Skip to content
2000
Volume 25, Issue 11
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

O-GlcNAcylation is a non-canonical form of protein glycosylation that occurs in nuclear, cytoplasmic, and mitochondrial proteins among all multicellular eukaryotes. There are only two enzymes that regulate this post-translational modification, one of which is O-GlcNAcase, a glycoside hydrolase that catalyzes the hydrolytic cleavage of O-GlcNAc from protein substrates. Related studies have shown that the reduction of O-GlcNAc levels is closely related to Alzheimer's disease, which is maintained by reducing the aggregation of tau inhibiting O-GlcNAcase. Various small-molecule O-GlcNAcase inhibitors with different chemical structures have been developed and used as chemical probes to explore the O-GlcNAc pathway. Although many reported inhibitors have shown that O-GlcNAcase activity has single-digit nmol IC values in binding assays, and molecules, such as LY-3372689, have entered phase II clinical studies, further exploration of novel O-GlcNAcase inhibitors with higher inhibitory activity and specificity is still worthy of attention. This article reviews the pathogenesis and therapeutic role of O-GlcNAcase in Alzheimer's disease, as well as the recent progress of O-GlcNAcase small molecule inhibitors, including sugar-derived or non-sugar scaffolds, and summarizes the clinical progress and potential prospects of O-GlcNAcase inhibitors.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575376839250606183944
2025-06-18
2025-12-14
Loading full text...

Full text loading...

References

  1. MahajanK. SharmaS. GautamR.K. GoyalR. MishraD.K. SinglaR.K. SinglaR.K. Insights on therapeutic approaches of natural anti-Alzheimer’s agents in the management of Alzheimer’s disease: A future perspective.J. Alzheimers Dis.2024102489792310.1177/13872877241296557 39523509
    [Google Scholar]
  2. LiY. XuH. WangH. YangK. LuanJ. WangS. TREM2: Potential therapeutic targeting of microglia for Alzheimer’s disease.Biomed. Pharmacother.202316511521810.1016/j.biopha.2023.115218 37517293
    [Google Scholar]
  3. LaneC.A. HardyJ. SchottJ.M. Alzheimer’s disease.Eur. J. Neurol.2018251597010.1111/ene.13439 28872215
    [Google Scholar]
  4. TatulianS.A. Challenges and hopes for Alzheimer’s disease.Drug Discov. Today20222741027104310.1016/j.drudis.2022.01.016 35121174
    [Google Scholar]
  5. ZhaoS. MaL. ChuZ. XuH. WuW. LiuF. Regulation of microglial activation in stroke.Acta Pharmacol. Sin.201738444545810.1038/aps.2016.162 28260801
    [Google Scholar]
  6. ScheltensP. BlennowK. BretelerM.M.B. de StrooperB. FrisoniG.B. SallowayS. Van der FlierW.M. Alzheimer’s disease.Lancet20163881004350551710.1016/S0140‑6736(15)01124‑1 26921134
    [Google Scholar]
  7. ChenY. WangS. HuQ. ZhouL. Self-emulsifying system co-loaded with paclitaxel and coix seed oil deeply penetrated to enhance efficacy in cervical cancer.Curr. Drug Deliv.202320791992610.2174/1567201819666220628094239 35762559
    [Google Scholar]
  8. JackC.R. BennettD.A. BlennowK. CarrilloM.C. DunnB. HaeberleinS.B. HoltzmanD.M. JagustW. JessenF. KarlawishJ. LiuE. MolinuevoJ.L. MontineT. PhelpsC. RankinK.P. RoweC.C. ScheltensP. SiemersE. SnyderH.M. SperlingR. ElliottC. MasliahE. RyanL. SilverbergN. NIA‐AA research framework: Toward a biological definition of Alzheimer’s disease.Alzheimers Dement.201814453556210.1016/j.jalz.2018.02.018 29653606
    [Google Scholar]
  9. QinP. RanY. LiuY. WeiC. LuanX. NiuH. PengJ. SunJ. WuJ. Recent advances of small molecule JNK3 inhibitors for Alzheimer’s disease.Bioorg. Chem.202212810609010.1016/j.bioorg.2022.106090 35964505
    [Google Scholar]
  10. XingY. LiuB. WanS. ChengY. ZhouS. SunY. YaoX. HuaQ. MengX. ChengJ. ZhongM. ZhangY. LvK. KongX.A. SGLT2 Inhibitor dapagliflozin alleviates diabetic cardiomyopathy by suppressing high glucose-induced oxidative stress in vivo and in-vitro.Front. Pharmacol.20211270817710.3389/fphar.2021.708177 34322029
    [Google Scholar]
  11. SunS. LiS. DuY. WuC. ZhangM. LiJ. ZhangX. Anti-inflammatory effects of the root, stem and leaf extracts of Chloranthus serratus on adjuvant-induced arthritis in rats.Pharm. Biol.202058152853710.1080/13880209.2020.1767159 32503379
    [Google Scholar]
  12. van DyckC.H. SwansonC.J. AisenP. BatemanR.J. ChenC. GeeM. KanekiyoM. LiD. ReydermanL. CohenS. FroelichL. KatayamaS. SabbaghM. VellasB. WatsonD. DhaddaS. IrizarryM. KramerL.D. IwatsuboT. Lecanemab in early Alzheimer’s disease.N. Engl. J. Med.2023388192110.1056/NEJMoa2212948 36449413
    [Google Scholar]
  13. AlvesF. KalinowskiP. AytonS. Accelerated brain volume loss caused by anti-β-amyloid drugs: A systematic review and meta-analysis.Neurology202310020e2114e212410.1212/WNL.0000000000207156 36973044
    [Google Scholar]
  14. HeC. GuJ. WangD. WangK. WangY. YouQ. WangL. Small molecules targeting molecular chaperones for tau regulation: Achievements and challenges.Eur. J. Med. Chem.202326111585910.1016/j.ejmech.2023.115859 37839344
    [Google Scholar]
  15. CaoY.Y. WangZ. WangZ.H. JiangX.G. LuW.H. Inhibition of miR-155 alleviates sepsis-induced inflammation and intestinal barrier dysfunction by inactivating NF-κB signaling.Int. Immunopharmacol.20219010721810.1016/j.intimp.2020.107218 33296782
    [Google Scholar]
  16. WangX. ZhouD. ZhouW. LiuJ. XueQ. HuangY. ChengC. WangY. ChangJ. WangP. MiaoC. Clematichinenoside AR inhibits the pathology of rheumatoid arthritis by blocking the circPTN/miR-145-5p/FZD4 signal axis. Int. Immunopharmacol.,2022113Pt A10937610.1016/j.intimp.2022.109376 36279670
    [Google Scholar]
  17. ChenW.G. ZhangS.S. PanS. WangZ.F. XuJ.Y. ShengX.H. YinQ. WuY.J. α-Mangostin treats early-stage adjuvant-Induced arthritis of rat by regulating the CAP-SIRT1 pathway in macrophages.Drug Des. Devel. Ther.20221650952010.2147/DDDT.S348836 35250263
    [Google Scholar]
  18. WangG. ZhangH. SunJ. ZhangY. HeF. ZouJ. Cyclosporin A impairs neurogenesis and cognitive abilities in brain development via the IFN-γ-Shh-BDNF pathway.Int. Immunopharmacol.20219610774410.1016/j.intimp.2021.107744 33993101
    [Google Scholar]
  19. ChenJ. CaoD. JiangS. LiuX. PanW. CuiH. YangW. LiuZ. JinJ. ZhaoZ. Triterpenoid saponins from Ilex pubescens promote blood circulation in blood stasis syndrome by regulating sphingolipid metabolism and the PI3K/AKT/eNOS signaling pathway.Phytomedicine202210415424210.1016/j.phymed.2022.154242 35728385
    [Google Scholar]
  20. MorrisM. KnudsenG.M. MaedaS. TrinidadJ.C. IoanoviciuA. BurlingameA.L. MuckeL. Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice.Nat. Neurosci.20151881183118910.1038/nn.4067 26192747
    [Google Scholar]
  21. JiangY.X. LiW. WangJ. WangG.G. Cardiac dysfunction is attenuated by ginkgolide B via reducing oxidative stress and fibrosis in diabetic rats.Iran. J. Basic Med. Sci.202023810781084 32952955
    [Google Scholar]
  22. LiY. DaiM. WangL. WangG. Polysaccharides and glycosides from Aralia echinocaulis protect rats from arthritis by modulating the gut microbiota composition.J. Ethnopharmacol.202126911374910.1016/j.jep.2020.113749 33359861
    [Google Scholar]
  23. YuzwaS.A. VocadloD.J. O-GlcNAc and neurodegeneration: Biochemical mechanisms and potential roles in Alzheimer’s disease and beyond.Chem. Soc. Rev.201443196839685810.1039/C4CS00038B 24759912
    [Google Scholar]
  24. YuzwaS.A. ShanX. MacauleyM.S. ClarkT. SkorobogatkoY. VossellerK. VocadloD.J. Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation.Nat. Chem. Biol.20128439339910.1038/nchembio.797 22366723
    [Google Scholar]
  25. YangX. QianK. Protein O-GlcNAcylation: Emerging mechanisms and functions.Nat. Rev. Mol. Cell Biol.201718745246510.1038/nrm.2017.22 28488703
    [Google Scholar]
  26. VocadloD.J. O-GlcNAc processing enzymes: Catalytic mechanisms, substrate specificity, and enzyme regulation.Curr. Opin. Chem. Biol.2012165-648849710.1016/j.cbpa.2012.10.021 23146438
    [Google Scholar]
  27. LiB. LiH. LuL. JiangJ. Structures of human O-GlcNAcase and its complexes reveal a new substrate recognition mode.Nat. Struct. Mol. Biol.201724436236910.1038/nsmb.3390 28319083
    [Google Scholar]
  28. WangS. GaoS. YeW. LiY. LuanJ. LvX. The emerging importance role of m6A modification in liver disease.Biomed. Pharmacother.202316211466910.1016/j.biopha.2023.114669 37037093
    [Google Scholar]
  29. RothC. ChanS. OffenW.A. HemsworthG.R. WillemsL.I. KingD.T. VargheseV. BrittonR. VocadloD.J. DaviesG.J. Structural and functional insight into human O-GlcNAcase.Nat. Chem. Biol.201713661061210.1038/nchembio.2358 28346405
    [Google Scholar]
  30. WangL. WangP. WangD. TaoM. XuW. OlatunjiO.J. Anti-inflammatory activities of kukoamine a from the root bark of lycium chinense miller. Nat. Prod Commun,20201531934578X2091208810.1177/1934578X20912088
    [Google Scholar]
  31. YuzwaS.A. MacauleyM.S. HeinonenJ.E. ShanX. DennisR.J. HeY. WhitworthG.E. StubbsK.A. McEachernE.J. DaviesG.J. VocadloD.J. A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo.Nat. Chem. Biol.20084848349010.1038/nchembio.96 18587388
    [Google Scholar]
  32. HuaZ. HuiL.I. HaihuaW. Potential protective effects of the water-soluble Chinese propolis on experimental ulcerative colitis.J. Tradit. Chin. Med.2023435925933 37679980
    [Google Scholar]
  33. WangC. WangR. WangH. ZangL. XuH. HuangC. ChenY. WangL. A Link Between chemical structure and biological activity in triterpenoids.Recent Patents Anticancer Drug Discov.202217214516110.2174/1574892816666210512031635 33982656
    [Google Scholar]
  34. LuQ. ZhangX. LiangT. BaiX. O-GlcNAcylation: An important post-translational modification and a potential therapeutic target for cancer therapy.Mol. Med.202228111510.1186/s10020‑022‑00544‑y 36104770
    [Google Scholar]
  35. HeX. LiuG. ChenX. WangY. LiuR. WangC. HuangY. ShenJ. JiaY. Pharmacokinetic and pharmacodynamic interactions between henagliflozin, a novel selective SGLT-2 inhibitor, and warfarin in healthy Chinese subjects.Clin. Ther.202345765566110.1016/j.clinthera.2023.06.002 37451912
    [Google Scholar]
  36. ZhuY. ShanX. YuzwaS.A. VocadloD.J. The emerging link between O-GlcNAc and Alzheimer disease.J. Biol. Chem.201428950344723448110.1074/jbc.R114.601351 25336656
    [Google Scholar]
  37. WangY. WuH. HanZ. ShengH. WuY. WangY. GuoX. ZhuY. LiX. WangY. Guhong injection promotes post-stroke functional recovery via attenuating cortical inflammation and apoptosis in subacute stage of ischemic stroke.Phytomedicine20229915403410.1016/j.phymed.2022.154034 35276592
    [Google Scholar]
  38. SongA. DingT. WeiN. YangJ. MaM. ZhengS. JinH. Schisandrin B induces HepG2 cells pyroptosis by activating NK cells mediated anti-tumor immunity.Toxicol. Appl. Pharmacol.202347211657410.1016/j.taap.2023.116574 37271225
    [Google Scholar]
  39. RaoX. DuanX. MaoW. LiX. LiZ. LiQ. ZhengZ. XuH. ChenM. WangP.G. WangY. ShenB. YiW. O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth.Nat. Commun.201561846810.1038/ncomms9468 26399441
    [Google Scholar]
  40. ZhangH. ZhangJ. DongH. KongY. GuanY. Emerging field: O-GlcNAcylation in ferroptosis.Front. Mol. Biosci.202310120326910.3389/fmolb.2023.1203269 37251080
    [Google Scholar]
  41. JoinerC.M. LiH. JiangJ. WalkerS. Structural characterization of the O-GlcNAc cycling enzymes: Insights into substrate recognition and catalytic mechanisms.Curr. Opin. Struct. Biol.2019569710610.1016/j.sbi.2018.12.003 30708324
    [Google Scholar]
  42. ElbatrawyA.A. KimE.J. NamG. O-GlcNAcase: Emerging mechanism, substrate recognition and small-Molecule inhibitors.ChemMedChem202015141244125710.1002/cmdc.202000077 32496638
    [Google Scholar]
  43. PrattM.R. VocadloD.J. Understanding and exploiting the roles of O-GlcNAc in neurodegenerative diseases.J. Biol. Chem.20232991210541110.1016/j.jbc.2023.105411 37918804
    [Google Scholar]
  44. Bartolomé-NebredaJ.M. TrabancoA.A. VelterA.I. BuijnstersP. O-GlcNAcase inhibitors as potential therapeutics for the treatment of Alzheimer’s disease and related tauopathies: analysis of the patent literature.Expert Opin. Ther. Pat.202131121117115410.1080/13543776.2021.1947242 34176417
    [Google Scholar]
  45. ParkJ. LaiM.K.P. ArumugamT.V. JoD.G. O-GlcNAcylation as a therapeutic target for Alzheimer’s disease.Neuromolecular Med.202022217119310.1007/s12017‑019‑08584‑0 31894464
    [Google Scholar]
  46. JiangX. YangQ. Recent advances in glycoside hydrolase family 20 and 84 inhibitors: Structures, inhibitory mechanisms and biological activities.Bioorg. Chem.202414210687010.1016/j.bioorg.2023.106870 39492366
    [Google Scholar]
  47. TaoZ.S. ZhouW.S. XuH.G. YangM. Simvastatin can enhance the osseointegration of titanium rods in ovariectomized rats maintenance treatment with valproic acid.Biomed. Pharmacother.202013211074510.1016/j.biopha.2020.110745 33068938
    [Google Scholar]
  48. DongL. ShenS. XuY. WangL. FengR. ZhangJ. LuH. Computational studies on the potency and selectivity of PUGNAc derivatives against GH3, GH20, and GH84 β-N-acetyl-D-hexosaminidases.Front Chem.2019723510.3389/fchem.2019.00235 31111026
    [Google Scholar]
  49. MariappaD. SelvanN. BorodkinV.S. AlonsoJ. FerenbachA.T. ShepherdC. NavratilovaI.H. van AaltenD.M.F. A mutant O-GlcNAcase as a probe to reveal global dynamics of protein O-GlcNAcylation during Drosophila embryonic development.Biochem. J.2015470225526210.1042/BJ20150610 26348912
    [Google Scholar]
  50. Martínez-ViturroC.M. TrabancoA.A. RoyesJ. FernándezE. TresadernG. VegaJ.A. del CerroA. DelgadoF. García MolinaA. TovarF. ShafferP. EbnethA. BrettevilleA. MertensL. SomersM. AlonsoJ.M. Bartolomé-NebredaJ.M. Diazaspirononane nonsaccharide inhibitors of O-GlcNAcase (OGA) for the treatment of neurodegenerative disorders.J. Med. Chem.20206322140171404410.1021/acs.jmedchem.0c01479 33197187
    [Google Scholar]
  51. Espejo-MojicaA.J. Rodríguez-LópezA. LiR. ZhengW. Alméciga-DíazC.J. Dulcey-SepúlvedaC. CombarizaG. BarreraL.A. Human recombinant lysosomal β‐Hexosaminidases produced in Pichia pastoris efficiently reduced lipid accumulation in Tay‐Sachs fibroblasts.Am. J. Med. Genet. C. Semin. Med. Genet.2020184488589510.1002/ajmg.c.31849 33111489
    [Google Scholar]
  52. Ficko-BleanE. StubbsK.A. NemirovskyO. VocadloD.J. BorastonA.B. Structural and mechanistic insight into the basis of mucopolysaccharidosis IIIB.Proc. Natl. Acad. Sci. USA2008105186560656510.1073/pnas.0711491105 18443291
    [Google Scholar]
  53. TeoC.F. El-KarimE.G. WellsL. Dissecting PUGNAc-mediated inhibition of the pro-survival action of insulin.Glycobiology201626111198120810.1093/glycob/cww043 27072814
    [Google Scholar]
  54. KimE.J. PerreiraM. ThomasC.J. HanoverJ.A. An O-GlcNAcase-specific inhibitor and substrate engineered by the extension of the N-acetyl moiety.J. Am. Chem. Soc.2006128134234423510.1021/ja0582915 16568991
    [Google Scholar]
  55. HuangY. LiuR. WangY. LiuG. WangC. ChenX. JiaY. ShenJ. Evaluation of pharmacokinetic interactions between the new SGLT2 inhibitor SHR3824 and Valsartan in healthy Chinese volunteers.Clin. Ther.202244794595610.1016/j.clinthera.2022.06.001 35778161
    [Google Scholar]
  56. KissM. SzabóE. BocskaB. SinhL.T. FernandesC.P. TimáriI. HayesJ.M. SomsákL. BarnaT. Nanomolar inhibition of human OGA by 2-acetamido-2-deoxy-d-glucono-1,5-lactone semicarbazone derivatives.Eur. J. Med. Chem.202122311364910.1016/j.ejmech.2021.113649 34186233
    [Google Scholar]
  57. DingD. ShenX. YuL. ZhengY. LiuY. WangW. LiuL. ZhaoZ. NianS. LiuL. Timosaponin BII inhibits TGF ‐β mediated epithelial‐mesenchymal transition through Smad‐dependent pathway during pulmonary fibrosis.Phytother. Res.20233772787279910.1002/ptr.7774 36807664
    [Google Scholar]
  58. HongH. ZouQ. LiuY. WangS. ShenG. YanX. Supramolecular nanodrugs based on covalent assembly of therapeutic peptides toward in-vitro synergistic anticancer therapy.ChemMedChem202116152381238510.1002/cmdc.202100236 33908190
    [Google Scholar]
  59. WhitworthG.E. MacauleyM.S. StubbsK.A. DennisR.J. TaylorE.J. DaviesG.J. GreigI.R. VocadloD.J. Analysis of PUGNAc and NAG-thiazoline as transition state analogues for human O-GlcNAcase: mechanistic and structural insights into inhibitor selectivity and transition state poise.J. Am. Chem. Soc.2007129363564410.1021/ja065697o 17227027
    [Google Scholar]
  60. HaoJ. BeiJ. LiZ. HanM. MaB. MaP. ZhouX. Qing’e pill inhibits osteoblast ferroptosis via ATM Serine/Threonine kinase (ATM) and the PI3K/AKT pathway in primary osteoporosis.Front. Pharmacol.20221390210210.3389/fphar.2022.902102 35865965
    [Google Scholar]
  61. StubbsK.A. ZhangN. VocadloD.J. A divergent synthesis of 2-acyl derivatives of PUGNAc yields selective inhibitors of O-GlcNAcase.Org. Biomol. Chem.20064583984510.1039/b516273d 16493467
    [Google Scholar]
  62. WangZ. TangT. WangS. CaiT. TaoH. ZhangQ. QiS. QiZ. Aloin inhibits the proliferation and migration of gastric cancer cells by regulating NOX2-ROS-mediated pro-survival signal pathways.Drug Des. Devel. Ther.20201414515510.2147/DDDT.S219247 32021099
    [Google Scholar]
  63. WangX. ShenC. WangX. TangJ. WuZ. HuangY. ShaoW. GengK. XieH. PuZ. Schisandrin protects against ulcerative colitis by inhibiting the SGK1/NLRP3 signaling pathway and reshaping gut microbiota in mice.Chin. Med.202318111210.1186/s13020‑023‑00815‑8 37674245
    [Google Scholar]
  64. RudrawarS. RyanP. Sugar kick prevents memory impairment.J. Med. Chem.20196222100591006110.1021/acs.jmedchem.9b01668 31668062
    [Google Scholar]
  65. WangX. LiW. MarcusJ. PearsonM. SongL. SmithK. TerracinaG. LeeJ. HongK.L.K. LuS.X. HydeL. ChenS.C. KinsleyD. MelchorJ.P. RubinsD.J. MengX. HostetlerE. SurC. ZhangL. SchachterJ.B. HessJ.F. SelnickH.G. VocadloD.J. McEachernE.J. UslanerJ.M. DuffyJ.L. SmithS.M. MK-8719, a novel and selective O-GlcNAcase inhibitor that reduces the formation of pathological tau and ameliorates neurodegeneration in a mouse model of tauopathy.J. Pharmacol. Exp. Ther.2020374225226310.1124/jpet.120.266122 32493725
    [Google Scholar]
  66. WangD. LiX. GongG. LuY. GuoZ. ChenR. HuangH. LiZ. BianJ. An updated patent review of glutaminase inhibitors (2019–2022).Expert Opin. Ther. Pat.2023331172810.1080/13543776.2023.2173573 36698323
    [Google Scholar]
  67. SmithS.M. StruykA. JonathanD.B. DeclercqR. MarcusJ.N. ToolanD.M. WangX. SchachterJ.B. CosdenM.L. PearsonM.S. HessF.J. SelnickH.G. SalinasC.A. LiW. DuffyJ.J. McEachernE.J. VocadloD.J. RengerJ.J. EricH.D. FormanM. SchoeppD.D. Early clinical results and preclincal validation of the O-GlcNAcase(OGA) inhibtor MK-8719 as a novel therapeutic for the treatment of tauopathies. Alzheimers Dement,201626112
    [Google Scholar]
  68. ZhangJ. ZhouW. ChenY. WangY. GuoZ. HuW. LiY. HanX. SiS. Small molecules targeting Pin1 as potent anticancer drugs.Front. Pharmacol.202314107303710.3389/fphar.2023.1073037 37050909
    [Google Scholar]
  69. ShanmugasundaramB. DebowskiA.W. DennisR.J. DaviesG.J. VocadloD.J. VasellaA. .Inhibition of O-GlcNAcase by a gluco-configured nagstatin and a PUGNAc–imidazole hybrid inhibitor. Chem. Commun, (Camb),200613424372437410.1039/B612154C 17057847
    [Google Scholar]
  70. DorfmuellerH.C. BorodkinV.S. SchimplM. ShepherdS.M. ShpiroN.A. van AaltenD.M.F. GlcNAcstatin: a picomolar, selective O-GlcNAcase inhibitor that modulates intracellular O-glcNAcylation levels.J. Am. Chem. Soc.200612851164841648510.1021/ja066743n 17177381
    [Google Scholar]
  71. DorfmuellerH.C. BorodkinV.S. SchimplM. ZhengX. KimeR. ReadK.D. van AaltenD.M.F. Cell-penetrant, nanomolar O-GlcNAcase inhibitors selective against lysosomal hexosaminidases.Chem. Biol.201017111250125510.1016/j.chembiol.2010.09.014 21095575
    [Google Scholar]
  72. WangX. LeiW. LiuC. YangJ. ZhuY.H. BOLA3 is a prognostic-related biomarker and correlated with immune infiltrates in lung adenocarcinoma.Int. Immunopharmacol.202210710865210.1016/j.intimp.2022.108652 35286914
    [Google Scholar]
  73. MacauleyM.S. HeY. GlosterT.M. StubbsK.A. DaviesG.J. VocadloD.J. Inhibition of O-GlcNAcase using a potent and cell-permeable inhibitor does not induce insulin resistance in 3T3-L1 adipocytes.Chem. Biol.201017993794810.1016/j.chembiol.2010.07.006 20851343
    [Google Scholar]
  74. LiuJ.Q. ZhaoX.T. QinF.Y. ZhouJ.W. DingF. ZhouG. ZhangX.S. ZhangZ.H. LiZ.B. Isoliquiritigenin mitigates oxidative damage after subarachnoid hemorrhage in vivo and in-vitro by regulating Nrf2-dependent signaling pathway via targeting of SIRT1.Phytomedicine202210515426210.1016/j.phymed.2022.154262 35896045
    [Google Scholar]
  75. StubbsK.A. BacikJ.P. Perley-RobertsonG.E. WhitworthG.E. GlosterT.M. VocadloD.J. MarkB.L. The development of selective inhibitors of NagZ: Increased susceptibility of Gram-negative bacteria to β-lactams.ChemBioChem201314151973198110.1002/cbic.201300395 24009110
    [Google Scholar]
  76. González-CuestaM. SidhuP. AshmusR.A. MalesA. ProceviatC. MaddenZ. RogalskiJ.C. BusmannJ.A. FosterL.J. García FernándezJ.M. DaviesG.J. Ortiz MelletC. VocadloD.J. Bicyclic picomolar OGA inhibitors enable chemoproteomic mapping of its endogenous post-translational modifications.J. Am. Chem. Soc.2022144283284410.1021/jacs.1c10504 34985906
    [Google Scholar]
  77. WangX. WangX. YaoH. ShenC. GengK. XieH. A comprehensive review on Schisandrin and its pharmacological features.Naunyn Schmiedebergs Arch. Pharmacol.2024397278379410.1007/s00210‑023‑02687‑z 37658213
    [Google Scholar]
  78. Bergeron-BrlekM. Goodwin-TindallJ. CekicN. RothC. ZandbergW.F. ShanX. VargheseV. ChanS. DaviesG.J. VocadloD.J. BrittonR. A Convenient approach to stereoisomeric iminocyclitols: Generation of potent brain-permeable OGA inhibitors.Angew. Chem. Int. Ed.20155451154291543310.1002/anie.201507985 26545827
    [Google Scholar]
  79. WeberP. MészárosZ. JagečićD. HribljanV. MitrečićD. BojarováP. SlámováK. VrbaJ. KulikN. KřenV. StützA.E. Diaminocyclopentane-derived O-GlcNAcase inhibitors for combating tau hyperphosphorylation in Alzheimer’s disease.Chem. Commun. (Camb.)202258638838884110.1039/D2CC02712G 35849011
    [Google Scholar]
  80. ZhaL. PanL. GuoJ. FrenchN. VillanuevaE.V. TefsenB. Effectiveness and safety of high dose tigecycline for the treatment of severe infections: A systematic review and meta-analysis.Adv. Ther.20203731049106410.1007/s12325‑020‑01235‑y 32006240
    [Google Scholar]
  81. ZhouW. YangK. ZengJ. LaiX. WangX. JiC. LiY. ZhangP. LiS. FordNet: Recommending traditional Chinese medicine formula via deep neural network integrating phenotype and molecule.Pharmacol. Res.202117310575210.1016/j.phrs.2021.105752 34481072
    [Google Scholar]
  82. HeY. Martinez-FleitesC. BubbA. GlosterT.M. DaviesG.J. Structural insight into the mechanism of streptozotocin inhibition of O-GlcNAcase.Carbohydr. Res.2009344562763110.1016/j.carres.2008.12.007 19217614
    [Google Scholar]
  83. ScaffidiA. StubbsK.A. DennisR.J. TaylorE.J. DaviesG.J. VocadloD.J. StickR.V. A 1-acetamido derivative of 6-epi-valienamine: An inhibitor of a diverse group of β-N-acetylglucosaminidases.Org. Biomol. Chem.20075183013301910.1039/b709681j 17728868
    [Google Scholar]
  84. KimE.J. AmorelliB. AbdoM. ThomasC.J. LoveD.C. KnappS. HanoverJ.A. Distinctive inhibition of O-GlcNAcase isoforms by an alpha-GlcNAc thiolsulfonate.J. Am. Chem. Soc.200712948148541485510.1021/ja076038u 17994748
    [Google Scholar]
  85. ChenW. ShenS. DongL. ZhangJ. YangQ. Selective inhibition of β-N-acetylhexosaminidases by thioglycosyl–naphthalimide hybrid molecules.Bioorg. Med. Chem.201826239440010.1016/j.bmc.2017.11.042 29242020
    [Google Scholar]
  86. LiangD. ShenJ. JiaY. DaiM. LiX. ZhouL. WangW. YangB. ShaoJ. JiangY. XieH. SunH. Pharmacokinetic properties of s-oxiracetam after single and multiple intravenous infusions in healthy volunteers.Eur. J. Drug Metab. Pharmacokinet.202146679380510.1007/s13318‑021‑00718‑9 34549388
    [Google Scholar]
  87. ShenS. DongL. ChenW. ZengX. LuH. YangQ. ZhangJ. Modification of the thioglycosyl-naphthalimides as potent and selective human O-GlcNAcase inhibitors.ACS Med. Chem. Lett.20189121241124610.1021/acsmedchemlett.8b00406 30613333
    [Google Scholar]
  88. TawadaM. FushimiM. MasudaK. SunH. UchiyamaN. KosugiY. LaneW. TjhenR. EndoS. KoikeT. Discovery of a novel and brain-penetrant O-GlcNAcase inhibitor via virtual screening, structure-based analysis, and rational lead optimization.J. Med. Chem.20216421103111510.1021/acs.jmedchem.0c01712 33404239
    [Google Scholar]
  89. WangH. ChenY. WangL. LiuQ. YangS. WangC. Advancing herbal medicine: Enhancing product quality and safety through robust quality control practices.Front. Pharmacol.202314126517810.3389/fphar.2023.1265178 37818188
    [Google Scholar]
  90. PermanneB. SandA. OussonS. NényM. HantsonJ. SchubertR. WiessnerC. QuattropaniA. BeherD. O-GlcNAcase inhibitor ASN90 is a multimodal drug candidate for tau and α-Synuclein proteinopathies.ACS Chem. Neurosci.20221381296131410.1021/acschemneuro.2c00057 35357812
    [Google Scholar]
  91. RyanJ.M. QuattropaniA. Abd-ElazizK. den DaasI. SchneiderM. OussonS. NényM. SandA. HantsonJ. PermanneB. WiessnerC. BeherD. Phase 1 study in healthy volunteers of the O-GlcNAcase inhibitor ASN120290 as a novel therapy for progressive supranuclear palsy and related tauopathies.Alzheimers Dement.201814725110.1016/j.jalz.2018.06.2400
    [Google Scholar]
  92. ShcherbininS. KielbasaW. DuboisS. LoweS.L. PhippsK.M. TsengJ. KevinD.B. NatanegaraF. WarnerS. DreyfusN. Lindsay-ScottP. HawkM.K. McDonaldN. ZhangX. GilmoreJ.A. BiglanK. MergottD.J. RussellD. GunnR.N. ConstantinescuC. NuthallH.N. CollinsE.C. Brain target occupancy of LY3372689, an inhibitor of the O‐GlcNAcase (OGA) enzyme: Translation from rat to human.Alzheimers Dement.202016S4e04055810.1002/alz.040558
    [Google Scholar]
  93. LiX. HanJ. BujaranipalliS. HeJ. KimE.Y. KimH. ImJ.H. ChoW.J. Structure-based discovery and development of novel O-GlcNAcase inhibitors for the treatment of Alzheimer’s disease.Eur. J. Med. Chem.202223811444410.1016/j.ejmech.2022.114444 35588599
    [Google Scholar]
  94. DorfmuellerH.C. van AaltenD.M.F. Screening‐based discovery of drug‐like O ‐GlcNAcase inhibitor scaffolds.FEBS Lett.2010584469470010.1016/j.febslet.2009.12.020 20026047
    [Google Scholar]
  95. YinX. LiY. FanX. HuangF. QiuY. ZhaoC. ZhouZ. GuQ. XiaL. BaoJ. WangX. LiuF. QianW. SIRT1 deficiency increases O-GlcNAcylation of tau, mediating synaptic tauopathy.Mol. Psychiatry202227104323433410.1038/s41380‑022‑01689‑2 35879403
    [Google Scholar]
  96. ZhangQ. YanY. The role of natural flavonoids on neuroinflammation as a therapeutic target for Alzheimer’s disease: A narrative review.Neural Regen. Res.202318122582259110.4103/1673‑5374.373680 37449593
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575376839250606183944
Loading
/content/journals/mrmc/10.2174/0113895575376839250606183944
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test