Skip to content
2000
Volume 25, Issue 16
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

The increasing resistance of causative agents to current treatments has made infectious disease management more challenging. Heterocyclic compounds have garnered considerable attention due to their numerous significant medical and biological applications. Research interest in heterocyclic compounds is rapidly increasing due to extensive synthetic studies and their functional utility. Phenothiazine (PTZ), an organic thiazine compound, has a broad range of biological activities, including antimicrobial, antimalarial, antipsychotic, anti-inflammatory, and antiemetic effects. Additionally, modifications to the phenothiazine structure have enhanced its efficacy, making it a potential candidate for addressing drug-resistant infections. This review examines recent synthesis methods, including catalytic and microwave-assisted techniques, which have expanded the applications of phenothiazine derivatives. The article also discusses structure-activity relationships, which help optimize the pharmacological properties of these compounds for future therapeutic use.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575405792250813070957
2025-08-25
2026-01-14
Loading full text...

Full text loading...

References

  1. SlmanD.K. SatarH.A. KetanZ.A. JawadA.A. Heterocyclic compounds: A study of its biological activity.Al-Nahrain J. Sci.2024275192410.22401/ANJS.27.5.03
    [Google Scholar]
  2. PatnayakS. Heterocyclic compounds: A potential drug and its biological activity: A review.J. Nonlinear Anal. Optim.2024151
    [Google Scholar]
  3. AminA. QadirT. SharmaP.K. JeelaniI. AbeH. A review on the medicinal and industrial applications of N-containing heterocycles.Open J. Med. Chem.2022161127
    [Google Scholar]
  4. NarnawareP.H. ShendeP.N. An overview on heterocyclic compounds and their versatile applications.Int. J. Curr. Eng. Sci. Res.201854159162
    [Google Scholar]
  5. DzeK.C. SamadF. Heterocycles, their synthesis and industrial applications: A review.Int. J. Res. Appl. Sci. Eng. Technol.2020810365610.22214/ijraset.2020.31786
    [Google Scholar]
  6. Diaz-MuñozG. MirandaI.L. SartoriS.K. de RezendeD.C. Alves Nogueira DiazM. Use of chiral auxiliaries in the asymmetric synthesis of biologically active compounds: A review.Chirality2019311077681210.1002/chir.23103 31418934
    [Google Scholar]
  7. DoveA.P. PrattR.C. LohmeijerB.G.G. CulkinD.A. HagbergE.C. NyceG.W. WaymouthR.M. HedrickJ.L. N-Heterocyclic carbenes: Effective organic catalysts for living polymerization.Polymer (Guildf.)200647114018402510.1016/j.polymer.2006.02.037
    [Google Scholar]
  8. Abd El-HalimH.F. MohamedG.G. AnwarM.N. Antimicrobial and anticancer activities of schiff base ligand and its transition metal mixed ligand complexes with heterocyclic base.Appl. Organomet. Chem.2018321e389910.1002/aoc.3899
    [Google Scholar]
  9. WojtasikK. Pokladko-KowarM. GondekE. Optimization of bulk heterojunction photovoltaic structures with heterocyclic derivatives.Crystals (Basel)202313573410.3390/cryst13050734
    [Google Scholar]
  10. LeontieL. DanacR. DrutaI. CarlescuA. RusuG.I. Newly synthesized fused heterocyclic compounds in thin films with semiconductor properties.Synth. Met.201016011-121273127910.1016/j.synthmet.2010.03.022
    [Google Scholar]
  11. MinkinV.I. Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds.Chem. Rev.200410452751277610.1021/cr020088u 15137806
    [Google Scholar]
  12. SrividhyaD. ManjunathanS. ThirumaranS. Synthesis and characterization of new heterocyclic liquid crystals.J. Chem.20096392893710.1155/2009/697928
    [Google Scholar]
  13. GrummtU.W. WeissD. BircknerE. BeckertR. Pyridylthiazoles: Highly luminescent heterocyclic compounds.J. Phys. Chem. A200711161104111010.1021/jp0672003 17253672
    [Google Scholar]
  14. TsygankovaV.Y. ShtompelO. RomaniukO. YaikovaM. HurenkoA. BrovaretsV. Application of synthetic low molecular weight heterocyclic compounds derivatives of pyrimidine, pyrazole and oxazole in agricultural biotechnology as a new plant growth regulating substances.Int. J. Med. Biotechnol. Genet.2017221032
    [Google Scholar]
  15. TsygankovaV. AndrusevichY. ShtompelO. HurenkoA. SolomyannyjR. MrugG. BrovaretsV. Stimulating effect of five- and six-membered heterocyclic compounds on seed germination and vegetative growth of maize (zea mays l.).Int. J. Biol. Res.201614114
    [Google Scholar]
  16. GadM.A. BakryM.M.S. TolbaE.F.M. AlkhaibariA.M. MashlawiA.M. ThabetM.A. Al-TaifiE.A. BakhiteE.A. Exploration of some heterocyclic compounds containing trifluoromethylpyridine scaffold as insecticides toward Aphis gossypii insects.Chem. Biodivers.2024216e20240045110.1002/cbdv.202400451 38556464
    [Google Scholar]
  17. FahmyA.F.M. RizkS.A. HemdanM.M. El-SayedA.A. HassaballahA.I. Efficient green synthesis and computational chemical study of some interesting heterocyclic derivatives as insecticidal agents.J. Heterocycl. Chem.201855112545255510.1002/jhet.3308
    [Google Scholar]
  18. El-OssailyY.A. BakhiteE.A.G. GadM.A. Abdu-AllahH.H.M. AbuelhasanS. IbrahimO.F. MaraeI.S. AlthobaitiI.O. AlanaziN.M.M. Al-MuailkelN.S. El-SayedM.Y. AlanaziM.M. Synthesis, characterization, antibacterial evaluation, and insecticidal activity of some heterocyclic compounds containing styrylpyridine moiety.Russ. J. Bioorganic Chem.202349S1S159S17010.1134/S1068162023080137
    [Google Scholar]
  19. El-BanaG.G. Abd El GhaniG.E. El-RokhA.R. HassanienA.E. Synthesis and insecticidal assessment of some innovative heterocycles incorporating a pyrazole moiety.Polycycl. Aromat. Compd.202444963146334
    [Google Scholar]
  20. AnamikaA. UtrejaD. KaurJ. SharmaS. Synthesis of schiff bases of coumarin and their antifungal activity.Indian J. Heterocycl. Chem.2018284433439
    [Google Scholar]
  21. ChenY. LiuH. WangJ. WangK. ZhangZ. HeB. YeY. Design, synthesis, and antifungal evaluation of diverse heterocyclic hydrazide derivatives as potential succinate dehydrogenase inhibitors.J. Agric. Food Chem.20247223129151292410.1021/acs.jafc.3c08927 38807027
    [Google Scholar]
  22. DawarM. UtrejaD. RaniR. KaurK. Synthesis and evaluation of isatin derivatives as antifungal agents.Lett. Org. Chem.202017319920510.2174/1570178616666190724120308
    [Google Scholar]
  23. KaurG. UtrejaD. KaurJ. Synthesis of metal complexes of schiff bases of halogenated anilines and their antifungal activity.Plant Dis. Res.2017322228231
    [Google Scholar]
  24. GoyalA. UtrejaD. GargA. SharmaV.K. Synthesis and antifungal activity of sulfonamides schiff bases and their metal complexes.Agri. Res. J.2018552377379
    [Google Scholar]
  25. KaurL. UtrejaD. DhillonN.K. N-Alkylation of 2-substituted benzimidazole derivatives and their evaluation as antinemic agents.Russ. J. Org. Chem.202157696196710.1134/S1070428021060129
    [Google Scholar]
  26. KaurG. UtrejaD. JainN. DhillonN.K. Synthesis and evaluation of pyrazole derivatives as potent antinemic agents.Russ. J. Org. Chem.202056111311810.1134/S1070428020010182
    [Google Scholar]
  27. Samita; Utreja, D.; Dhillon, N.K. An efficacious protocol for the reduction of benzothiazole using mg/meoh and their antinemic activity against meloidogyne incognita.Russ. J. Bioorganic Chem.202248113514210.1134/S1068162022010101
    [Google Scholar]
  28. JainN. UtrejaD. DhillonN.K. A convenient one pot synthesis and antinemic studies of nicotinic acid derivatives.Russ. J. Org. Chem.20195584585110.1134/S1070428019060150
    [Google Scholar]
  29. LiaoA. SunW. LiuY. YanH. XiaZ. WuJ. Pyrrole and pyrrolidine analogs: The promising scaffold in discovery of pesticides.Chin. Chem. Lett.2024110094
    [Google Scholar]
  30. CaiQ. SongH. ZhangY. ZhuZ. ZhangJ. ChenJ. Quinoline derivatives in discovery and development of pesticides.J. Agric. Food Chem.20247222123731238610.1021/acs.jafc.4c01582 38775264
    [Google Scholar]
  31. AyyadM.A. AliM.A. HelmyE.T. SolimanU.A. Novel triazole derivatives as potential rodenticides against the Norway rat, R. norvegicus: Histology, biochemical alternations, and field application.Chem. Zvesti202377105947595910.1007/s11696‑023‑02912‑2
    [Google Scholar]
  32. KaddahM.M. FahmiA.A. KamelM.M. RizkS.A. RamadanS.K. Rodenticidal activity of some quinoline-based heterocycles derived from hydrazide–hydrazone derivative.Polycycl. Aromat. Compd.20234354231424110.1080/10406638.2022.2088576
    [Google Scholar]
  33. Al-MullaA. A review: Biological importance of heterocyclic compounds.Pharma Chem.2017913141147
    [Google Scholar]
  34. SalotraR. UtrejaD. SharmaP. A convenient one-pot synthesis of chalcones and their derivatives and their antimicrobial activity.Russ. J. Org. Chem.202056122207221110.1134/S1070428020120258
    [Google Scholar]
  35. PriyaB. UtrejaD. KaliaA. Schiff bases of indole-3-carbaldehyde: Synthesis and evaluation as antimicrobial agents.Russ. J. Bioorganic Chem.20224861282129010.1134/S1068162022060188
    [Google Scholar]
  36. Madhvi; Utreja, D.; Kalia, A. Efficient p-Toluenesulfonic acid-catalyzed synthesis of 5-Aryl-5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-diones and their antimicrobial activity.Russ. J. Org. Chem.20225891327133510.1134/S1070428022090196
    [Google Scholar]
  37. JainP. UtrejaD. SharmaP. An efficacious synthesis of n-1, c-3 substituted indole derivatives and their antimicrobial studies.J. Heterocycl. Chem.201957118
    [Google Scholar]
  38. KaurJ. UtrejaD. Recent developments in the synthesis and antimicrobial activity of indole and its derivatives.Curr. Org. Synth.2019161173710.2174/1570179415666181113144939 31965921
    [Google Scholar]
  39. FrancescatoG. SilvaS.M. LeitãoM.I.P.S. Gaspar-CordeiroA. GiannopoulosN. GomesC.S.B. PimentelC. PetronilhoA. Nickel N‐heterocyclic carbene complexes based on xanthines: Synthesis and antifungal activity on Candida sp.Appl. Organomet. Chem.20243810e668710.1002/aoc.6687
    [Google Scholar]
  40. UtrejaD. KaurJ. KaurK. JainP. 1,3,5-Triazine: Synthesis and antibacterial activity.Mini Rev. Org. Chem.20201715110.2174/1570193X17666200129094032
    [Google Scholar]
  41. OliveiraI.S. GarciaM.S.A. CassaniN.M. OliveiraA.L.C. FreitasL.C.F. BertoliniV.K.S. CastroJ. ClaussG. HonoratoJ. GadelhaF.R. MiguelD.C. JardimA.C.G. AbbehausenC. Exploring antiviral and antiparasitic activity of gold N-heterocyclic carbenes with thiolate ligands.Dalton Trans.20245347189631897310.1039/D4DT01879F 39171417
    [Google Scholar]
  42. AhmadG. SohailM. BilalM. RasoolN. QamarM.U. CiureaC. MarceanuL.G. MisarcaC. N-Heterocycles as promising antiviral agents: A comprehensive overview.Molecules20242910223210.3390/molecules29102232 38792094
    [Google Scholar]
  43. ZhaoQ. HanB. PengC. ZhangN. HuangW. HeG. LiJ.L. A promising future of metal‐ N ‐heterocyclic carbene complexes in medicinal chemistry: The emerging bioorganometallic antitumor agents.Med. Res. Rev.20244452194223510.1002/med.22039 38591229
    [Google Scholar]
  44. PalR. MatadaG.S.P. TeliG. SahaM. PatelR. Therapeutic potential of anticancer activity of nitrogen-containing heterocyclic scaffolds as Janus kinase (JAK) inhibitor: Biological activity, selectivity, and structure–activity relationship.Bioorg. Chem.202415210769610.1016/j.bioorg.2024.107696 39167870
    [Google Scholar]
  45. KumarS. SinghR.K. PatialB. GoyalS. BhardwajT.R. Recent advances in novel heterocyclic scaffolds for the treatment of drug-resistant malaria.J. Enzyme Inhib. Med. Chem.201631217318610.3109/14756366.2015.1016513 25775094
    [Google Scholar]
  46. HuangZ. ZhangX. LiJ. ZhangL. ShenY. WangR. ZhangY. MaoZ. N-Heterocyclic functionalized chalcone derivatives as anti-inflammatory agents for atopic dermatitis treatment by inhibiting JAK1/STAT3 signaling pathway.Bioorg. Chem.202515610820010.1016/j.bioorg.2025.108200 39874907
    [Google Scholar]
  47. SadawarteG.P. RajputJ.D. KaleA.D. JagrutV.B. Synthesis and biological evaluation of five- and six-membered heterocycles as an anti-diabetic agent: An overview.J. Chem. Rev.20241331352
    [Google Scholar]
  48. Kanupriya; Mittal, R.K.; Sharma, V.; Biswas, T.; Mishra, I. Recent advances in nitrogen-containing heterocyclic scaffolds as antiviral agents.Med. Chem.202420548750210.2174/0115734064280150231212113012 38279757
    [Google Scholar]
  49. Mallappa, Chahar, M., Choudhary, N., Yadav, K.K., Qasim, M.T., Zairov, R., Patel, A., Yadav, V.K., Jangir, M. Recent advances in the synthesis of nitrogen-containing heterocyclic compounds via multicomponent reaction and their emerging biological applications: a review.J. Iran Chem. Soc.2025221pp. 133
    [Google Scholar]
  50. MosnaimA.D. RanadeV.V. WolfM.E. PuenteJ. Antonieta ValenzuelaM. Phenothiazine molecule provides the basic chemical structure for various classes of pharmacotherapeutic agents.Am. J. Ther.200613326127310.1097/01.mjt.0000212897.20458.63 16772768
    [Google Scholar]
  51. VargaB. CsonkaÁ. CsonkaA. MolnárJ. AmaralL. SpenglerG. Possible biological and clinical applications of phenothiazines.Anticancer Res.2017371159835993 29061777
    [Google Scholar]
  52. FiorentinoF. NocentiniA. RotiliD. SupuranC.T. MaiA. Antihistamines, phenothiazine-based antipsychotics, and tricyclic antidepressants potently activate pharmacologically relevant human carbonic anhydrase isoforms II and VII.J. Enzyme Inhib. Med. Chem.2023381218814710.1080/14756366.2023.2188147 36912265
    [Google Scholar]
  53. PuranikN. SongM. Therapeutic role of heterocyclic compounds in neurodegenerative diseases: Insights from Alzheimer’s and parkinson’s diseases.Neurol. Int.20251722610.3390/neurolint17020026 39997657
    [Google Scholar]
  54. PyatigorskayaN.V. BrkichG.E. PavlovA.N. BeregovykhV.V. EvdokimovaO.V. A scientific methodology for expansion of anti-Parkinson drug product range.J. Pharm. Sci. Res.20179915611563
    [Google Scholar]
  55. BhatnagarA. PemawatG. Recent developments of antipsychotic drugs with phenothiazine hybrids: A review.Chem. Biol. Interact.20221247787
    [Google Scholar]
  56. RáczB. SpenglerG. Repurposing antidepressants and phenothiazine antipsychotics as efflux pump inhibitors in cancer and infectious diseases.Antibiotics (Basel)202312113710.3390/antibiotics12010137 36671340
    [Google Scholar]
  57. PossoM.C. DominguesF.C. FerreiraS. SilvestreS. Development of phenothiazine hybrids with potential medicinal interest: A review.Molecules202227127610.3390/molecules27010276 35011508
    [Google Scholar]
  58. EdinoffA.N. ArmisteadG. RosaC.A. AndersonA. PatilR. CornettE.M. MurnaneK.S. KayeA.M. KayeA.D. Phenothiazines and their evolving roles in clinical practice: A narrative review.Health Psychol. Res.20221043893010.52965/001c.38930 36425230
    [Google Scholar]
  59. OhlowM.J. MoosmannB. Phenothiazine: The seven lives of pharmacology’s first lead structure.Drug Discov. Today2011163-411913110.1016/j.drudis.2011.01.001 21237283
    [Google Scholar]
  60. VannesteM. VenzkeA. GuinS. FullerA.J. JezewskiA.J. BeattieS.R. KrysanD.J. MeyersM.J. HenryM.D. The anti-cancer efficacy of a novel phenothiazine derivative is independent of dopamine and serotonin receptor inhibition.Front. Oncol.202313129518510.3389/fonc.2023.1295185 37909019
    [Google Scholar]
  61. GureevA.P. SadovnikovaI.S. PopovV.N. Molecular mechanisms of the neuroprotective effect of methylene blue.Biochemistry (Mosc.)202287994095610.1134/S0006297922090073 36180986
    [Google Scholar]
  62. LuM. LiJ. LuoZ. ZhangS. XueS. WangK. ShiY. ZhangC. ChenH. LiZ. Roles of dopamine receptors and their antagonist thioridazine in hepatoma metastasis.OncoTargets Ther.2015815431552 26124671
    [Google Scholar]
  63. CantisaniC. RicciS. GriecoT. PaolinoG. FainaV. SilvestriE. CalvieriS. Topical promethazine side effects: Our experience and review of the literature.BioMed Res. Int.201320131910.1155/2013/151509 24350243
    [Google Scholar]
  64. RashidM. RahmanM. KhanM.F. Phenothiazines and related antipsychotic drugs.In: Medicinal Chemistry of Drugs Affecting the Nervous System.Sharjah, UAEBentham Science Publishers202010916210.2174/9789811454073120020005
    [Google Scholar]
  65. JenkinsG. Review of dopamine antagonists for nausea and vomiting in palliative care patients.J. Pain Palliat. Care Pharmacother.2024381384410.1080/15360288.2023.2268065 37843383
    [Google Scholar]
  66. FriendD.G. Method for evaluating antipruritic agents Studies on methdilazine.Clin. Pharmacol. Ther.19612560560910.1002/cpt196125605 13702065
    [Google Scholar]
  67. MalandainL. ThibautF. Is there any relevance for the use of cyamemazine in the treatment of schizophrenia?Indian J. Private Psychiatry2023171141910.5005/jp‑journals‑10067‑0128
    [Google Scholar]
  68. BariD.G. SaravananK. AhmadA. A review on antipsychotics for schizophrenia.Int. J. Pharm. Sci. Res.20191052345251
    [Google Scholar]
  69. TwycrossR.G. BarkbyG.D. HallwoodP.M. The use of low dose levomepromazine (methotrimeprazine) in the management of nausea and vomiting.Prog. Palliat. Care199752495310.1080/09699260.1997.12098230
    [Google Scholar]
  70. ChouinardG. SamahaA.N. ChouinardV.A. PerettiC.S. KanaharaN. TakaseM. IyoM. Antipsychotic-induced dopamine supersensitivity psychosis: Pharmacology, criteria, and therapy.Psychother. Psychosom.201786418921910.1159/000477313 28647739
    [Google Scholar]
  71. FinkM. Effect of anticholinergic agent, diethazine, on EEG and behavior; significance for theory of convulsive therapy.AMA Arch. Neurol. Psychiatry195880338038710.1001/archneurpsyc.1958.02340090116017 13570753
    [Google Scholar]
  72. SydorovaN. Class ic antiarrhythmic drugs: Informed choice.Proc. La. Acad. Sci.2023778391
    [Google Scholar]
  73. TenoverF.C. HughesJ.M. The challenges of emerging infectious diseases. Development and spread of multiply-resistant bacterial pathogens.JAMA1996275430030410.1001/jama.1996.03530280052036 8544270
    [Google Scholar]
  74. KhelwatiH. van GeelenL. KalscheuerR. MüllerT.J.J. Synthesis, electronic, and antibacterial properties of 3,7-di(hetero)aryl-substituted phenothiazinyl N-propyl trimethylammonium salts.Molecules2024299212610.3390/molecules29092126 38731617
    [Google Scholar]
  75. El-SedikM.S. MohamedM.B.I. Abdel-AzizM.S. AyshaT.S. Synthesis of new D–π–A phenothiazine-based fluorescent dyes: Aggregation induced emission and antibacterial activity.J. Fluoresc.2024112 38647963
    [Google Scholar]
  76. SarhanM.O. HaffezH. ElsayedN.A. El-HaggarR.S. ZagharyW.A. New phenothiazine conjugates as apoptosis inducing agents: Design, synthesis, In-vitro anti-cancer screening and 131I-radiolabeling for in-vivo evaluation.Bioorg. Chem.202314110692410.1016/j.bioorg.2023.106924 37871390
    [Google Scholar]
  77. SudhakarK. AhamedJ.I. KamalarajanP. Synthesis, spectral characterizations, vibrational spectroscopy, DFT-computations, antibacterial, antioxidant, and molecular docking studies of the novel (Z)-2-(5-((10-hexyl-10H-phenothiazin-3-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl) acetic acid.J. Mol. Struct.2023129213600810.1016/j.molstruc.2023.136008
    [Google Scholar]
  78. VenkatesanK. SatyanarayanaV.S.V. SivakumarA. Synthesis and biological evaluation of novel phenothiazine derivatives as potential antitumor agents.Polycycl. Aromat. Compd.202343185085910.1080/10406638.2021.2021254
    [Google Scholar]
  79. HsuK.C. ChuJ.C. TsengH.J. LiuC.I. WangH.C. LinT.E. LeeH.S. HsinL.W. WangA.H.J. LinC.H. HuangW.J. Synthesis and biological evaluation of phenothiazine derivative-containing hydroxamic acids as potent class II histone deacetylase inhibitors.Eur. J. Med. Chem.202121911341910.1016/j.ejmech.2021.113419 33845233
    [Google Scholar]
  80. GugulothV. ThirukovelaN.S. PaidakulaS. VaddeR. One-pot regioselective synthesis of some novel isoxazole-phenothiazine hybrids and their antibacterial activity.Russ. J. Gen. Chem.202090347047510.1134/S1070363220030214
    [Google Scholar]
  81. MoiseI.M. BîcuE. FarceA. DuboisJ. GhinetA. Indolizine-phenothiazine hybrids as the first dual inhibitors of tubulin polymerization and farnesyltransferase with synergistic antitumor activity.Bioorg. Chem.202010310418410.1016/j.bioorg.2020.104184 32891861
    [Google Scholar]
  82. LuanY. LiuJ. GaoJ. WangJ. The design and synthesis of novel phenothiazine derivatives as potential cytotoxic agents.Lett. Drug Des. Discov.2019171576710.2174/1570180816666181115112236
    [Google Scholar]
  83. AhamedJ.I. ValanM.F. PandurenganK. AgastianP. VenkatadriB. RameshkumarM.R. NarendranK. A novel method for the synthesis and characterization of 10-hexyl-3-(1-hexyl-4, 5-diphenyl-1H-imidazol-2-yl)-10H-phenothiazine: DFT computational, in vitro anticancer and in silico molecular docking studies.Res. Chem. Intermed.202147275979410.1007/s11164‑020‑04297‑3
    [Google Scholar]
  84. ShanmugamS. NeelakandanK. GopalakrishnanM. PazhamalaiS. Design, synthesis, characterization and biological evaluation of some 2-(E)-(N-(azobenzyl)-4-iminoethan-1-yl)-10H-phenothiazines.Mater. Today Proc.202142989100110.1016/j.matpr.2020.11.979
    [Google Scholar]
  85. SivaramakarthikeyanR. KaruppasamyA. IniyavalS. PadmavathyK. LimW.M. MaiC.W. RamalinganC. Phenothiazine and amide-ornamented novel nitrogen heterocyclic hybrids: Synthesis, biological and molecular docking studies.New J. Chem.202044104049406010.1039/C9NJ05489H
    [Google Scholar]
  86. ShantiD. Design, synthesis and bio-evaluation of new phenothiazine derivatives of sulfonamide dyes as anticancer agents.Adv. Mater. Process.20205316
    [Google Scholar]
  87. SellamuthuS. KumarA. NathG. SinghS.K. Design, synthesis and biological profiling of novel phenothiazine derivatives as potent antitubercular agents.Antiinfect. Agents201816
    [Google Scholar]
  88. ReddyrajulaR. DalimbaU. Madan KumarS. Molecular hybridization approach for phenothiazine incorporated 1,2,3-triazole hybrids as promising antimicrobial agents: Design, synthesis, molecular docking and in silico ADME studies.Eur. J. Med. Chem.201916826328210.1016/j.ejmech.2019.02.010 30822714
    [Google Scholar]
  89. BayoumyN.M. FekriA. TawfikE.H. FaddaA.A. Synthesis, characterization and antimicrobial evaluation of some new heterocycles incorporating phenothiazine moiety.Polycycl. Aromat. Compd.202141598299110.1080/10406638.2019.1636832
    [Google Scholar]
  90. SachdevaT. LowM.L. MaiC.W. CheongS.L. LiewY.K. MiltonM.D. Design, synthesis and characterisation of novel phenothiazine‐based triazolopyridine derivatives: Evaluation of anti‐breast cancer activity on human breast carcinoma.ChemistrySelect2019443127011270710.1002/slct.201903203
    [Google Scholar]
  91. LiuN. JinZ. ZhangJ. JinJ. Antitumor evaluation of novel phenothiazine derivatives that inhibit migration and tubulin polymerization against gastric cancer MGC-803 cells.Invest. New Drugs201937118819810.1007/s10637‑018‑0682‑x 30345465
    [Google Scholar]
  92. GulH.I. YamaliC. GunesacarG. SakagamiH. OkudairaN. UesawaY. KagayaH. Cytotoxicity, apoptosis, and QSAR studies of phenothiazine derived methoxylated chalcones as anticancer drug candidates.Med. Chem. Res.201827102366237810.1007/s00044‑018‑2242‑5
    [Google Scholar]
  93. ZhangJ.X. GuoJ.M. ZhangT.T. LinH.J. QiN.S. LiZ.G. ZhouJ.C. ZhangZ.Z. Antiproliferative phenothiazine hybrids as novel apoptosis inducers against MCF-7 breast cancer.Molecules2018236128810.3390/molecules23061288 29843370
    [Google Scholar]
  94. VenkatesanK. SatyanarayanaV.S.V. SivakumarA. Efficient synthesis of phenothiazine-based heterocyclic derivatives and their biological studies.Indian J. Heterocycl. Chem.20182803367372
    [Google Scholar]
  95. SharmaM.K. MachhiJ. MurumkarP. YadavM.R. New role of phenothiazine derivatives as peripherally acting CB1 receptor antagonizing anti-obesity agents.Sci. Rep.201881165010.1038/s41598‑018‑20078‑w 29374224
    [Google Scholar]
  96. BremB. GalE. GăinăL. Silaghi-DumitrescuL. Fischer-FodorE. TomuleasaC.I. GrozavA. ZahariaV. FilipL. CristeaC. Novel thiazolo[5,4-b] phenothiazine derivatives: Synthesis, structural characterization, and in vitro evaluation of antiproliferative activity against human leukemia.Int. J. Mol. Sci.2017187136510.3390/ijms18071365 28672876
    [Google Scholar]
  97. GhorabM.M. AlsaidM.S. SamirN. Abdel-LatifG.A. SolimanA.M. RagabF.A. Abou El EllaD.A. Aromatase inhibitors and apoptotic inducers: Design, synthesis, anticancer activity and molecular modeling studies of novel phenothiazine derivatives carrying sulfonamide moiety as hybrid molecules.Eur. J. Med. Chem.201713430431510.1016/j.ejmech.2017.04.028 28427017
    [Google Scholar]
  98. MaX.H. LiuN. LuJ.L. ZhaoJ. ZhangX.J. Design, synthesis and antiproliferative activity of novel phenothiazine-1,2,3-triazole analogues.J. Chem. Res.2017411269669810.3184/174751917X15122516000140
    [Google Scholar]
  99. FuD.J. ZhaoR.H. LiJ.H. YangJ.J. MaoR.W. WuB.W. LiP. ZiX.L. ZhangQ.Q. CaiH.J. ZhangS.Y. ZhangY.B. LiuH.M. Molecular diversity of phenothiazines: Design and synthesis of phenothiazine–dithiocarbamate hybrids as potential cell cycle blockers.Mol. Divers.201721493394210.1007/s11030‑017‑9773‑4 28785928
    [Google Scholar]
  100. GhinetA. MoiseI.M. RigoB. HomerinG. FarceA. DuboisJ. BîcuE. Studies on phenothiazines: New microtubule-interacting compounds with phenothiazine A-ring as potent antineoplastic agents.Bioorg. Med. Chem.201624102307231710.1016/j.bmc.2016.04.001 27073050
    [Google Scholar]
  101. RamprasadJ. NayakN. DalimbaU. Design of new phenothiazine-thiadiazole hybrids via molecular hybridization approach for the development of potent antitubercular agents.Eur. J. Med. Chem.2015106758410.1016/j.ejmech.2015.10.035 26520841
    [Google Scholar]
  102. HeC.X. MengH. ZhangX. CuiH.Q. YinD.L. Synthesis and bio-evaluation of phenothiazine derivatives as new anti-tuberculosis agents.Chin. Chem. Lett.201526895195410.1016/j.cclet.2015.03.027
    [Google Scholar]
  103. ZhiS. MuS. LiuY. GongM. WangP.B. LiuD.K. Synthesis and biological evaluation of novel phenothiazine derivatives as non-peptide arginine vasopressin V2 receptor antagonists.Chin. Chem. Lett.201526562763010.1016/j.cclet.2015.01.022
    [Google Scholar]
  104. MaddilaS. MominM. GorleS. PalakonduL. JonnalagaddaS.B. Synthesis and antioxidant evaluation of novel phenothiazine-linked substituted benzylideneamino-1,2,4-triazole derivatives.J. Chil. Chem. Soc.20156022919292310.4067/S0717‑97072015000200012
    [Google Scholar]
  105. BansodeT.N. RangariR.P. ShimpiP.A. Synthesis and biological evaluation of some novel 6-(substituted-phenyl)-4-(10H-phenothiazin-10-yl)-pyrimidin-2-(1H)-ones/thiones.Pharm. Chem. J.201448743043310.1007/s11094‑014‑1125‑4
    [Google Scholar]
  106. SiddiquiA.B. TrivediA.R. KatariaV.B. ShahV.H. 4,5-Dihydro-1H-pyrazolo[3,4-d]pyrimidine containing phenothiazines as antitubercular agents.Bioorg. Med. Chem. Lett.20142461493149510.1016/j.bmcl.2014.02.012 24582983
    [Google Scholar]
  107. DunnE.A. RoxburghM. LarsenL. SmithR.A.J. McLellanA.D. HeikalA. MurphyM.P. CookG.M. Incorporation of triphenylphosphonium functionality improves the inhibitory properties of phenothiazine derivatives in Mycobacterium tuberculosis.Bioorg. Med. Chem.201422195320532810.1016/j.bmc.2014.07.050 25150092
    [Google Scholar]
  108. PriyadarshanA. TripathiG. SinghA.K. RajkhowaS. KumarA. TiwariV.K. Solvent-free approaches towards the synthesis of therapeutically important heterocycles.Curr. Green Chem.202411212714710.2174/2213346110666230915163034
    [Google Scholar]
  109. MartelliL.S.R. MachadoI.V. dos SantosJ.R.N. CorrêaA.G. Greener asymmetric organocatalysis using bio-based solvents.Catalysts202313355310.3390/catal13030553
    [Google Scholar]
  110. SwamiR. YadavJ. KumarS. GabaM. Recent advances in microwave-assisted synthesis of triazoles: A greener approach.RSC Advances2025154223424210.1039/D4RA06886F
    [Google Scholar]
  111. PeshkovV.A. PereshivkoO.P. Van der EyckenE.V. Ultrasonication as a tool for green organic synthesis.ChemSusChem202316e202300684
    [Google Scholar]
  112. Al ZahraniN.A. El-ShishtawyR.M. ElaasserM.M. AsiriA.M. Synthesis of novel chalcone-based phenothiazine derivatives as antioxidant and anticancer agents.Molecules20202519456610.3390/molecules25194566 33036301
    [Google Scholar]
  113. VenkatesanK. SatyanarayanaV.S.V. SivakumarA. RamamurthyC. ThirunavukkarusuC. Synthesis, spectral characterization and antitumor activity of phenothiazine derivatives.J. Heterocycl. Chem.20205772722272810.1002/jhet.3980
    [Google Scholar]
  114. AndacA.C. Facile microwave synthesis of a novel phenothiazine derivative and its cytotoxic activity.Organic Communications202013417518310.25135/acg.oc.86.20.10.1853
    [Google Scholar]
  115. AlsharekhM.M. AlthagafiI.I. ShaabanM.R. FarghalyT.A. Microwave-assisted and thermal synthesis of nanosized thiazolyl-phenothiazine derivatives and their biological activities.Res. Chem. Intermed.201945212715410.1007/s11164‑018‑3594‑7
    [Google Scholar]
  116. PemmadiR.V. KurreP.N. GuruvelliP.V.S. JamullamudiR.N. MuthyalaM.K.K. Microwave-assisted synthesis and SAR studies of novel hybrid phenothiazine analogs as potential antitubercular agents.Indian J. Chem. B201857B556566
    [Google Scholar]
  117. VenkatesanK. SatyanarayanaV.S.V. MohanapriyaK. KhoraS.S. SivakumarA. Ultrasound-mediated synthesis of phenothiazine derivatives and their in vitro antibacterial and antioxidant studies.Res. Chem. Intermed.201541259560710.1007/s11164‑013‑1213‑1
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575405792250813070957
Loading
/content/journals/mrmc/10.2174/0113895575405792250813070957
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test