Skip to content
2000
Volume 25, Issue 10
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Pancreatic cancer (PCa) has a high mortality rate, and early and precision detection is vital to improve the survival rate of PCa. However, current imaging modalities such as ultrasound, CT, MRI, and 18F-FDG PET/CT are limited in diagnosing distant metastatic lesions and specific visualization. In recent years, small molecule tracers targeting tumor stroma or antigens have made significant progress in preclinical applications for preoperative PCa diagnosis and image-guided intraoperative resection. Tracers targeting integrins (ab) in tumor stroma and NTR1 in tumor antigens have been undergoing clinical safety validation. This review summarized small-molecule radioactive probes targeting tumor stroma or antigens in PCa, evaluated their imaging characteristics, clinical potential, and the advantages of multi-targeted probe combinations. Additionally, it explored the potential of novel probes for fluorescence imaging-guided intraoperative resection.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575375382250408143606
2025-04-16
2025-09-14
Loading full text...

Full text loading...

References

  1. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.2183438572751
    [Google Scholar]
  2. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.2170835020204
    [Google Scholar]
  3. SharmaC. EltawilK.M. RenfrewP.D. WalshM.J. MolinariM. Advances in diagnosis, treatment and palliation of pancreatic carcinoma: 1990-2010.World J. Gastroenterol.201117786789710.3748/wjg.v17.i7.86721412497
    [Google Scholar]
  4. JajodiaA. WangA. AlabousiM. WilksC. KulkarniA. PolD.V.C.B. MRI vs. CT for pancreatic adenocarcinoma vascular invasion: Comparative diagnostic test accuracy systematic review and meta-analysis.Eur. Radiol.202333106883689110.1007/s00330‑023‑09659‑037083741
    [Google Scholar]
  5. ScheufeleF. HartmannD. FriessH. Treatment of pancreatic cancer—neoadjuvant treatment in borderline resectable/locally advanced pancreatic cancer.Transl. Gastroenterol. Hepatol.201943210.21037/tgh.2019.04.0931231699
    [Google Scholar]
  6. SaiyinH. Ardito-AbrahamC.M. WuY. WeiY. FangY. HanX. LiJ. ZhouP. YiQ. MaitraA. LiuJ.O. TuvesonD.A. LouW. YuL. Identification of novel vascular projections with cellular trafficking abilities on the microvasculature of pancreatic ductal adenocarcinoma.J. Pathol.2015236214215410.1002/path.450625561062
    [Google Scholar]
  7. TagliabueL. SoleD.A. Appropriate use of positron emission tomography with [18F]fluorodeoxyglucose for staging of oncology patients.Eur. J. Intern. Med.201425161110.1016/j.ejim.2013.06.01223910561
    [Google Scholar]
  8. LiG. LiuT. ZhengJ. KangW. XuJ. GaoZ. MaJ. Untypical autoimmune pancreatitis and pancreatic cancer: Differential diagnosis experiences extracted from misdiagnose of two cases.Orphanet J. Rare Dis.201914124510.1186/s13023‑019‑1217‑z31699117
    [Google Scholar]
  9. JoyceJ.A. Therapeutic targeting of the tumor microenvironment.Cancer Cell.20057651352010.1016/j.ccr.2005.05.02415950901
    [Google Scholar]
  10. UiT. UedaM. HigakiY. KaminoS. SanoK. KimuraH. SajiH. EnomotoS. Development and characterization of a 68Ga-labeled A20FMDV2 peptide probe for the PET imaging of αvβ6 integrin-positive pancreatic ductal adenocarcinoma.Bioorg. Med. Chem.202028111518910.1016/j.bmc.2019.11518931740201
    [Google Scholar]
  11. FengX. WangY. LuD. XuX. ZhouX. ZhangH. ZhangT. ZhuH. YangZ. WangF. LiN. LiuZ. Clinical translation of a 68 ga-labeled integrin α v β 6 –targeting cyclic radiotracer for PET imaging of pancreatic cancer.J. Nucl. Med.202061101461146710.2967/jnumed.119.23734732086242
    [Google Scholar]
  12. GangulyT. BauerN. DavisR.A. FosterC.C. HarrisR.E. HausnerS.H. RoncaliE. TangS.Y. SutcliffeJ.L. Preclinical evaluation of 68 Ga- and 177 lu-labeled integrin α v β 6 -targeting radiotheranostic peptides.J. Nucl. Med.202364463964410.2967/jnumed.122.26474936207137
    [Google Scholar]
  13. NakamotoR. FerriV. DuanH. HatamiN. GoelM. RosenbergJ. KimuraR. WardakM. HaywoodT. KellowR. ShenB. ParkW. IagaruA. GambhirS.S. Pilot-phase PET/CT study targeting integrin αvβ6 in pancreatic cancer patients using the cystine-knot peptide–based 18F-FP-R01-MG-F2.Eur. J. Nucl. Med. Mol. Imaging202250118419310.1007/s00259‑021‑05595‑734729628
    [Google Scholar]
  14. LiH. PengW. ZhenZ. ZhangW. LiaoS. WuX. WangL. XuanA. GaoY. XuJ. Integrin αvβ3 and EGFR dual-targeted [64Cu]Cu-NOTA-RGD-GE11 heterodimer for PET imaging in pancreatic cancer mouse model.Nucl. Med. Biol.2023124-12510836410.1016/j.nucmedbio.2023.10836437591041
    [Google Scholar]
  15. SunL. GaiY. LiZ. LiH. LiJ. MuschlerJ. KangR. TangD. ZengD. Heterodimeric RGD-NGR PET tracer for the early detection of pancreatic cancer.Mol. Imaging Biol.202224458058910.1007/s11307‑022‑01704‑635229260
    [Google Scholar]
  16. JiangY. LongY. JiH. QiaoP. LiuQ. XiaX. QinC. ZhangY. LanX. GaiY. Development and evaluation of a peptide heterodimeric tracer targeting CXCR4 and integrin αvβ3 for pancreatic cancer imaging.Pharmaceutics2022149179110.3390/pharmaceutics1409179136145541
    [Google Scholar]
  17. LiY. ZhaoH. HuS. ZhangX. ChenH. ZhengQ. PET imaging with [68Ga]-labeled TGFβ-targeting peptide in a mouse PANC-1 tumor model.Front. Oncol.202313122828110.3389/fonc.2023.122828137781175
    [Google Scholar]
  18. ZhangX. DeteringL. SultanD. LuehmannH. LiL. HeoG.S. ZhangX. LouL. GriersonP.M. GrecoS. RuzinovaM. LaforestR. DehdashtiF. LimK.H. LiuY. CC chemokine receptor 2-targeting copper nanoparticles for positron emission tomography-guided delivery of gemcitabine for pancreatic ductal adenocarcinoma.ACS Nano20211511186119810.1021/acsnano.0c0818533406361
    [Google Scholar]
  19. CohenA.S. LiJ. HightM.R. McKinleyE. FuA. PayneA. LiuY. ZhangD. XieQ. BaiM. AyersG.D. TantawyM.N. SmithJ.A. RevettaF. WashingtonM.K. ShiC. MerchantN. ManningH.C. TSPO-targeted PET and optical probes for the detection and localization of premalignant and malignant pancreatic lesions.Clin. Cancer Res.202026225914592510.1158/1078‑0432.CCR‑20‑121432933996
    [Google Scholar]
  20. AghevlianS. WuB. RaieM.N. TumbaleS.K. KareA.J. SeoJ.W. FerraraK.W. Pre-clinical evaluation of immunoPET imaging using agonist CD40 monoclonal antibody in pancreatic tumor-bearing mice.Nucl. Med. Biol.20219881710.1016/j.nucmedbio.2021.04.00133962357
    [Google Scholar]
  21. KryzaT. KhanT. PuttickS. LiC. SokolowskiK.A. TseB.W.C. CudaT. LyonsN. GoughM. YinJ. ParkinA. DeryuginaE.I. QuigleyJ.P. LawR.H.P. WhisstockJ.C. RiddellA.D. BarbourA.P. WyldD.K. ThomasP.A. RoseS. SnellC.E. PajicM. HeY. HooperJ.D. Effective targeting of intact and proteolysed CDCP1 for imaging and treatment of pancreatic ductal adenocarcinoma.Theranostics20201094116413310.7150/thno.4358932226543
    [Google Scholar]
  22. EsfahaniS.A. MaH. KrishnaS. ShuvaevS. SabbaghM. DefflerC. RotileN. Weigand-WhittierJ. ZhouI.Y. CatanaC. CatalanoO.A. TingD.T. HeidariP. AbstonE. LanutiM. BolandG.M. PathakP. RobertsH. TanabeK.K. QadanM. CastilloC.F. ShihA. ParikhA.R. WeekesC.D. HongT.S. CaravanP. Collagen type I PET/MRI enables evaluation of treatment response in pancreatic cancer in pre-clinical and first-in-human translational studies.Theranostics202414155745576110.7150/thno.10011639346545
    [Google Scholar]
  23. PengT. WenJ. HuangG. ZhaoH. LiuJ. First-generation high-affinity ST14 radiopharmaceutical: Design, synthesis, and preclinical PET imaging evaluation for pancreatic cancer detection.Bioorg. Chem.202515410808510.1016/j.bioorg.2024.10808539721147
    [Google Scholar]
  24. NiuJ. LiZ. The roles of integrin αvβ6 in cancer.Cancer Lett.201740312813710.1016/j.canlet.2017.06.01228634043
    [Google Scholar]
  25. TummersW.S. Farina-SarasquetaA. BoonstraM.C. PrevooH.A. SierC.F. MieogJ.S. MorreauJ. EijckV.C.H. KuppenP.J. VeldeD.V.C.J. BonsingB.A. VahrmeijerA.L. SwijnenburgR.J. Selection of optimal molecular targets for tumor-specific imaging in pancreatic ductal adenocarcinoma.Oncotarget2017834568165682810.18632/oncotarget.1823228915633
    [Google Scholar]
  26. Trajkovic-ArsicM. MohajeraniP. SarantopoulosA. KaliderisE. SteigerK. EspositoI. MaX. ThemelisG. BurtonN. MichalskiC.W. KleeffJ. StanglS. BeerA.J. PohleK. WesterH.J. SchmidR.M. BrarenR. NtziachristosV. SivekeJ.T. Multimodal molecular imaging of integrin αvβ3 for in vivo detection of pancreatic cancer.J. Nucl. Med.201455344645110.2967/jnumed.113.12961924549287
    [Google Scholar]
  27. CalonA. EspinetE. Palomo-PonceS. TaurielloD.V.F. IglesiasM. CéspedesM.V. SevillanoM. NadalC. JungP. ZhangX.H.F. ByromD. RieraA. RossellD. ManguesR. MassaguéJ. SanchoE. BatlleE. Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation.Cancer Cell.201222557158410.1016/j.ccr.2012.08.01323153532
    [Google Scholar]
  28. BianchiA. GervasiM.E. BakinA. Role of β5-integrin in epithelial-mesenchymal transition in response to TGF-β.Cell. Cycle2010981647165910.4161/cc.9.8.1151720404485
    [Google Scholar]
  29. GoumansM.J. ValdimarsdottirG. ItohS. LebrinF. LarssonJ. MummeryC. KarlssonS. DijkeT.P. Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFbeta/ALK5 signaling.Mol. Cell.200312481782810.1016/S1097‑2765(03)00386‑114580334
    [Google Scholar]
  30. GorelikL. FlavellR.A. Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells.Nat. Med.20017101118112210.1038/nm1001‑111811590434
    [Google Scholar]
  31. NyweningT.M. BeltB.A. CullinanD.R. PanniR.Z. HanB.J. SanfordD.E. JacobsR.C. YeJ. PatelA.A. GillandersW.E. FieldsR.C. DeNardoD.G. HawkinsW.G. GoedegebuureP. LinehanD.C. Targeting both tumour-associated CXCR2 + neutrophils and CCR2 + macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma.Gut20186761112112310.1136/gutjnl‑2017‑31373829196437
    [Google Scholar]
  32. SanfordD.E. BeltB.A. PanniR.Z. MayerA. DeshpandeA.D. CarpenterD. MitchemJ.B. Plambeck-SuessS.M. WorleyL.A. GoetzB.D. Wang-GillamA. EberleinT.J. DenardoD.G. GoedegebuureS.P. LinehanD.C. Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: A role for targeting the CCL2/CCR2 axis.Clin. Cancer Res.201319133404341510.1158/1078‑0432.CCR‑13‑052523653148
    [Google Scholar]
  33. GiatzakisC. PapadopoulosV. Differential utilization of the promoter of peripheral-type benzodiazepine receptor by steroidogenic versus nonsteroidogenic cell lines and the role of Sp1 and Sp3 in the regulation of basal activity.Endocrinology200414531113112310.1210/en.2003‑133014630713
    [Google Scholar]
  34. WongsoH. KurniawanA. SetiadiY. KusumaningrumC.E. WidyasariE.M. WibawaT.H.A. MahendraI. FebrianM.B. SriyaniM.E. HalimahI. DaruwatiI. GunawanR. AchmadA. NugrahaD.H. LesmanaR. NugrahaA.S. Translocator protein 18 kDa (TSPO): A promising molecular target for image-guided surgery of solid cancers.Adv. Pharm. Bull.20241418610438585455
    [Google Scholar]
  35. TangD. McKinleyE.T. HightM.R. UddinM.I. HarpJ.M. FuA. NickelsM.L. BuckJ.R. ManningH.C. Synthesis and structure-activity relationships of 5,6,7-substituted pyrazolopyrimidines: Discovery of a novel TSPO PET ligand for cancer imaging.J. Med. Chem.20135683429343310.1021/jm400187423521048
    [Google Scholar]
  36. KootenV.C. BanchereauJ. CD40-CD40 ligand.J. Leukoc. Biol.200067121710.1002/jlb.67.1.210647992
    [Google Scholar]
  37. HeS. ZhaoH. FeiM. WuY. WangL. ZhuX. LiD. Expression of the co-signaling molecules CD40-CD40L and their growth inhibitory effect on pancreatic cancer in vitro.Oncol. Rep.201228126226822552529
    [Google Scholar]
  38. RichardsD.M. SefrinJ.P. GieffersC. HillO. MerzC. Concepts for agonistic targeting of CD40 in immuno-oncology.Hum. Vaccin. Immunother.202016237738710.1080/21645515.2019.165374431403344
    [Google Scholar]
  39. HeY. HarringtonB.S. HooperJ.D. New crossroads for potential therapeutic intervention in cancer - intersections between CDCP1, EGFR family members and downstream signaling pathways.Oncoscience2016315810.18632/oncoscience.28626973855
    [Google Scholar]
  40. CasarB. RimannI. KatoH. ShattilS.J. QuigleyJ.P. DeryuginaE.I. In vivo cleaved CDCP1 promotes early tumor dissemination via complexing with activated β1 integrin and induction of FAK/PI3K/Akt motility signaling.Oncogene201433225526810.1038/onc.2012.54723208492
    [Google Scholar]
  41. MartinkoA.J. TruilletC. JulienO. DiazJ.E. HorlbeckM.A. WhiteleyG. BlonderJ. WeissmanJ.S. BandyopadhyayS. EvansM.J. WellsJ.A. Targeting RAS-driven human cancer cells with antibodies to upregulated and essential cell-surface proteins.eLife20187e3109810.7554/eLife.3109829359686
    [Google Scholar]
  42. ErstadD.J. SojoodiM. TaylorM.S. JordanV.C. FarrarC.T. AxtellA.L. RotileN.J. JonesC. Graham-O’ReganK.A. FerreiraD.S. MichelakosT. KontosF. ChawlaA. LiS. GhoshalS. ChenY.C.I. AroraG. HumbletV. DeshpandeV. QadanM. BardeesyN. FerroneC.R. LanutiM. TanabeK.K. CaravanP. FuchsB.C. Fibrotic response to neoadjuvant therapy predicts survival in pancreatic cancer and is measurable with collagen-targeted molecular MRI.Clin. Cancer Res.202026185007501810.1158/1078‑0432.CCR‑18‑135932611647
    [Google Scholar]
  43. MaH. EsfahaniS.A. KrishnaS. AtaeiniaB. ZhouI.Y. RotileN.J. Weigand-WhittierJ. BoiceA.T. LissA.S. TanabeK.K. CaravanP. Allysine-targeted molecular MRI enables early prediction of chemotherapy response in pancreatic cancer.Cancer Res.202484152549256010.1158/0008‑5472.CAN‑23‑354838759082
    [Google Scholar]
  44. ThomasD. RadhakrishnanP. Tumor-stromal crosstalk in pancreatic cancer and tissue fibrosis.Mol. Cancer20191811410.1186/s12943‑018‑0927‑530665410
    [Google Scholar]
  45. BuzzaM.S. Netzel-ArnettS. Shea-DonohueT. ZhaoA. LinC.Y. ListK. SzaboR. FasanoA. BuggeT.H. AntalisT.M. Membrane-anchored serine protease matriptase regulates epithelial barrier formation and permeability in the intestine.Proc. Natl. Acad. Sci. USA201010794200420510.1073/pnas.090392310720142489
    [Google Scholar]
  46. UhlandK. SiphosB. ArkonaC. SchusterM. PetriB. SteinmetzerP. MuellerF. SchweinitzA. SteinmetzerT. LochtD.V.A. Use of IHC and newly designed matriptase inhibitors to elucidate the role of matriptase in pancreatic ductal adenocarcinoma.Int. J. Oncol.200935234735719578749
    [Google Scholar]
  47. YaoH.P. ZhouY.Q. ZhangR. WangM.H. MSP–RON signalling in cancer: Pathogenesis and therapeutic potential.Nat. Rev. Cancer201313746648110.1038/nrc354523792360
    [Google Scholar]
  48. WangM. ZhangH. WangH. FengH. DengH. WuZ. LuH. LiZ. Development of [ 18 F]AlF-NOTA-NT as PET Agents of Neurotensin Receptor-1 Positive Pancreatic Cancer.Mol. Pharm.20181583093310010.1021/acs.molpharmaceut.8b0019229889537
    [Google Scholar]
  49. RenardE. DancerP.A. PortalC. DenatF. PrignonA. GoncalvesV. Design of bimodal ligands of neurotensin receptor 1 for positron emission tomography imaging and fluorescence-guided surgery of pancreatic cancer.J. Med. Chem.20206352426243310.1021/acs.jmedchem.9b0140731855417
    [Google Scholar]
  50. HodolicM. WuW.Y. ZhaoZ. YuF. VirgoliniI. WangF. Safety and tolerability of 68Ga-NT-20.3, a radiopharmaceutical for targeting neurotensin receptors, in patients with pancreatic ductal adenocarcinoma: The first in-human use.Eur. J. Nucl. Med. Mol. Imaging20214841229123410.1007/s00259‑020‑05045‑w33006657
    [Google Scholar]
  51. WangX. ZhangJ. WuH. LiY. ContiP.S. ChenK. PET imaging of Hsp90 expression in pancreatic cancer using a new 64Cu-labeled dimeric Sansalvamide A decapeptide.Amino Acids201850789790710.1007/s00726‑018‑2566‑y29691700
    [Google Scholar]
  52. WangX. ZhangJ. HanZ. MaL. LiY. 18 F-labeled dimer-sansalvamide a cyclodecapeptide: A novel diagnostic probe to discriminate pancreatic cancer from inflammation in a nude mice model.J. Cancer20221361848185810.7150/jca.6971035399736
    [Google Scholar]
  53. WangX. HanZ. ZhangJ. ChenM. MengW. Development and preclinical evaluation of 18 f-labeled PEGylated sansalvamide a decapeptide for noninvasive evaluation of hsp90 status in pancreas cancer.Mol. Pharm.202421105238524610.1021/acs.molpharmaceut.4c0064339316366
    [Google Scholar]
  54. WangH. LiD. LiuS. LiuR. YuanH. KrasnoperovV. ShanH. ContiP.S. GillP.S. LiZ. Small-Animal PET imaging of pancreatic cancer xenografts using a 64Cu-labeled monoclonal antibody, mab159.J. Nucl. Med.201556690891310.2967/jnumed.115.15581225908833
    [Google Scholar]
  55. KurodaY. OdaT. ShimomuraO. LouphrasitthipholP. MathisB.J. TatenoH. HatanoK. Novel positron emission tomography imaging targeting cell surface glycans for pancreatic cancer: 18 F‐labeled rBC2LCN lectin.Cancer Sci.202311483364337310.1111/cas.1584637203465
    [Google Scholar]
  56. Viola-VillegasN.T. RiceS.L. CarlinS. WuX. EvansM.J. SevakK.K. DrobjnakM. RagupathiG. SawadaR. ScholzW.W. LivingstonP.O. LewisJ.S. Applying PET to broaden the diagnostic utility of the clinically validated CA19.9 serum biomarker for oncology.J. Nucl. Med.201354111876188210.2967/jnumed.113.11986724029655
    [Google Scholar]
  57. LohrmannC. O’ReillyE.M. O’DonoghueJ.A. Pandit-TaskarN. CarrasquilloJ.A. LyashchenkoS.K. RuanS. TengR. ScholzW. MaffuidP.W. LewisJ.S. WeberW.A. Retooling a blood-based biomarker: Phase i assessment of the high-affinity CA19-9 antibody humab-5B1 for immuno-PET imaging of pancreatic cancer.Clin. Cancer Res.201925237014702310.1158/1078‑0432.CCR‑18‑366731540979
    [Google Scholar]
  58. HenryK.E. ShafferT.M. MackK.N. RingJ. OgiralaA. Klein-ScoryS. Eilert-MicusC. SchmiegelW. BrachtT. SitekB. ClyneM. ReidC.J. SiposB. LewisJ.S. KalthoffH. GrimmJ. Exploiting the MUC5AC antigen for noninvasive identification of pancreatic cancer.J. Nucl. Med.202162101384139010.2967/jnumed.120.25677633712530
    [Google Scholar]
  59. KongY. XieF. ZhangZ. WangS. ZhangY. DiY. ZhouZ. JiangD. LiJ. HuangQ. WangJ. LiX. PanZ. NiR. GuanY. Evaluation of novel anti-CEACAM6 antibody-based conjugates for radioimmunotheranostics of pancreatic ductal adenocarcinoma.Eur. Radiol.202333107077708810.1007/s00330‑023‑09679‑w37166496
    [Google Scholar]
  60. MatsumotoH. WatabeT. IgarashiC. TachibanaT. HiharaF. WakiA. ZhangM.R. TashimaH. YamayaT. OoeK. ShimosegawaE. HatazawaJ. YoshidaS. NaitoK. KuriharaH. UenoM. ItoK. HigashiT. YoshiiY. Evaluation of 64Cu-labeled new anti-EGFR Antibody ncab001 with intraperitoneal injection for early PET diagnosis of pancreatic cancer in orthotopic tumor-xenografted mice and nonhuman primates.Pharmaceuticals2021141095010.3390/ph1410095034681174
    [Google Scholar]
  61. MatsumotoH. IgarashiC. TachibanaT. HiharaF. ShinadaM. WakiA. YoshidaS. NaitoK. KuriharaH. UenoM. ItoK. HigashiT. YoshiiY. Preclinical safety evaluation of intraperitoneally administered Cu-conjugated anti-egfr antibody NCAB001 for the early diagnosis of pancreatic cancer using PET.Pharmaceutics2022149192810.3390/pharmaceutics1409192836145676
    [Google Scholar]
  62. ChenW. LiM. YounisM.H. BarnhartT.E. JiangD. SunT. LangJ.M. EngleJ.W. ZhouM. CaiW. ImmunoPET of trophoblast cell-surface antigen 2 (Trop-2) expression in pancreatic cancer.Eur. J. Nucl. Med. Mol. Imaging202249386187010.1007/s00259‑021‑05563‑134519889
    [Google Scholar]
  63. LiC. LiuJ. YangX. YangQ. HuangW. ZhangM. ZhouD. WangR. GongJ. MiaoQ. KangL. YangJ. Theranostic application of 64Cu/177Lu-labeled anti-Trop2 monoclonal antibody in pancreatic cancer tumor models.Eur. J. Nucl. Med. Mol. Imaging202250116818310.1007/s00259‑022‑05954‑y36063202
    [Google Scholar]
  64. ChanC.Y. ChenZ. DestroG. VealM. LauD. O’NeillE. DiasG. MosleyM. KersemansV. GuibbalF. GouverneurV. CornelissenB. Imaging PARP with [18F]rucaparib in pancreatic cancer models.Eur. J. Nucl. Med. Mol. Imaging202249113668367810.1007/s00259‑022‑05835‑435614267
    [Google Scholar]
  65. OtaruS. PaulusA. ImlimthanS. KuurneI. VirtanenH. LiljenbäckH. TolvanenT. AuchynnikavaT. RoivainenA. HelariuttaK. SarparantaM. AiraksinenA.J. Development of [ 18 F]AmBF 3 tetrazine for radiolabeling of peptides: Preclinical evaluation and pet imaging of [ 18 F]AmBF 3 -PEG 7 -Tyr 3 -octreotide in an ar42j pancreatic carcinoma model.Bioconjug. Chem.20223371393140410.1021/acs.bioconjchem.2c0023135709482
    [Google Scholar]
  66. MijatovicT. GaillyP. MathieuV. NèveD.N. YeatonP. KissR. DecaesteckerC. Neurotensin is a versatile modulator of in vitro human pancreatic ductal adenocarcinoma cell (PDAC) migration.Cell. Oncol.200729431532617641415
    [Google Scholar]
  67. OlszewskiU. HamiltonG. Neurotensin signaling induces intracellular alkalinization and interleukin‐8 expression in human pancreatic cancer cells.Mol. Oncol.20093320421310.1016/j.molonc.2009.01.00619393580
    [Google Scholar]
  68. WangL. FriessH. ZhuZ. GraberH. ZimmermannA. KorcM. ReubiJ.C. BüchlerM.W. Neurotensin receptor-1 mRNA analysis in normal pancreas and pancreatic disease.Clin. Cancer Res.20006256657110690540
    [Google Scholar]
  69. KörnerM. WaserB. StrobelO. BüchlerM. ReubiJ.C. Neurotensin receptors in pancreatic ductal carcinomas.EJNMMI Res.2015511710.1186/s13550‑015‑0094‑225859423
    [Google Scholar]
  70. MiyataY. NakamotoH. NeckersL. The therapeutic target Hsp90 and cancer hallmarks.Curr. Pharm. Des.201319334736510.2174/13816121380414372522920906
    [Google Scholar]
  71. LangS.A. MoserC. GaumannA. KleinD. GlockzinG. PoppF.C. DahlkeM.H. PisoP. SchlittH.J. GeisslerE.K. StoeltzingO. Targeting heat shock protein 90 in pancreatic cancer impairs insulin-like growth factor-I receptor signaling, disrupts an interleukin-6/signal-transducer and activator of transcription 3/hypoxia-inducible factor-1alpha autocrine loop, and reduces orthotopic tumor growth.Clin. Cancer Res.200713216459646810.1158/1078‑0432.CCR‑07‑110417975158
    [Google Scholar]
  72. LiJ. LeeB. LeeA.S. Endoplasmic reticulum stress-induced apoptosis: Multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53.J. Biol. Chem.2006281117260727010.1074/jbc.M50986820016407291
    [Google Scholar]
  73. HendershotL.M. The ER function BiP is a master regulator of ER function.Mt. Sinai J. Med.200471528929715543429
    [Google Scholar]
  74. PinhoS.S. FigueiredoJ. CabralJ. CarvalhoS. DouradoJ. MagalhãesA. GärtnerF. MendonçaA.M. IsajiT. GuJ. CarneiroF. SerucaR. TaniguchiN. ReisC.A. E-cadherin and adherens-junctions stability in gastric carcinoma: Functional implications of glycosyltransferases involving N-glycan branching biosynthesis, N-acetylglucosaminyltransferases III and V.Biochim. Biophys. Acta, Gen. Subj.2013183032690270010.1016/j.bbagen.2012.10.02123671930
    [Google Scholar]
  75. PinhoS.S. ReisC.A. ParedesJ. MagalhãesA.M. FerreiraA.C. FigueiredoJ. XiaogangW. CarneiroF. GärtnerF. SerucaR. The role of N-acetylglucosaminyltransferase III and V in the post-transcriptional modifications of E-cadherin.Hum. Mol. Genet.200918142599260810.1093/hmg/ddp19419403558
    [Google Scholar]
  76. PinhoS.S. ReisC.A. Glycosylation in cancer: Mechanisms and clinical implications.Nat. Rev. Cancer201515954055510.1038/nrc398226289314
    [Google Scholar]
  77. UlmertD. EvansM.J. HollandJ.P. RiceS.L. WongvipatJ. PetterssonK. AbrahamssonP.A. ScardinoP.T. LarsonS.M. LiljaH. LewisJ.S. SawyersC.L. Imaging androgen receptor signaling with a radiotracer targeting free prostate-specific antigen.Cancer Discov.20122432032710.1158/2159‑8290.CD‑11‑031622576209
    [Google Scholar]
  78. KatoS. HokariR. CrawleyS. GumJ. AhnD.H. KimJ.W. KwonS.W. MiuraS. BasbaumC. KimY. MUC5AC mucin gene regulation in pancreatic cancer cells.Int. J. Oncol.2006291334010.3892/ijo.29.1.3316773182
    [Google Scholar]
  79. CameronS. LongD.L.M. Hazar-RethinamM. TopkasE. Endo-MunozL. CummingA. GannonO. GuminskiA. SaundersN. Focal overexpression of CEACAM6 contributes to enhanced tumourigenesis in head and neck cancer via suppression of apoptosis.Mol. Cancer20121117410.1186/1476‑4598‑11‑7423021083
    [Google Scholar]
  80. ChenJ. LiQ. AnY. LvN. XueX. WeiJ. JiangK. WuJ. GaoW. QianZ. DaiC. XuZ. MiaoY. CEACAM6 induces epithelial-mesenchymal transition and mediates invasion and metastasis in pancreatic cancer.Int. J. Oncol.201343387788510.3892/ijo.2013.201523857344
    [Google Scholar]
  81. BartonC.M. HallP.A. HughesC.M. GullickW.J. LemoineN.R. Transforming growth factor alpha and epidermal growth factor in human pancreatic cancer.J. Pathol.1991163211111610.1002/path.17116302061707959
    [Google Scholar]
  82. ChiramelJ. BackenA. PihlakR. LamarcaA. FrizzieroM. TariqN.A. HubnerR. ValleJ. AmirE. McNamaraM. Targeting the epidermal growth factor receptor in addition to chemotherapy in patients with advanced pancreatic cancer: A systematic review and meta-analysis.Int. J. Mol. Sci.201718590910.3390/ijms1805090928445400
    [Google Scholar]
  83. Oliveira-CunhaM. NewmanW.G. SiriwardenaA.K. Epidermal growth factor receptor in pancreatic cancer.Cancers (Basel)2011321513152610.3390/cancers302151324212772
    [Google Scholar]
  84. FongD. MoserP. KrammelC. GostnerJ.M. MargreiterR. MittererM. GastlG. SpizzoG. High expression of TROP2 correlates with poor prognosis in pancreatic cancer.Br. J. Cancer20089981290129510.1038/sj.bjc.660467718813308
    [Google Scholar]
  85. BignottiE. TodeschiniP. CalzaS. FalchettiM. RavaniniM. TassiR.A. RavaggiA. BandieraE. RomaniC. ZanottiL. TognonG. OdicinoF.E. FacchettiF. PecorelliS. SantinA.D. Trop-2 overexpression as an independent marker for poor overall survival in ovarian carcinoma patients.Eur. J. Cancer201046594495310.1016/j.ejca.2009.12.01920060709
    [Google Scholar]
  86. LütjeS. RijpkemaM. GoldenbergD.M. RijV.C.M. SharkeyR.M. McBrideW.J. FranssenG.M. FrielinkC. HelfrichW. OyenW.J.G. BoermanO.C. Pretargeted dual-modality immuno-SPECT and near-infrared fluorescence imaging for image-guided surgery of prostate cancer.Cancer Res.201474216216622310.1158/0008‑5472.CAN‑14‑059425252911
    [Google Scholar]
  87. ChanC.Y. TanK.V. CornelissenB. PARP Inhibitors in Cancer Diagnosis and Therapy.Clin. Cancer Res.20212761585159410.1158/1078‑0432.CCR‑20‑276633082213
    [Google Scholar]
  88. ShroffR.T. HendifarA. McWilliamsR.R. GevaR. EpelbaumR. RolfeL. Rucaparib monotherapy in patients with pancreatic cancer and a known deleterious brca mutation.JCO Precis. Oncol.20182018PO.17.0031610.1200/PO.17.00316
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575375382250408143606
Loading
/content/journals/mrmc/10.2174/0113895575375382250408143606
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test