202412597210.3390/microorganisms12050972 38792801
    [Google Scholar]
  70. LoriM.S. KhandaniA.K. DehghannoudehG. OhadiM. AnsariM. Therapeutic potential of iron chelators in viral diseases: A systematic review.Curr. Med. Chem.202431274383439110.2174/0109298673259596231211113211 38321902
    [Google Scholar]
  71. LiaoG. ChenX. WuJ. QianC. WangY. JiL. ChaoH. Ruthenium(ii) polypyridyl complexes as dual inhibitors of telomerase and topoisomerase.Dalton Trans.20154434151451515610.1039/C4DT03585B 25604798
    [Google Scholar]
  72. ElsayedS.A. HarrypersadS. SahyonH.A. El-MagdM.A. WalsbyC.J. Ruthenium (II)/(III) DMSO-based complexes of 2-aminophenyl benzimidazole with in vitro and in vivo anticancer activity.Molecules20202518428410.3390/molecules25184284 32962014
    [Google Scholar]
  73. SonkarC. SarkarS. MukhopadhyayS. Ruthenium (II)–arene complexes as anti-metastatic agents, and related techniques.RSC Med. Chem.20221312238
    [Google Scholar]
  74. NoureldeenA.F.H. AzizS.W. ShoumanS.A. MohamedM.M. AttiaY.M. RamadanR.M. ElhadyM.M. Molecular design, spectroscopic, DFT, pharmacological, and molecular docking studies of novel ruthenium (III)–Schiff base complex: An inhibitor of progression in HepG2 cells.Int. J. Environ. Res. Public Health202219201362410.3390/ijerph192013624 36294202
    [Google Scholar]
  75. BegićS. Novel complexes of ruthenium (III) with schiff bases and indazole–synthesis and characterization.Biosystems2019121294299
    [Google Scholar]
  76. SavicM. ArsenijevicA. MilovanovicJ. StojanovicB. StankovicV. Rilak SimovicA. LazicD. ArsenijevicN. MilovanovicM. Antitumor activity of ruthenium (II) terpyridine complexes towards colon cancer cells in vitro and in vivo.Molecules20202520469910.3390/molecules25204699 33066568
    [Google Scholar]
  77. KennyR.G. MarmionC.J. Toward multi-targeted platinum and ruthenium drugs—A new paradigm in cancer drug treatment regimens?Chem. Rev.201911921058113710.1021/acs.chemrev.8b00271 30640441
    [Google Scholar]
  78. GaoF. ChaoH. WangJ.Q. YuanY.X. SunB. WeiY.F. PengB. JiL.N. Targeting topoisomerase II with the chiral DNA-intercalating ruthenium(II) polypyridyl complexes.J. Biol. Inorg. Chem.20071271015102710.1007/s00775‑007‑0272‑4 17659367
    [Google Scholar]
  79. GopalY.N.V. JayarajuD. KondapiA.K. Inhibition of topoisomerase II catalytic activity by two ruthenium compounds: A ligand-dependent mode of action.Biochemistry199938144382438810.1021/bi981990s 10194357
    [Google Scholar]
  80. LinK. ZhaoZ.Z. BoH.B. HaoX.J. WangJ.Q. Applications of ruthenium complex in tumor diagnosis and therapy.Front. Pharmacol.20189132310.3389/fphar.2018.01323 30510511
    [Google Scholar]
  81. KaurM. Loveleen; Kumar, R. Inhibition of histone deacetylases, topoisomerases and epidermal growth factor receptor by metal-based anticancer agents: Design & synthetic strategies and their medicinal attributes.Bioorg. Chem.202010510439610.1016/j.bioorg.2020.104396 33130345
    [Google Scholar]
  82. KaushalR. KaurM. Sheetal; Sharma, J.; Nehra, K. Antibacterial and ct-DNA binding studies of new synthesized ruthenium (III) hydroxamate complexes: Design, synthesis, DFT calculations and in vitro study.J. Mol. Struct.2024129513678810.1016/j.molstruc.2023.136788
    [Google Scholar]
  83. MałeckaM. SkoczyńskaA. GoodmanD.M. HartingerC.G. BudziszE. Biological properties of ruthenium(II)/(III) complexes with flavonoids as ligands.Coord. Chem. Rev.202143621384910.1016/j.ccr.2021.213849
    [Google Scholar]
  84. SantosN.E. BragaS.S. Redesigning nature: Ruthenium flavonoid complexes with antitumour, antimicrobial and cardioprotective activities.Molecules20212615454410.3390/molecules26154544 34361697
    [Google Scholar]
  85. DuK. LiangJ. WangY. KouJ. QianC. JiL. ChaoH. Dual inhibition of topoisomerases I and IIα by ruthenium(ii) complexes containing asymmetric tridentate ligands.Dalton Trans.20144346173031731610.1039/C4DT02142H 25315107
    [Google Scholar]
  86. KonkankitC.C. MarkerS.C. KnopfK.M. WilsonJ.J. Anticancer activity of complexes of the third row transition metals, rhenium, osmium, and iridium.Dalton Trans.201847309934997410.1039/C8DT01858H 29904760
    [Google Scholar]
  87. BruijnincxP.C.A. SadlerP.J. Controlling platinum, ruthenium, and osmium reactivity for anticancer drug design.Adv. Inorg. Chem.20096116210.1016/S0898‑8838(09)00201‑3 21258628
    [Google Scholar]
  88. ManiA. FengT. GandiosoA. VinckR. NotaroA. GourdonL. BurckelP. SaubaméaB. BlacqueO. CariouK. BelgaiedJ.E. ChaoH. GasserG. Structurally simple osmium (II) polypyridyl complexes as photosensitizers for photodynamic therapy in the near infrared.Angew. Chem. Int. Ed.20236220e20221834710.1002/anie.202218347 36917074
    [Google Scholar]
  89. NielsonA.J. GriffithW.P. Complexes of osmium(VI) with catechol and substituted catechols.J. Chem. Soc., Dalton Trans.1978111501150610.1039/dt9780001501
    [Google Scholar]
  90. SzczepaniakA. FichnaJ. Organometallic compounds and metal complexes in current and future treatments of inflammatory bowel disease and colorectal cancer—A critical review.Biomolecules20199939810.3390/biom9090398 31443436
    [Google Scholar]
  91. Cerón-CamachoR. Roque-RamiresM.A. RyabovA.D. Le LagadecR. Cyclometalated osmium compounds and beyond: Synthesis, properties, applications.Molecules2021266156310.3390/molecules26061563 33809231
    [Google Scholar]
  92. XiangJ. SuQ.Q. LuoL.J. LauT.C. Synthesis and reactivity of an osmium(iii) aminoguanidine complex.Dalton Trans.20194830114041141010.1039/C9DT01711A 31282913
    [Google Scholar]
  93. HildebrandtJ. HäfnerN. GörlsH. BarthM.C. DürstM. RunnebaumI.B. WeigandW. Novel nickel (II), palladium (II), and platinum (II) complexes with O, S bidendate cinnamic acid ester derivatives: An in vitro cytotoxic comparison to ruthenium (II) and osmium (II) analogues.Int. J. Mol. Sci.20222312666910.3390/ijms23126669 35743112
    [Google Scholar]
  94. CzarnomysyR. RadomskaD. SzewczykO.K. RoszczenkoP. BielawskiK. Platinum and palladium complexes as promising sources for antitumor treatments.Int. J. Mol. Sci.20212215827110.3390/ijms22158271 34361037
    [Google Scholar]
  95. GöktürkT. TopkayaC. Sakallı ÇetinE. GüpR. New trinuclear nickel(II) complexes as potential topoisomerase I/IIα inhibitors: In vitro DNA binding, cleavage and cytotoxicity against human cancer cell lines.Chem. Zvesti20227642093210910.1007/s11696‑021‑02005‑y
    [Google Scholar]
  96. AlqasaimehM.M. Abu-YaminA-A.M. MatarS.A. SarairahI.A. SalmanM.M. Al-As’adR.M. Synthesis and characterization of a new Schiff-base derivative as an optical nickel (II) chemosensor and its antimicrobial activity.J. Photochem. Photobiol. Chem.202444711527710.1016/j.jphotochem.2023.115277
    [Google Scholar]
  97. YuH. ZhangW. YuQ. HuangF.P. BianH.D. LiangH. Ni (II) complexes with Schiff base ligands: Preparation, characterization, DNA/protein interaction and cytotoxicity studies.Molecules20172210177210.3390/molecules22101772 29064419
    [Google Scholar]
  98. AkinyemiA.O. PereiraG.B.S. OliveiraG.P. LimaM.A. RochaJ.S. CostaV.A. FortalezaD.B. TeixeiraT. ZanottiK. ForimM.R. Araujo-NetoJ.H. EllenaJ. RochaF.V. Palladium (II) complexes as inhibitors of cathepsin B and topoisomerase I beta: Synthesis, characterization, and cytotoxicity.J. Mol. Struct.2023129413646010.1016/j.molstruc.2023.136460
    [Google Scholar]
  99. RochaF.V. BarraC.V. GarridoS.S. ManenteF.A. CarlosI.Z. EllenaJ. FuentesA.S.C. GautierA. MorelL. MauroA.E. NettoA.V.G. Cationic Pd(II) complexes acting as topoisomerase II inhibitors: Synthesis, characterization, DNA interaction and cytotoxicity.J. Inorg. Biochem.201615916516810.1016/j.jinorgbio.2016.02.039 27045995
    [Google Scholar]
  100. FongT.T.H. LokC.N. ChungC.Y.S. FungY.M.E. ChowP.K. WanP.K. CheC.M. Cyclometalated palladium(II) n‐heterocyclic carbene complexes: Anticancer agents for potent in vitro cytotoxicity and in vivo tumor growth suppression.Angew. Chem. Int. Ed.20165539119351193910.1002/anie.201602814 27571430
    [Google Scholar]
  101. DasariS. TchounwouP.B. Cisplatin in cancer therapy: Molecular mechanisms of action.Eur. J. Pharmacol.201474036437810.1016/j.ejphar.2014.07.025 25058905
    [Google Scholar]
  102. BuyanaB. NakiT. AlvenS. AderibigbeB.A. Nanoparticles loaded with platinum drugs for colorectal cancer therapy.Int. J. Mol. Sci.202223191126110.3390/ijms231911261 36232561
    [Google Scholar]
  103. KuchtaninV. KleščíkováL. ŠoralM. FischerR. RůžičkováZ. RakovskýE. MoncoľJ. SegľaP. Nickel(II) Schiff base complexes: Synthesis, characterization and catalytic activity in Kumada–Corriu cross-coupling reactions.Polyhedron2016117909610.1016/j.poly.2016.05.037
    [Google Scholar]
  104. RajasekarM. SreedaranS. PrabuR. NarayananV. JegadeeshR. RaamanN. Kalilur RahimanA. Synthesis, characterization, and antimicrobial activities of nickel(II) and copper(II) Schiff-base complexes.J. Coord. Chem.201063113614610.1080/00958970903296362
    [Google Scholar]
  105. HeX. ZengL. YangG. XieL. SunX. TanL. DNA binding, photocleavage and topoisomerase inhibitory activity of polypyridyl ruthenium(II) complexes containing the same ancillary ligand and different main ligands.Inorg. Chim. Acta201340891710.1016/j.ica.2013.08.010
    [Google Scholar]
  106. ZmejkovskiB.B. PantelićN.Đ. KaluđerovićG.N. Palladium(II) complexes: Structure, development and cytotoxicity from cisplatin analogues to chelating ligands with N stereocenters.Inorg. Chim. Acta202253412079710.1016/j.ica.2022.120797
    [Google Scholar]
  107. RamadanA.E.M.M. Macrocyclic nickel(II) complexes: Synthesis, characterization, superoxide scavenging activity and DNA-binding.J. Mol. Struct.20121015566610.1016/j.molstruc.2012.01.048
    [Google Scholar]
  108. TsymbalL.V. AndriichukI.L. ShovaS. TrzybińskiD. WoźniakK. ArionV.B. LampekaY.D. Coordination polymers of the macrocyclic nickel(ii) and copper(ii) complexes with isomeric benzenedicarboxylates: The case of spatial complementarity between the bis-macrocyclic complexes and o -Phthalate.Cryst. Growth Des.20212142355237010.1021/acs.cgd.1c00011
    [Google Scholar]
  109. SindhuS. ArockiasamyS. Synthesis, crystal structure, thermal stability and biological study of bis(2-methoxy-6-[(E)-(propylimino)methyl]phenolatonickel(II) complex.Heliyon2024102e2410810.1016/j.heliyon.2024.e24108 38293524
    [Google Scholar]
  110. SavirS. LiewJ.W.K. VythilingamI. LimY.A.L. TanC.H. SimK.S. LeeV.S. MaahM.J. TanK.W. Nickel (II) complexes with polyhydroxybenzaldehyde and O, N, S tridentate thiosemicarbazone ligands: Synthesis, cytotoxicity, antimalarial activity, and molecular docking studies.J. Mol. Struct.2021124213081510.1016/j.molstruc.2021.130815
    [Google Scholar]
  111. AsadiZ. MandeganiZ. AsadiM. PakiariA.H. SalarhajiM. ManassirM. Karbalaei-HeidariH.R. RastegariB. SedaghatM. Substituted effect on some water-soluble Mn(II) salen complexes: DNA binding, cytotoxicity, molecular docking, DFT studies and theoretical IR & UV studies.Spectrochim. Acta A Mol. Biomol. Spectrosc.201920627829410.1016/j.saa.2018.08.020 30121473
    [Google Scholar]
  112. MaX. WangH. ChenW. N-heterocyclic carbene-stabilized palladium complexes as organometallic catalysts for bioorthogonal cross-coupling reactions.J. Org. Chem.201479188652865810.1021/jo5014228 25144406
    [Google Scholar]
  113. DangalovM. PetrovP. VassilevN.G. N-heterocyclic bis-carbene palladium complexes derived from functionalized naphthalimides – Synthesis, structure elucidation and DFT study.J. Mol. Struct.2021123012994410.1016/j.molstruc.2021.129944
    [Google Scholar]
  114. DesaiS.P. MondalM. ChoudhuryJ. Chelating bis-N-heterocyclic carbene–palladium (II) complexes for oxidative arene C–H functionalization.Organometallics201534122731273610.1021/om501163m
    [Google Scholar]
  115. Al-SaifF.A. Al-HumaidiJ.Y. BinjawharD.N. RefatM.S. Six new palladium(II) mixed ligand complexes of 2-, 3-, 4-monosubstituted derivative of pyridine ring with caffeine moiety: Synthesis, spectroscopic, morphological structures, thermal, antimicrobial and anticancer properties.J. Mol. Struct.2020121812854710.1016/j.molstruc.2020.128547
    [Google Scholar]
  116. FerraroV. GenesinL. CastroJ. PietrobonL. VavasoriA. BortoluzziM. Organometallic palladium(II) complexes with N-((pyridin-2-yl)methylene)-4-amino-2,1,3-benzothiadiazole: Synthesis, characterization and reactivity.J. Organomet. Chem.202399312271110.1016/j.jorganchem.2023.122711
    [Google Scholar]
  117. FahmyH.M. MoslehA.M. El-SayedA.A. El-SherifA.A. Novel palladium(II) and Zinc(II) Schiff base complexes: Synthesis, biophysical studies, and anticancer activity investigation.J. Trace Elem. Med. Biol.20237912723610.1016/j.jtemb.2023.127236 37285632
    [Google Scholar]
  118. ForooghiK. RudbariH.A. StagnoC. IraciN. Cuevas-VicarioJ.V. KordestaniN. SchirmeisterT. EfferthT. OmerE.A. MoiniN. AryaeifarM. BlacqueO. AzadbakhtR. MicaleN. Structural features and antiproliferative activity of Pd(ii) complexes with halogenated ligands: A comparative study between Schiff base and reduced Schiff base complexes.Dalton Trans.20245325105711059110.1039/D4DT00132J 38855858
    [Google Scholar]
  119. MaciejaA. KopaP. GalitaG. PastwaE. MajsterekI. PoplawskiT. Comparison of the effect of three different topoisomerase II inhibitors combined with cisplatin in human glioblastoma cells sensitized with double strand break repair inhibitors.Mol. Biol. Rep.20194643625363610.1007/s11033‑019‑04605‑0 31020489
    [Google Scholar]
  120. TchounwouP.B. DasariS. NoubissiF.K. RayP. KumarS. Advances in our understanding of the molecular mechanisms of action of cisplatin in cancer therapy.J. Exp. Pharmacol.20211330332810.2147/JEP.S267383 33776489
    [Google Scholar]
  121. ZhangY.J. LiA.J. HanY. YinL. LinM.B. Inhibition of Girdin enhances chemosensitivity of colorectal cancer cells to oxaliplatin.World J. Gastroenterol.201420258229823610.3748/wjg.v20.i25.8229 25009397
    [Google Scholar]
  122. FangZ. GongC. YeZ. WangW. ZhuM. HuY. LiuZ. ZhouW. LiH. TOPBP1 regulates resistance of gastric cancer to oxaliplatin by promoting transcription of PARP1.DNA Repair202211110327810.1016/j.dnarep.2022.103278 35124372
    [Google Scholar]
  123. RossmanJ. ReddyV. CantorA. MileyD. RobertF. Phase II study of dose-intense chemotherapy with sequential topoisomerase-targeting regimens with irinotecan/oxaliplatin followed by etoposide/carboplatin in chemotherapy naive patients with extensive small cell lung cancer.Lung Cancer201172221922310.1016/j.lungcan.2010.08.023 20934233
    [Google Scholar]
  124. FerraroM.G. PiccoloM. MissoG. SantamariaR. IraceC. Bioactivity and development of small non-platinum metal-based chemotherapeutics.Pharmaceutics202214595410.3390/pharmaceutics14050954 35631543
    [Google Scholar]
  125. LisicE.C. GrossarthS.N. BowmanS.B. HillJ.L. BeckM.W. DeweeseJ.E. JiangX. New copper (ii), palladium (ii), and platinum (ii) 2-acetylpyrazine tert-butylthiosemicarbazone complexes: Inhibition of human topoisomerase IIα and activity against breast cancer cells.Open J. Med. Chem.202212111310.4236/ojmc.2022.121001
    [Google Scholar]
  126. FabijańskaM. KasprzakM.M. OchockiJ. Ruthenium (II) and platinum (II) complexes with biologically active aminoflavone ligands exhibit in vitro anticancer activity.Int. J. Mol. Sci.20212214756810.3390/ijms22147568 34299199
    [Google Scholar]
  127. LiangX. WuQ. LuanS. YinZ. HeC. YinL. ZouY. YuanZ. LiL. SongX. HeM. LvC. ZhangW. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade.Eur. J. Med. Chem.201917112916810.1016/j.ejmech.2019.03.034 30917303
    [Google Scholar]
  128. MolinaroC. WambangN. BousquetT. Vercoutter-EdouartA.S. PélinskiL. CailliauK. MartoriatiA. A novel copper (II) indenoisoquinoline complex inhibits topoisomerase I, induces G2 phase arrest, and autophagy in three adenocarcinomas.Front. Oncol.20221283737310.3389/fonc.2022.837373 35280788
    [Google Scholar]
  129. PatraM. GasserG. The medicinal chemistry of ferrocene and its derivatives.Nat. Rev. Chem201719006610.1038/s41570‑017‑0066
    [Google Scholar]
  130. BeebeS.J. CelestineM.J. BullockJ.L. SandhausS. ArcaJ.F. CropekD.M. LudvigT.A. FosterS.R. ClarkJ.S. BeckfordF.A. TanoC.M. Tonsel-WhiteE.A. GurungR.K. StankavichC.E. Tse-DinhY.C. JarrettW.L. HolderA.A. Synthesis, characterization, DNA binding, topoisomerase inhibition, and apoptosis induction studies of a novel cobalt(III) complex with a thiosemicarbazone ligand.J. Inorg. Biochem.202020311090710.1016/j.jinorgbio.2019.110907 31715377
    [Google Scholar]
  131. WambangN. Schifano-FauxN. AillerieA. BaldeyrouB. JacquetC. Bal-MahieuC. BousquetT. PellegriniS. NdifonP.T. MeignanS. GoossensJ.F. LansiauxA. PélinskiL. Synthesis and biological activity of ferrocenyl indeno[1,2-c]isoquinolines as topoisomerase II inhibitors.Bioorg. Med. Chem.201624465166010.1016/j.bmc.2015.12.033 26740155
    [Google Scholar]
  132. ChrabąszczK. BłaużA. GruchałaM. WachulecM. RychlikB. PlażukD. Synthesis and biological activity of ferrocenyl and ruthenocenyl analogues of etoposide: discovery of a novel dual inhibitor of topoisomerase II activity and tubulin polymerization.Chemistry202127206254626210.1002/chem.202005133 33465263
    [Google Scholar]
  133. YanY.K. MelchartM. HabtemariamA. SadlerP.J. Organometallic chemistry, biology and medicine: Ruthenium arene anticancer complexes.Chem. Commun.2005384764477610.1039/b508531b 16193110
    [Google Scholar]
  134. WilsonJ.T. JiangX. McGillB.C. LisicE.C. DeweeseJ.E. Examination of the impact of copper(II) α-(N)-heterocyclic thiosemicarbazone complexes on DNA Topoisomerase IIα.Chem. Res. Toxicol.201629464965810.1021/acs.chemrestox.5b00471 26982206
    [Google Scholar]
  135. WilsonC.R. FagensonA.M. RuangpraditW. MullerM.T. MunroO.Q. Gold(III) complexes of pyridyl- and isoquinolylamido ligands: structural, spectroscopic, and biological studies of a new class of dual topoisomerase I and II inhibitors.Inorg. Chem.201352147889790610.1021/ic400339z 23815163
    [Google Scholar]
  136. LisicE.C. Cu (II) propionyl-thiazole thiosemicarbazone complexes: Crystal structure, inhibition of human topoisomerase IIα, and activity against breast cancer cells.Open J. Med. Chem.201882304610.4236/ojmc.2018.82004
    [Google Scholar]
  137. KhanR.A. ArjmandF. TabassumS. MonariM. MarchettiF. PettinariC. Organometallic ruthenium(II) scorpionate as topo IIα inhibitor; in vitro binding studies with DNA, HPLC analysis and its anticancer activity.J. Organomet. Chem.2014771475810.1016/j.jorganchem.2014.05.013
    [Google Scholar]
  138. de SouzaÍ.P. de MeloA.C.C. RodriguesB.L. BortoluzziA. PooleS. MolphyZ. McKeeV. KellettA. FazziR.B. da Costa FerreiraA.M. Pereira-MaiaE.C. Antitumor copper(II) complexes with hydroxyanthraquinones and N,N-heterocyclic ligands.J. Inorg. Biochem.202324111212110.1016/j.jinorgbio.2023.112121 36696836
    [Google Scholar]
  139. ShindeY. PatilR. KonkimallaV.B. MeruguS.B. MokashiV. HariharS. MarrotJ. ButcherR.J. Salunke-GawaliS. Keto-enol tautomerism of hydroxynaphthoquinoneoxime ligands: Copper complexes and topoisomerase inhibition activity.J. Mol. Struct.2022126213308110.1016/j.molstruc.2022.133081
    [Google Scholar]
  140. BeheraP.K. MaityL. RoyS. DasA. SahuP. KisanH.K. ChangotraA. IsabA.A. FettouhiM.B. BairagiA. ChatterjeeN. DindaJ. Therapeutic potential of Ag(i)–, Au(i)–, and Au(iii)–NHC complexes of 3-pyridyl wingtip N-heterocyclic carbenes (NHCs) against lung cancer.New J. Chem.20234740188351884810.1039/D3NJ02882H
    [Google Scholar]
  141. SâmiaL.B.P. ParrilhaG.L. Da SilvaJ.G. RamosJ.P. Souza-FagundesE.M. CastelliS. VuteyV. DesideriA. BeraldoH. Metal complexes of 3-(4-bromophenyl)-1-pyridin-2-ylprop-2-en-1-one thiosemicarbazone: Cytotoxic activity and investigation on the mode of action of the gold(III) complex.Biometals201629351552610.1007/s10534‑016‑9933‑5 27091443
    [Google Scholar]
  142. LeginaM.S. NogueiraJ.J. KandiollerW. JakupecM.A. GonzálezL. KepplerB.K. Biological evaluation of novel thiomaltol-based organometallic complexes as topoisomerase IIα inhibitors.J. Biol. Inorg. Chem.202025345146510.1007/s00775‑020‑01775‑2 32193613
    [Google Scholar]
  143. HearnJ.M. HughesG.M. Romero-CanelónI. MunroA.F. Rubio-RuizB. LiuZ. CarragherN.O. SadlerP.J. Pharmaco-genomic investigations of organo-iridium anticancer complexes reveal novel mechanism of action.Metallomics20181019310710.1039/C7MT00242D 29131211
    [Google Scholar]
  144. AlbertJ. JanabiB.A. GranellJ. HashemiM.S. SainzD. KhosaM.K. CalvisC. MesseguerR. BaldomàL. BadiaJ. Font-BardiaM. Synthesis and biological properties of palladium(II) cyclometallated compounds derived from (E)-2-((4-hydroxybenzylidene)amino)phenol.J. Organomet. Chem.202398312255510.1016/j.jorganchem.2022.122555
    [Google Scholar]
  145. SchmidlehnerM. FlockeL.S. RollerA. HejlM. JakupecM.A. KandiollerW. KepplerB.K. Cytotoxicity and preliminary mode of action studies of novel 2-aryl-4-thiopyrone-based organometallics.Dalton Trans.201645272473310.1039/C5DT02722E 26630201
    [Google Scholar]
  146. RendošováM. VargováZ. SabolováD. ImrichováN. HudecováD. GyepesR. LakatošB. ElefantováK. Silver pyridine-2-sulfonate complex - its characterization, DNA binding, topoisomerase I inhibition, antimicrobial and anticancer response.J. Inorg. Biochem.201818620621610.1016/j.jinorgbio.2018.06.006 29960924
    [Google Scholar]
  147. MovahediE. RazmazmaH. RezvaniA. EbrahimiA. Binding profile of a mixed-ligand silver(I) complex with DNA and Topoisomerase I.Comput. Biol. Chem.202310310783110.1016/j.compbiolchem.2023.107831 36822076
    [Google Scholar]
  148. Pérez SergioD.H.C. New acridine thiourea gold(I) anticancer agents: Targeting the nucleus and inhibiting vasculogenic mimicry.ACS Chem. Biol.20171261524153710.1021/acschembio.7b00090 28388047
    [Google Scholar]
  149. ChimentoA. SaturninoC. IacopettaD. MazzottaR. CarusoA. PlutinoM.R. MaricondaA. RamunnoA. SinicropiM.S. PezziV. LongoP. Inhibition of human topoisomerase I and II and anti-proliferative effects on MCF-7 cells by new titanocene complexes.Bioorg. Med. Chem.201523227302731210.1016/j.bmc.2015.10.030 26526741
    [Google Scholar]
  150. MadabhushiR. The roles of DNA topoisomerase IIβ in transcription.Int. J. Mol. Sci.2018197191710.3390/ijms19071917 29966298
    [Google Scholar]
  151. AllisonS.J. SadiqM. BaronouE. CooperP.A. DunnillC. GeorgopoulosN.T. LatifA. ShepherdS. ShnyderS.D. StratfordI.J. WheelhouseR.T. WillansC.E. PhillipsR.M. Preclinical anti-cancer activity and multiple mechanisms of action of a cationic silver complex bearing N-heterocyclic carbene ligands.Cancer Lett.20174039810710.1016/j.canlet.2017.04.041 28624622
    [Google Scholar]
  152. HearnJ.M. Romero-CanelónI. QamarB. LiuZ. Hands-PortmanI. SadlerP.J. Organometallic Iridium(III) anticancer complexes with new mechanisms of action: NCI-60 screening, mitochondrial targeting, and apoptosis.ACS Chem. Biol.2013861335134310.1021/cb400070a 23618382
    [Google Scholar]
  153. SohrabiM. SaeediM. LarijaniB. MahdaviM. Recent advances in biological activities of rhodium complexes: Their applications in drug discovery research.Eur. J. Med. Chem.202121611330810.1016/j.ejmech.2021.113308 33713976
    [Google Scholar]
  154. ScattolinT. A critical review of palladium organometallic anticancer agents.Cell Rep. Phys. Sci.20212610044610.1016/j.xcrp.2021.100446
    [Google Scholar]
  155. YanJ.J. ChowA.L.F. LeungC.H. SunR.W.Y. MaD.L. CheC.M. Cyclometalated gold(iii) complexes with N-heterocyclic carbene ligands as topoisomerase I poisons.Chem. Commun.201046223893389510.1039/c001216e 20401423
    [Google Scholar]
  156. SilvaL.T.P. PereiraG.B.S. Porto de OliveiraG. LimaM.A. Honorato de Araujo-NetoJ. AkinyemiA.O. VieiraM.A. Nascimento-JúniorN.M. Lira de FariasR. EllenaJ.A. Vieira de Godoy NettoA. RochaF.V. Synthesis, characterization, cytotoxicity study, interaction with DNA and topoisomerase IIα of square-planar complexes with thiosemicarbazones.Polyhedron202425711702110.1016/j.poly.2024.117021
    [Google Scholar]
  157. RochaF.V. FariasR.L. LimaM.A. BatistaV.S. Nascimento-JúniorN.M. GarridoS.S. LeopoldinoA.M. GotoR.N. OliveiraA.B. BeckJ. LandvogtC. MauroA.E. NettoA.V.G. Computational studies, design and synthesis of Pd(II)-based complexes: Allosteric inhibitors of the Human Topoisomerase-IIα.J. Inorg. Biochem.201919911072510.1016/j.jinorgbio.2019.110725 31374424
    [Google Scholar]
  158. MadabhushiR. GaoF. PfenningA.R. PanL. YamakawaS. SeoJ. RuedaR. PhanT.X. YamakawaH. PaoP.C. StottR.T. GjoneskaE. NottA. ChoS. KellisM. TsaiL.H. Activity-induced DNA breaks govern the expression of neuronal early-response genes.Cell201516171592160510.1016/j.cell.2015.05.032 26052046
    [Google Scholar]
  159. LucaciuR.L. HanganA.C. SevastreB. OpreanL.S. Metallo-drugs in cancer therapy: Past, present and future.Molecules20222719648510.3390/molecules27196485 36235023
    [Google Scholar]
  160. CheC.M. SiuF.M. Metal complexes in medicine with a focus on enzyme inhibition.Curr. Opin. Chem. Biol.201014225526110.1016/j.cbpa.2009.11.015 20018553
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575370547250526062144
Loading
/content/journals/mrmc/10.2174/0113895575370547250526062144
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test