Skip to content
2000
Volume 25, Issue 11
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Introduction

has been cultivated for over 11,700 years, originating in Central and Southeast Asia, and has been used for medical, recreational, and religious purposes. Among its therapeutic potentials, it is notable for its capacity to alleviate pain, nausea, anxiety, and more. The plant’s primary secondary metabolites are cannabinoids, which interact with the endocannabinoid system to produce these effects. However, due to the dosage variability and the secondary effects associated with a lack of targeted action, their medical use is limited, creating the need for effective delivery systems.

Methodology

This systematic patent review on cannabis drug delivery systems was conducted using patents retrieved from the Espacenet database. The search employed the keywords “Cannabis” and “Delivery,” along with the IPC classification code A61, to filter patents filed between 2012 and 2024. This initial search yielded 99 patents, which were further screened to identify 15 patents that met the inclusion criteria.

Results

Of the selected patents, most originated from the United States, followed by Canada, international patents (WIPO), and China. A notable increase in patent filings occurred in 2022, coinciding with the peak in scientific publications on the topic. This trend indicates a growing interest in the design of cannabis delivery systems.

Discussion

The historical importance and therapeutic potential of are well-documented, yet modern medical use remains restricted due to pharmacokinetic limitations. Delivery systems such as extracellular vesicles, microneedles, and emulsions have been developed to improve the bioavailability and stability of cannabinoids. Extracellular vesicles facilitate targeted, non-invasive delivery of cannabinoids to the central nervous system. Microneedles offer a painless method for transdermal administration, overcoming skin barrier limitations. Emulsions improve the solubility and bioavailability of lipophilic cannabinoids, making them suitable for various administration routes.

Conclusion

Since 2012, there has been considerable growth in patents and publications related to cannabis drug delivery systems, driven by the therapeutic potential of cannabinoids. Innovations in delivery systems like emulsions, microneedles, and extracellular vesicles aim to improve the pharmacokinetics and therapeutic efficacy of cannabis-derived compounds, representing a shift towards medical cannabis applications.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575343984250519051357
2025-05-29
2025-11-02
Loading full text...

Full text loading...

References

  1. BridgemanM.B. AbaziaD.T. Medicinal cannabis: History, pharmacology, and implications for the acute care setting.P&T2017423180188 28250701
    [Google Scholar]
  2. CrocqM.A. History of cannabis and the endocannabinoid system.Dialogues Clin. Neurosci.202022322322810.31887/DCNS.2020.22.3/mcrocq 33162765
    [Google Scholar]
  3. BalantM. GrasA. RuzM. VallèsJ. VitalesD. GarnatjeT. Traditional uses of Cannabis: An analysis of the cannuse database.J. Ethnopharmacol.202127911436210.1016/j.jep.2021.114362 34171396
    [Google Scholar]
  4. ZouS. KumarU. Cannabinoid receptors and the endocannabinoid system: Signaling and function in the central nervous system.Int. J. Mol. Sci.201819383310.3390/ijms19030833 29533978
    [Google Scholar]
  5. KumarA. P, N.; Kumar, M.; Jose, A.; Tomer, V.; Oz, E.; Proestos, C.; Zeng, M.; Elobeid, T.; K, S.; Oz, F. Major phytochemicals: Recent advances in health benefits and extraction method.Molecules202328288710.3390/molecules28020887 36677944
    [Google Scholar]
  6. GülckT. MøllerB.L. Phytocannabinoids: Origins and biosynthesis.Trends Plant Sci.20202510985100410.1016/j.tplants.2020.05.005 32646718
    [Google Scholar]
  7. Plancarte-SánchezR. MansillaA. los Reyes-PachecoD.V.A. Meneses-GonzálezF. Therapeutic applications based on cannabinoids action.Gac. Med. Mex.2019155310.24875/GMM.18004928 31219471
    [Google Scholar]
  8. HerbertA. HardyJ. Medicinal cannabis use in palliative care.Aust. J. Gen. Pract.202150636336810.31128/AJGP‑02‑21‑5831 34059839
    [Google Scholar]
  9. StellaB. BarattaF. PepaD.C. ArpiccoS. GastaldiD. DosioF. Cannabinoid formulations and delivery systems: Current and future options to treat pain.Drugs202181131513155710.1007/s40265‑021‑01579‑x 34480749
    [Google Scholar]
  10. Drug delivery systems.Bruschi, M.L., Ed.; Strategies to Modify the Drug Release from Pharmaceutical Systems; Woodhead Publishing: Sawston, Cambridge,20158719410.1016/B978‑0‑08‑100092‑2.00006‑0
    [Google Scholar]
  11. ThackerL. VuM. ForceR. ThackerA. AdamsA. A system and method enhanced cannabinoid effect delivery.Patent WO2018226899.2018
    [Google Scholar]
  12. ChouikratR. PaiementN. Advanced oral film formulations.Patent US2024139101.,2024
    [Google Scholar]
  13. HansenK. GraveK. Cannabinoid composition and method of sublingual, buccal and oral mucosa delivery.Patent US2022062360.2022
    [Google Scholar]
  14. KubbyS.W. Cannabis based compositions and methods of treating hypertension.Patent US10105343.2018
    [Google Scholar]
  15. AzariH. SchmittgenT. NassiriK.N. ReynoldsB. Cannabis plant derived extracellular vesicles and therapeutic methods using the same.Patent US20240242272024
    [Google Scholar]
  16. RhodesT. DuffeyD. Cannabis sativa derived formulation for transmucosal and transdermal delivery.Patent CA30609272020
    [Google Scholar]
  17. HonarikhezrbeigiS. SilverJ. Cannabis-based self-emulsifying product.Patent US20220543602022
    [Google Scholar]
  18. CooperN. Chewable composition and delivery pouch. Patent US2018177720.2018
    [Google Scholar]
  19. LiuS. HsiehP. Delivery of cannabis composition.Patent US20202223072020
    [Google Scholar]
  20. TwailN. LepineT. Encapsulation of cannabinoids.Patent US20232410052023
    [Google Scholar]
  21. RhodesT. DuffeyD. Method of using cannabinoids encapsulated in phospholipid carriers for transmucosal and transdermal administration.Patent US20214017662021
    [Google Scholar]
  22. QuD. LuY. ShiJ. Preposed cavitation type marihuana fat-soluble active matter soluble microneedle as well as preparation method and application thereof.Patent CN114225033.,2022
    [Google Scholar]
  23. SiurkusJ. The oleo gel composition and delivery system with active compounds from cannabis sativa and mentha arvensis for reduction of inflammation and pain in deep tissues.Patent US10918686.,2019
    [Google Scholar]
  24. RotundaAM. "Topical skin formulations and wound care products with integrated cbd delivery mechanisms".Patent US2021275441.2021
  25. MurphyB. Transdermal patch of a portable ultrasound-generating system for improved delivery of therapeutic agents and associated methods of treatment.Patent US2022087948.2022
    [Google Scholar]
  26. RobinsonL.A. Cannabis Chronicles.J. Calif. Dent. Assoc.2024521234806410.1080/19424396.2024.2348064
    [Google Scholar]
  27. McPartlandJ.M. Cannabis systematics at the levels of family, genus, and species.Cannabis Cannabinoid Res.20183120321210.1089/can.2018.0039 30426073
    [Google Scholar]
  28. HourfaneS. MechqoqH. BekkaliA.Y. RochaJ.M. AouadE.N. A comprehensive review on Cannabis sativa ethnobotany, phytochemistry, molecular docking and biological activities.Plants2023126124510.3390/plants12061245 36986932
    [Google Scholar]
  29. GonçalvesJ. RosadoT. SoaresS. SimãoA.Y. CarameloD. LuísÂ. FernándezN. BarrosoM. GallardoE. DuarteA.P. Cannabis and its secondary metabolites: Their use as therapeutic drugs, toxicological aspects, and analytical determination.Medicines2019613110.3390/medicines6010031 30813390
    [Google Scholar]
  30. LucasC.J. GalettisP. SchneiderJ. The pharmacokinetics and the pharmacodynamics of cannabinoids.Br. J. Clin. Pharmacol.201884112477248210.1111/bcp.13710 30001569
    [Google Scholar]
  31. WalkerD.K. The use of pharmacokinetic and pharmacodynamic data in the assessment of drug safety in early drug development.Br. J. Clin. Pharmacol.200458660160810.1111/j.1365‑2125.2004.02194.x 15563358
    [Google Scholar]
  32. ChayasirisobhonS. Mechanisms of action and pharmacokinetics of cannabis.Perm. J.20212511310.7812/TPP/19.200 33635755
    [Google Scholar]
  33. StasiłowiczA. TomalaA. PodolakI. Cielecka-PiontekJ. Cannabis sativa L. as a natural drug meeting the criteria of a multitarget approach to treatment.Int. J. Mol. Sci.202122277810.3390/ijms22020778 33466734
    [Google Scholar]
  34. ŚledzińskiP. Nowak-TerpiłowskaA. ZeylandJ. Cannabinoids in medicine: Cancer, immunity, and microbial diseases.Int. J. Mol. Sci.202022126310.3390/ijms22010263 33383838
    [Google Scholar]
  35. PacherP. BátkaiS. KunosG. The endocannabinoid system as an emerging target of pharmacotherapy.Pharmacol. Rev.200658338946210.1124/pr.58.3.2 16968947
    [Google Scholar]
  36. SokolajE. AssarehN. AndersonK. AubreyK.R. VaughanC.W. Cannabis constituents for chronic neuropathic pain; reconciling the clinical and animal evidence.J. Neurochem.2024168113685369810.1111/jnc.15964 37747128
    [Google Scholar]
  37. CooperZ.D. HaneyM. Actions of delta-9-tetrahydrocannabinol in cannabis: Relation to use, abuse, dependence.Int. Rev. Psychiatry200921210411210.1080/09540260902782752 19367504
    [Google Scholar]
  38. UritsI. GressK. CharipovaK. HabibK. LeeD. LeeC. JungJ.W. KassemH. CornettE. PaladiniA. VarrassiG. KayeA.D. ViswanathO. Use of cannabidiol (CBD) for the treatment of chronic pain.Baillieres. Best Pract. Res. Clin. Anaesthesiol.202034346347710.1016/j.bpa.2020.06.004 33004159
    [Google Scholar]
  39. MartínezV. Iriondo De-HondA. BorrelliF. CapassoR. CastilloD.M.D. AbaloR. Cannabidiol and other non-psychoactive cannabinoids for prevention and treatment of gastrointestinal disorders: Useful nutraceuticals?Int. J. Mol. Sci.2020219306710.3390/ijms21093067 32357565
    [Google Scholar]
  40. ZuardiW.A. AlexandreS. A critical review of the antiphyschotic effects of cannabidiol 30 years of translational investigation.Curr. Pharm. Des.201218325131514010.2174/138161212802884681 22716160
    [Google Scholar]
  41. AminM.R. AliD.W. Pharmacology of medical cannabis.Adv. Exp. Med. Biol.20191162115116510.1007/978‑3‑030‑21737‑2_8 31332738
    [Google Scholar]
  42. SimeiJ.L.Q. SouzaJ.D.R. PedrazziJ.F. GuimarãesF.S. CamposA.C. ZuardiA. HallakJ.E.C. CrippaJ.A.S. Research and clinical practice involving the use of cannabis products, with emphasis on cannabidiol: A narrative review.Pharmaceuticals202417121644164410.3390/ph17121644 39770486
    [Google Scholar]
  43. AlvaradoN.R.I. Martín del Campo SánchezR. SalcedoV.V. Therapeutic properties of cannabinoid drugs and marijuana in several disorders: A narrative review.Salud Ment.201740311111810.17711/SM.0185‑3325.2017.014
    [Google Scholar]
  44. DrugBank cannabidiol. 2022. Available from:https://go.drugbank.com/drugs/DB09061
  45. BlebeaN.M. PricopieA.I. VladR.A. HancuG. Phytocannabinoids: Exploring pharmacological profiles and their impact on therapeutical use.Int. J. Mol. Sci.2024258420410.3390/ijms25084204 38673788
    [Google Scholar]
  46. StoneN.L. EnglandT.J. O’SullivanS.E. Protective effects of cannabidivarin and cannabigerol on cells of the blood–brain barrier under ischemic conditions.Cannabis Cannabinoid Res.20216431532610.1089/can.2020.0159 33998890
    [Google Scholar]
  47. IannottiF.A. HillC.L. LeoA. AlhusainiA. SoubraneC. MazzarellaE. RussoE. WhalleyB.J. MarzoD.V. StephensG.J. Nonpsychotropic plant cannabinoids, cannabidivarin (CBDV) and cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) channels in vitro: Potential for the treatment of neuronal hyperexcitability.ACS Chem. Neurosci.20145111131114110.1021/cn5000524 25029033
    [Google Scholar]
  48. PalomaresB. Ruiz-PinoF. Garrido-RodríguezM. PradosE.M. Sánchez-GarridoM.A. VelascoI. VazquezM.J. NadalX. Ferreiro-VeraC. MorrugaresR. AppendinoG. CalzadoM.A. Tena-SempereM. MuñozE. Tetrahydrocannabinolic acid A (THCA-A) reduces adiposity and prevents metabolic disease caused by diet-induced obesity.Biochem. Pharmacol.2020171113693310.1016/j.bcp.2019.113693 31706843
    [Google Scholar]
  49. DawidowiczA.L. Olszowy-TomczykM. TypekR. CBG, CBD, Δ9-THC, CBN, CBGA, CBDA and Δ9-THCA as antioxidant agents and their intervention abilities in antioxidant action.Fitoterapia202115210491510.1016/j.fitote.2021.104915 33964342
    [Google Scholar]
  50. RockE.M. LimebeerC.L. ParkerL.A. Effect of cannabidiolic acid and Δ9-tetrahydrocannabinol on carrageenan-induced hyperalgesia and edema in a rodent model of inflammatory pain.Psychopharmacology 2018235113259327110.1007/s00213‑018‑5034‑1 30225659
    [Google Scholar]
  51. AndersonL.L. HeblinskiM. AbsalomN.L. HawkinsN.A. BowenM.T. BensonM.J. ZhangF. BahceciD. DoohanP.T. ChebibM. McGregorI.S. KearneyJ.A. ArnoldJ.C. Cannabigerolic acid, a major biosynthetic precursor molecule in cannabis, exhibits divergent effects on seizures in mouse models of epilepsy.Br. J. Pharmacol.2021178244826484110.1111/bph.15661 34384142
    [Google Scholar]
  52. DawidowiczA.L. TypekR. Olszowy-TomczykM. Natural vs. artificial cannabinoid oils: The comparison of their antioxidant activities.Eur. Food Res. Technol.2023249235936610.1007/s00217‑022‑04121‑9 36164439
    [Google Scholar]
  53. International narcotics control board. report of the international narcotics control board for vienna. 2022. Available from:https://www.incb.org/documents/Publications/AnnualReports/AR2023/Annual_Report/E_INCB_2023_1_eng.pdf
  54. SvrakicD.M. LustmanP.J. MallyaA. LynnT.A. FinneyR. SvrakicN.M. Legalization, decriminalization & medicinal use of cannabis: A scientific and public health perspective.Mo. Med.201210929098 22675784
    [Google Scholar]
  55. European monitoring centre for drugs and drug addiction. cannabis policy: Status and recent developments. Available from:https://www.emcdda.europa.eu/publications/topic-overviews/cannabis-policy/html_en#:~:text=Under%20international%20laws%2C%20cultivation%2C%20supply
  56. Europe, RAND Alternatives to profit-maximising commercial models of cannabis supply for non-medical use2023Available from: https://www.rand.org/pubs/research_reports/RRA2190-1.html
  57. OrensteinD.G. GlantzS.A. Cannabis legalization in state legislatures: Public health opportunity and risk.Marquette Law Rev.2020103413131400 34376874
    [Google Scholar]
  58. CDC. State medical cannabis laws. cannabis and public health. published february.2024Available from: https://www.cdc.gov/cannabis/about/state-medical-cannabis-laws.html
  59. National conference of state legislatures. state medical cannabis laws.2023Available from: https://www.ncsl.org/health/state-medical-cannabis-laws
  60. U.S. customs and border protection. did you know... marijuana was once a legal cross-border import? | u.s. customs and border protection. u.s. customs and protection border.2018Available from: https://www.cbp.gov/about/history/did-you-know/marijuana
  61. Health Canada. Government of Canada. Toward the legalization, regulation and restriction of access to marijuana: Discussion paper.2015Available from: https://www.canada.ca/en/health-canada/programs/consultation-toward-legalization-regulation-restriction-access-marijuana/discussion-paper-introduction.html
  62. World law group. 2020 global cannabis guide - china - news.2020Available from: https://www.theworldlawgroup.com/membership/news/2020-global-cannabis-guide-china
  63. EFPIA. The pharmaceutical industry in figures.2022Available from: https://www.efpia.eu/media/637143/the-pharmaceutical-industry-in-figures-2022.pdf
    [Google Scholar]
  64. BrandE.J. ZhaoZ. Cannabis in chinese medicine: Are some traditional indications referenced in ancient literature related to cannabinoids?Front. Pharmacol.2017810810810.3389/fphar.2017.00108 28344554
    [Google Scholar]
  65. LeachM. MacGregorH. ScoonesI. WilkinsonA. Post-pandemic transformations: How and why COVID-19 requires us to rethink development.World Dev.2021138110523310.1016/j.worlddev.2020.105233 33100478
    [Google Scholar]
  66. WuK. ZhangZ. Knowledge mapping of chronic insomnia: A bibliometric analysis (2000–2023).Sleep Breath.20242841499151210.1007/s11325‑024‑03049‑6 38730203
    [Google Scholar]
  67. KumazawaR. Patenting in the pharmaceutical industry.In: Intellectual Property Rights.UKIntechOpen201710.5772/68102
    [Google Scholar]
  68. EzikeT.C. OkpalaU.S. OnojaU.L. NwikeC.P. EzeakoE.C. OkparaO.J. OkoroaforC.C. EzeS.C. KaluO.L. OdohE.C. NwadikeU.G. OgbodoJ.O. UmehB.U. OssaiE.C. NwangumaB.C. Advances in drug delivery systems, challenges and future directions.Heliyon202396e17488e1748810.1016/j.heliyon.2023.e17488 37416680
    [Google Scholar]
  69. GlassmanP.M. MuzykantovV.R. Pharmacokinetic and pharmacodynamic properties of drug delivery systems.J. Pharmacol. Exp. Ther.2019370357058010.1124/jpet.119.257113 30837281
    [Google Scholar]
  70. AdepuS. RamakrishnaS. Controlled drug delivery systems: Current status and future directions.Molecules20212619590510.3390/molecules26195905 34641447
    [Google Scholar]
  71. HeG. LiuJ. YuY. WeiS. PengX. YangL. LiH. Revisiting the advances and challenges in the clinical applications of extracellular vesicles in cancer.Cancer Lett.2024593216960010.1016/j.canlet.2024.216960 38762194
    [Google Scholar]
  72. Escudé Martinez de CastillaP. TongL. HuangC. SofiasA.M. PastorinG. ChenX. StormG. SchiffelersR.M. WangJ.W. Extracellular vesicles as a drug delivery system: A systematic review of preclinical studies.Adv. Drug Deliv. Rev.202117517511380110.1016/j.addr.2021.05.011 34015418
    [Google Scholar]
  73. Yáñez-MóM. SiljanderP.R.M. AndreuZ. ZavecB.A. BorràsF.E. BuzasE.I. BuzasK. CasalE. CappelloF. CarvalhoJ. ColásE. Cordeiro-da SilvaA. FaisS. Falcon-PerezJ.M. GhobrialI.M. GiebelB. GimonaM. GranerM. GurselI. GurselM. HeegaardN.H.H. HendrixA. KierulfP. KokubunK. KosanovicM. Kralj-IglicV. Krämer-AlbersE.M. LaitinenS. LässerC. LenerT. LigetiE. LinēA. LippsG. LlorenteA. LötvallJ. Manček-KeberM. MarcillaA. MittelbrunnM. NazarenkoI. Nolte-’t HoenE.N.M. NymanT.A. O’DriscollL. OlivanM. OliveiraC. PállingerÉ. PortilloD.H.A. ReventósJ. RigauM. RohdeE. SammarM. Sánchez-MadridF. SantarémN. SchallmoserK. OstenfeldS.M. StoorvogelW. StukeljR. Van der GreinS.G. VasconcelosH.M. WaubenM.H.M. WeverD.O. Biological properties of extracellular vesicles and their physiological functions.J. Extracell. Vesicles2015412706610.3402/jev.v4.27066 25979354
    [Google Scholar]
  74. KumarM.A. BabaS.K. SadidaH.Q. MarzooqiS.A. JerobinJ. AltemaniF.H. AlgehainyN. AlanaziM.A. Abou-SamraA.B. KumarR. Al-Shabeeb AkilA.S. MachaM.A. MirR. BhatA.A. Extracellular vesicles as tools and targets in therapy for diseases.Signal Transduct. Target. Ther.2024912710.1038/s41392‑024‑01735‑1 38311623
    [Google Scholar]
  75. BrezginS. DanilikO. YudaevaA. KachanovA. KostyushevaA. KarandashovI. PonomarevaN. ZamyatninA.A.Jr ParodiA. ChulanovV. KostyushevD. Basic guide for approaching drug delivery with extracellular vesicles.Int. J. Mol. Sci.202425191040110.3390/ijms251910401 39408730
    [Google Scholar]
  76. LianM.Q. ChngW.H. LiangJ. YeoH.Q. LeeC.K. BelaidM. TollemetoM. WackerM.G. CzarnyB. PastorinG. Plant‐derived extracellular vesicles: Recent advancements and current challenges on their use for biomedical applications.J. Extracell. Vesicles202211121228310.1002/jev2.12283 36519808
    [Google Scholar]
  77. PrausnitzM.R. LangerR. Transdermal drug delivery.Nat. Biotechnol.200826111261126810.1038/nbt.1504 18997767
    [Google Scholar]
  78. PierreR.M. RossettiF. Microneedle-based drug delivery systems for transdermal route.Curr. Drug Targets201415328129110.2174/13894501113146660232 24144208
    [Google Scholar]
  79. DharadharS. MajumdarA. DhobleS. PatravaleV. Microneedles for transdermal drug delivery: A systematic review.Drug Dev. Ind. Pharm.201945218820110.1080/03639045.2018.1539497 30348022
    [Google Scholar]
  80. TucakA. SirbubaloM. HindijaL. RahićO. HadžiabdićJ. MuhamedagićK. ČekićA. VranićE. Microneedles: Characteristics, materials, production methods and commercial development.Micromachines2020111196110.3390/mi11110961 33121041
    [Google Scholar]
  81. OliveiraC. TeixeiraJ.A. OliveiraN. FerreiraS. BotelhoC.M. Microneedles’ device: Design, fabrication, and applications.Macromol.20244232035510.3390/macromol4020019
    [Google Scholar]
  82. DíezN. SevillaM. FuertesA.B. Synthesis strategies of templated porous carbons beyond the silica nanocasting technique.Carbon202117845147610.1016/j.carbon.2021.03.029
    [Google Scholar]
  83. WangZ. YuanB. HuangY. CaoJ. WangY. ChengX. Progress in experimental investigations on evaporation characteristics of a fuel droplet.Fuel Process. Technol.202223110724310.1016/j.fuproc.2022.107243
    [Google Scholar]
  84. ZhuQ. PanY. JiaX. LiJ. ZhangM. YinL. Review on the stability mechanism and application of water‐in‐oil emulsions encapsulating various additives.Compr. Rev. Food Sci. Food Saf.20191861660167510.1111/1541‑4337.12482 33336953
    [Google Scholar]
  85. DavidM.N.V. AkhondiH. Emulsions. [Updated 2023 Jul 30 In: StatPearls [Internet Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from:https://www.ncbi.nlm.nih.gov/books/NBK559084/
    [Google Scholar]
  86. McClementsD.J. Biopolymers in food emulsions.In Modern biopolymer science200912916610.1016/B978‑0‑12‑374195‑0.00004‑5
    [Google Scholar]
  87. Stasiłowicz-KrzemieńA. SzulcP. Cielecka-PiontekJ. Co-dispersion delivery systems with solubilizing carriers improving the solubility and permeability of cannabinoids (cannabidiol, cannabidiolic acid, and cannabichromene) from cannabis sativa (henola variety) inflorescences.Pharmaceutics20231592280228010.3390/pharmaceutics15092280 37765249
    [Google Scholar]
  88. HossainK.R. AlghalayiniA. ValenzuelaS.M. Current challenges and opportunities for improved cannabidiol solubility.Int. J. Mol. Sci.20232419145141451410.3390/ijms241914514 37833962
    [Google Scholar]
  89. FinnD.P. HaroutounianS. HohmannA.G. KraneE. SolimanN. RiceA.S.C. Cannabinoids, the endocannabinoid system, and pain: A review of preclinical studies.Pain20211621Suppl. 1S5S2510.1097/j.pain.0000000000002268 33729211
    [Google Scholar]
  90. BruniN. PepaD.C. Oliaro-BossoS. PessioneE. GastaldiD. DosioF. Cannabinoid delivery systems for pain and inflammation treatment.Molecules20182310247810.3390/molecules23102478 30262735
    [Google Scholar]
  91. KrstićM MedarevićĐ ĐurišJ IbrićS. Chapter 12 - Selfnanoemulsifying drug delivery systems (SNEDDS) and selfmicroemulsifying drug delivery systems (SMEDDS) as lipid nanocarriers for improving dissolution rate and bioavailability of poorly soluble drugs. Lipid Nanoca. Drug Targ., , 473-508.10.1016/B978‑0‑12‑813687‑4.00012‑8
  92. SandmeierM. HoengJ. JensenS.S. NikolajsenN.G. BruunZ.H. ToD. RicciF. SchifferleM. Bernkop-SchnürchA. Oral formulations for highly lipophilic drugs: Impact of surface decoration on the efficacy of self-emulsifying drug delivery systems. J. Colloid Interface Sci.,2025677Pt A1108111910.1016/j.jcis.2024.07.233 39142152
    [Google Scholar]
  93. RibeiroL. IndP.W. Marijuana and the lung: Hysteria or cause for concern?Breathe201814319620510.1183/20734735.020418 30186517
    [Google Scholar]
  94. SullivanN. ElzingaS. RaberJ.C. Determination of pesticide residues in cannabis smoke.J. Toxicol.201320131610.1155/2013/378168 23737769
    [Google Scholar]
  95. SpindleT.R. Bonn-MillerM.O. VandreyR. Changing landscape of cannabis: Novel products, formulations, and methods of administration.Curr. Opin. Psychol.2019309810210.1016/j.copsyc.2019.04.002 31071592
    [Google Scholar]
  96. NeffS. DrakeM.G. SlatoreC.G. BurnhamE. Inhaled Marijuana and the Lungs.Am. J. Respir. Crit. Care Med.202120459P1010.1164/rccm.2044P9 34499025
    [Google Scholar]
  97. U.S. food and Drug Administration. FDA approves first drug comprised of an active ingredient derived from marijuana to treat rare, severe forms of epilepsy.2018Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-first-drug-comprised-active-ingredient-derived-marijuana-treat-rare-severe-forms
  98. Pérez-AcevedoA.P. PacificiR. MannocchiG. GottardiM. PoyatosL. PapaseitE. Pérez-MañáC. MartinS. BusardòF.P. PichiniS. FarréM. Disposition of cannabinoids and their metabolites in serum, oral fluid, sweat patch and urine from healthy individuals treated with pharmaceutical preparations of medical cannabis.Phytother. Res.20213531646165710.1002/ptr.6931 33155722
    [Google Scholar]
  99. PichiniS. MalacaS. GottardiM. Pérez-AcevedoA.P. PapaseitE. Perez-MañaC. FarréM. PacificiR. TagliabracciA. MannocchiG. BusardòF.P. UHPLC-MS/MS analysis of cannabidiol metabolites in serum and urine samples. Application to an individual treated with medical cannabis.Talanta2021223Pt 212177210.1016/j.talanta.2020.121772 33298281
    [Google Scholar]
  100. HannonM.B. DeaboldK.A. TalsmaB.N. LyubimovA. IqbalA. ZakharovA. GambleL.J. WakshlagJ.J. Serum cannabidiol, tetrahydrocannabinol (THC), and their native acid derivatives after transdermal application of a low‐THC Cannabis sativa extract in beagles.J. Vet. Pharmacol. Ther.202043550851110.1111/jvp.12896 32735381
    [Google Scholar]
  101. AraújoM. AlmeidaM.B. AraújoL.L.N. The cannabinoids mechanism of action: An overview.Br. J. Pain2023610911310.5935/2595‑0118.20230028‑en
    [Google Scholar]
  102. CoelhoM.P. DuarteP. CaladoM. AlmeidaA.J. ReisC.P. GasparM.M. The current role of cannabis and cannabinoids in health: A comprehensive review of their therapeutic potential.Life Sci.202332912183812183810.1016/j.lfs.2023.121838
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575343984250519051357
Loading
/content/journals/mrmc/10.2174/0113895575343984250519051357
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test