Skip to content
2000
Volume 25, Issue 10
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Schiff bases are an important scaffold for designing drug development. They are characterized by having a carbon-nitrogen double bond. This double bond is synthesized by different synthetic schemes by both the aromatic and aliphatic chains. Bases inspired chemists due to their versatile importance in drug discovery and drug development. A large number of drugs are designed through the heterocyclic Schiff base moieties. This review highlighted the importance of Schiff bases concerning their bioactive importance in drug design. Moreover, amide-iminol tautomerism is a significant tool for the high biological importance of Schiff bases due to the presence of the C=N bond. Furthermore, the reported synthesized heterocyclic scaffolds Schiff bases have a wide range of biological importance. Due to this different biological importance, such as antimicrobial, anticonvulsant, analgesic, antioxidant, antimalarial, anti-inflammatory, anticancer, antidiabetic, and antileishmanial properties, the researcher has shown their interest by synthesizing different heterocyclic Schiff bases. In this review article, biologically active heterocyclic Schiff bases were reviewed intensively concerning drug design and drug development.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575320413250126041041
2025-06-01
2025-12-14
Loading full text...

Full text loading...

References

  1. ShivhareR. DanaoK. NandurkarD. RokdeV. IngoleA. WarokarA. MahajanU. Schiff Base as Multifaceted Bioactive Core.Schiff Base in Organic.IntechOpen2022
    [Google Scholar]
  2. OtuokereI.E. AsogwaB.C. NwadireF.C. AkohO.U. NwankwoC.I. EmoleP.O. Biological potentials of some schiff bases and their chelates: A short review.IntechOpen2024133
    [Google Scholar]
  3. ShahS.R. KatariyaK.D. ReddyD. Quinoline-1,3-oxazole hybrids: Syntheses, anticancer activity, and molecular docking studies.ChemistrySelect2020531097110210.1002/slct.201903763
    [Google Scholar]
  4. SykulaA.D.A. Schiff bases as important class of pharmacological agents.J. Pharm. Pharmacol.201869891009
    [Google Scholar]
  5. SubasiN.T. Overview of Schiff Bases.Schiff Base in Organic.IntechOpen2022
    [Google Scholar]
  6. SabahN. SadeqZ.E. AhmedH.S. MohammedM.K. Al-MahdawiA.S. Green synthesis methods of schiff base compounds: A review.Iraqi J. Nat. Sci. Nanotechnol.2024513856
    [Google Scholar]
  7. AlikhaniA. ForoughifarN. PasdarH. Lemon juice as a natural catalyse for synthesis of Shiff’s base: A green chemistry approach.Int. J. Adv. Eng. Res. Sci.201852616510.22161/ijaers.5.2.7
    [Google Scholar]
  8. BhattacharyyaNK DuttaD BiswasJ A review on synthesis and biological activity of Schiff bases.(IJC-B)2021601114781489
    [Google Scholar]
  9. FabbrizziL. Beauty in chemistry: Making artistic molecules with Schiff bases.J. Org. Chem.20208519122121222610.1021/acs.joc.0c0142032864964
    [Google Scholar]
  10. HameedA. al-RashidaM. UroosM. Abid AliS. KhanK.M. Schiff bases in medicinal chemistry: A patent review (2010-2015).Expert Opin. Ther. Pat.2017271637910.1080/13543776.2017.125275227774821
    [Google Scholar]
  11. ZafarW. SumrraS.H. ChohanZ.H. A review: Pharmacological aspects of metal based 1,2,4-triazole derived Schiff bases.Eur. J. Med. Chem.202122211360210.1016/j.ejmech.2021.11360234139626
    [Google Scholar]
  12. LiX. LiangJ. HuJ. MaL. YangJ. ZhangA. JingY. SongY. YangY. FengZ. DuZ. WangY. LuoT. HeW. ShuX. YangS. LiQ. MeiM. LuoS. LiaoK. ZhangY. HeY. HeY. XiaoM. PengB. Screening for primary aldosteronism on and off interfering medications.Endocrine202383117818710.1007/s12020‑023‑03520‑637796417
    [Google Scholar]
  13. LiW. WuJ. ZhangJ. WangJ. XiangD. LuoS. LiJ. LiuX. Puerarin-loaded PEG-PE micelles with enhanced anti-apoptotic effect and better pharmacokinetic profile.Drug Deliv.201825182783710.1080/10717544.2018.145576329587545
    [Google Scholar]
  14. ThamilarasanV. RevathiP. PraveenaA. KimJ. ChandramohanV. SengottuvelanN. Synthesis and characterization of dimeric Schiff base CoII, NiII, CuII complexes for their catalytic application of aerobic oxidation of alcohol and interaction with biomolecules.Inorg. Chim. Acta202050811962610.1016/j.ica.2020.119626
    [Google Scholar]
  15. KangL. GaoX.H. LiuH.R. MenX. WuH.N. CuiP.W. OldfieldE. YanJ.Y. Structure–activity relationship investigation of coumarin–chalcone hybrids with diverse side-chains as acetylcholinesterase and butyrylcholinesterase inhibitors.Mol. Divers.201822489390610.1007/s11030‑018‑9839‑y29934672
    [Google Scholar]
  16. LiH. ZhangC. FanR. SunH. XieH. LuoJ. WangY. LvH. TangT. The effects of Chuanxiong on the pharmacokinetics of warfarin in rats after biliary drainage.J. Ethnopharmacol.201619319311712410.1016/j.jep.2016.08.00527497635
    [Google Scholar]
  17. LargeronM. Protocols for the catalytic oxidation of primary amines to imines.Eur. J. Org. Chem.20132013245225523510.1002/ejoc.201300315
    [Google Scholar]
  18. BingP. ZhouW. TanS. Study on the mechanism of astragalus polysaccharide in treating pulmonary fibrosis based on “Drug-Target-Pathway” network.Front. Pharmacol.20221386506510.3389/fphar.2022.86506535370663
    [Google Scholar]
  19. SiwachA. VermaP.K. Synthesis and therapeutic potential of imidazole containing compounds.BMC Chem.20211511210.1186/s13065‑020‑00730‑133602331
    [Google Scholar]
  20. WangY. LiH. FanR. LvH. HuaS. XieH. TangT. LuoJ. XiaZ. The effects of ferulic acid on the pharmacokinetics of warfarin in rats after biliary drainage.Drug Des. Devel. Ther.2016102173218010.2147/DDDT.S10791727462142
    [Google Scholar]
  21. RajuS.K. VengadhajalaphathyP. SundaramR. PeriyasamyS. ChinnarajT. SekarP. Recent advances in biological applications of mannich bases — An overview.Int. J. Pharm. Chem. Anal.2023101152710.18231/j.ijpca.2023.004
    [Google Scholar]
  22. ZengM. GuoD. Fernández-VaroG. ZhangX. FuS. JuS. YangH. LiuX. WangY.C. ZengY. CasalsG. CasalsE. The integration of nanomedicine with traditional chinese medicine: Drug delivery of natural products and other opportunities.Mol. Pharm.202320288690410.1021/acs.molpharmaceut.2c0088236563052
    [Google Scholar]
  23. LiH. JiangY. WangY. LvH. XieH. YangG. GuoC. TangJ. TangT. The effects of warfarin on the pharmacokinetics of Senkyunolide I in a rat model of biliary drainage after administration of Chuanxiong.Front. Pharmacol.20189146110.3389/fphar.2018.0146130631279
    [Google Scholar]
  24. AguilarM.R. García-FernándezL. López-DonaireM.L. ParraF. RojoL. RodriguezG. Medical Devices and Preparative Medicine: Polymer Drug Application.Concise Encyclopedia of Biomedical Polymers and Polymeric Biomaterials.CRC Press201778982610.1081/E‑EBPPC‑120052267
    [Google Scholar]
  25. LouY. SongF. ChengM. HuY. ChaiY. HuQ. WangQ. ZhouH. BaoM. GuJ. ZhangY. Effects of the CYP3A inhibitors, voriconazole, itraconazole, and fluconazole on the pharmacokinetics of osimertinib in rats.PeerJ202311e1584410.7717/peerj.1584437581117
    [Google Scholar]
  26. ZhaoL. WengY. ZhouX. WuG. Aminoselenation and dehydroaromatization of cyclohexanones with anilines and diselenides.Org. Lett.202426224835483910.1021/acs.orglett.4c0179938809603
    [Google Scholar]
  27. GhanghasP. ChoudharyA. KumarD. PooniaK. Coordination metal complexes with Schiff bases: Useful pharmacophores with comprehensive biological applications.Inorg. Chem. Commun.202113010871010.1016/j.inoche.2021.108710
    [Google Scholar]
  28. BoulechfarC. FerkousH. DelimiA. DjedouaniA. KahloucheA. BoubliaA. DarwishA.S. LemaouiT. VermaR. BenguerbaY. Schiff bases and their metal Complexes: A review on the history, synthesis, and applications.Inorg. Chem. Commun.202315011045110.1016/j.inoche.2023.110451
    [Google Scholar]
  29. QianC. FengL. TeoW.L. LiuJ. ZhouW. WangD. ZhaoY. Imine and imine-derived linkages in two-dimensional covalent organic frameworks.Nat. Rev. Chem.202261288189810.1038/s41570‑022‑00437‑y37117702
    [Google Scholar]
  30. CiacciaM. Di StefanoS. Mechanisms of imine exchange reactions in organic solvents.Org. Biomol. Chem.201513364665410.1039/C4OB02110J25415257
    [Google Scholar]
  31. MahmoodA. Green synthesis of Schiff bases: A review study.Iraqi Journal of Pharmacy202218218019310.33899/iphr.2022.170406
    [Google Scholar]
  32. RaczukE. DmochowskaB. Samaszko-FiertekJ. MadajJ. Different Schiff bases—structure, importance and classification.Molecules202227378710.3390/molecules2703078735164049
    [Google Scholar]
  33. ChengJ. WeiK. MaX. ZhouX. XiangH. Synthesis and photophysical properties of colorful salen-type Schiff bases.J. Phys. Chem. C201311732165521656310.1021/jp403750q
    [Google Scholar]
  34. ShahrakiS. Schiff base compounds as artificial metalloenzymes.Colloids Surf. B Biointerfaces202221811272710.1016/j.colsurfb.2022.11272735921691
    [Google Scholar]
  35. KatsukiS. K JhaP. LupieriA. NakanoT. PassosL.S.A. RogersM.A. Becker-GreeneD. LeT.D. DecanoJ.L. Ho LeeL. GuimaraesG.C. AbdelhamidI. HaluA. MuscoloniA. V CannistraciC. HigashiH. ZhangH. VrommanA. LibbyP. Keith OzakiC. SharmaA. SinghS.A. AikawaE. AikawaM. Proprotein convertase subtilisin/kexin 9 (PCSK9) promotes macrophage activation via LDL receptor-independent mechanisms.Circ. Res.20221311187388910.1161/CIRCRESAHA.121.32005636263780
    [Google Scholar]
  36. GillardM. Developing Ruthenium (II) Salphen Schiff base complexes towards theranostic applications.Doctoral dissertation. UCL-Université Catholique de Louvain2023
    [Google Scholar]
  37. AsatkarA. TripathiM. AsatkarD. Salen and Related Ligands.Stability and Applications of Coordination CompoundsIntechOpen202010.5772/intechopen.88593
    [Google Scholar]
  38. KawkaA. BesterK. BukowskaA. BukowskiW. Salophen-type schiff bases functionalized with pyridinium halide units as metal-free catalysts for synthesis of cyclic carbonates from carbon dioxide and terminal epoxides.Catalysts2024141065810.3390/catal14100658
    [Google Scholar]
  39. OmidiS. KakanejadifardA. A review on biological activities of Schiff base, hydrazone, and oxime derivatives of curcumin.RSC Advances20201050301863020210.1039/D0RA05720G35518272
    [Google Scholar]
  40. AkhterS. ZamanH.U. MirS. DarA.M. ShrivastavaS. Synthesis of schiff base metal complexes: A concise review.Eur. Chem. Bull.201761047548310.17628/ecb.2017.6.475‑483
    [Google Scholar]
  41. EftekhariS. ForoughifarN. HallajianS. Khajeh-AmiriA. Green synthesis of some novel imidazole schiff base derivatives under microwave irradiation / reflux conditions and evaluations of the antibacterial activity.Curr. Microw. Chem.20207320721510.2174/2213335607999200520124245
    [Google Scholar]
  42. KargarH. Fallah-MehrjardiM. Behjatmanesh-ArdakaniR. TorabiV. MunawarK.S. AshfaqM. TahirM.N. Sonication-assisted synthesis of new Schiff bases derived from 3-ethoxysalicylaldehyde: Crystal structure determination, Hirshfeld surface analysis, theoretical calculations and spectroscopic studies.J. Mol. Struct.2021124313078210.1016/j.molstruc.2021.130782
    [Google Scholar]
  43. RaoV.K. ReddyS.S. KrishnaB.S. NaiduK.R.M. RajuC.N. GhoshS.K. Synthesis of Schiff’s bases in aqueous medium: A green alternative approach with effective mass yield and high reaction rates.Green Chem. Lett. Rev.20103321722310.1080/17518251003716550
    [Google Scholar]
  44. JainA. DeS. BarmanP. Microwave-assisted synthesis and notable applications of Schiff-base and metal complexes: A comparative study.Res. Chem. Intermed.20224852199225110.1007/s11164‑022‑04708‑7
    [Google Scholar]
  45. AroraR SharmaR TagezaA GrewalAS SainiB AroraS KaurR Design and synthesis of novel 4-aminophenazone Schiff bases by grinding technique as prospective anti-inflammatory agents.J Appl Pharm Sci.20211114853
    [Google Scholar]
  46. BerhanuA.L. Gaurav MohiuddinI. MalikA.K. AulakhJ.S. KumarV. KimK-H. A review of the applications of Schiff bases as optical chemical sensors.Trends Analyt. Chem.2019116749110.1016/j.trac.2019.04.025
    [Google Scholar]
  47. SinghG.S. SudheeshS. Advances in synthesis of monocyclic beta-lactams.ARKIVOC20142014133738510.3998/ark.5550190.p008.524
    [Google Scholar]
  48. MukhtarS. HassanA. MorsyN. HafezT. HassaneenH. SalehF. Overview on synthesis, reactions, applications, and biological activities of Schiff bases.Egypt. J. Chem.202100010.21608/ejchem.2021.79736.3920
    [Google Scholar]
  49. RavindraS. Irfana JesinC.P. ShabashiniA. NandiG.C. Recent advances in the preparations and synthetic applications of oxaziridines and diaziridines.Adv. Synth. Catal.202136371756178110.1002/adsc.202001372
    [Google Scholar]
  50. GogoiH.P. SinghA. BarmanP. Different Route of Synthesis of Schiff Base‐Metal Complexes.Wiley202310.1002/9783527839476.ch8
    [Google Scholar]
  51. LasarteJ. PalomoC. PicardJ.P. DunoguesJ. AizpuruaJ.M. Fluoride ion mediated peterson alkenation of bis(trimethylsilyl)methylimines: A novel synthesis of 2-aza-1,3-dienes and N-vinyl-β-lactams.J. Chem. Soc. Chem. Commun.19892727410.1039/C39890000072
    [Google Scholar]
  52. YusM. González-GómezJ.C. FoubeloF. Diastereoselective allylation of carbonyl compounds and imines: Application to the synthesis of natural products.Chem. Rev.201311375595569810.1021/cr400008h23540914
    [Google Scholar]
  53. ThomasA.B. ParadkarO. NandaR.K. TupeP.N. SharmaP.A. BadheR. KothapalliL. BanerjeeA. HamaneS. DeshpandeA. Eco-friendly synthesis of 2-azetidinone analogs of isonicotinic acid hydrazide.Green Chem. Lett. Rev.20103429330010.1080/17518253.2010.483601
    [Google Scholar]
  54. PellissierH. Recent developments in asymmetric aziridination.Adv. Synth. Catal.201435691899193510.1002/adsc.201400312
    [Google Scholar]
  55. QadirT. AminA. SarkarD. SharmaP.K. A review on recent advances in the synthesis of aziridines and their applications in organic synthesis.Curr. Org. Chem.202125161868189310.2174/1385272825666210728100022
    [Google Scholar]
  56. PashaM.A. MondalS. PanigrahiN. Review of synthetic strategies in the development of oxadiazine scaffolds.Mediterr. J. Chem.20198533836410.13171/mjc851907025map
    [Google Scholar]
  57. AzadM.S. Synthesis of thiazolidinone derivatives containing thiadiazoline moiety of biological interestDoctoral dissertation. Bangladesh University of Engineering and Technology2017
    [Google Scholar]
  58. ParuchK. PopiołekŁ. BiernasiukA. HordyjewskaA. MalmA. WujecM. Novel 3-acetyl-2,5-disubstituted-1,3,4-oxadiazolines: Synthesis and biological activity.Molecules20202524584410.3390/molecules2524584433322054
    [Google Scholar]
  59. Martín-ZamoraE. FerreteA. LleraJ.M. MuñozJ.M. PappalardoR.R. FernándezR. LassalettaJ.M. Studies on stereoselective [2+2] cycloadditions between N,N-dialkylhydrazones and ketenes.Chemistry200410236111612910.1002/chem.20040045215515075
    [Google Scholar]
  60. GuoH. FanY.C. SunZ. WuY. KwonO. Phosphine organocatalysis.Chem. Rev.201811820100491029310.1021/acs.chemrev.8b0008130260217
    [Google Scholar]
  61. HamadoucheM. Gaudel-SiriA. PonsJ.M. AbedD.E. Relative stability of a series of 1,2,3-triazolines. Theoretical study of substituent effects.J. Mol. Struct. THEOCHEM20109561-3333710.1016/j.theochem.2010.06.019
    [Google Scholar]
  62. SinghN. RanjanaR. KumariM. KumarB. A review on biological activities of hydrazone derivatives.Int J Pharm Clin Res.201683162166
    [Google Scholar]
  63. LipeevaA.V. DolgikhM.P. TolstikovaT.G. ShultsE.E. A study of plant coumarins: Conjugates of coumarins with lupane triterpenoids and 1,2,3-triazoles: synthesis and anti-inflammatory activity.Russ. J. Bioorganic Chem.202046212513210.1134/S1068162020010161
    [Google Scholar]
  64. SangshettiJ.N. Kalam KhanF.A. ChoutheR.S. DamaleM.G. ShindeD.B. Synthesis, docking and ADMET prediction of novel 5-((5-substituted-1-H-1,2,4-triazol-3-yl) methyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine as antifungal agents.Chin. Chem. Lett.20142571033103810.1016/j.cclet.2014.04.003
    [Google Scholar]
  65. Abdel-WahabB.F. AwadG.E.A. BadriaF.A. Synthesis, antimicrobial, antioxidant, anti-hemolytic and cytotoxic evaluation of new imidazole-based heterocycles.Eur. J. Med. Chem.20114651505151110.1016/j.ejmech.2011.01.06221353349
    [Google Scholar]
  66. DandawateP. KhanE. PadhyeS. GabaH. SinhaS. DeshpandeJ. Venkateswara SwamyK. KhetmalasM. AhmadA. SarkarF.H. Synthesis, characterization, molecular docking and cytotoxic activity of novel plumbagin hydrazones against breast cancer cells.Bioorg. Med. Chem. Lett.20122293104310810.1016/j.bmcl.2012.03.06022483392
    [Google Scholar]
  67. AydınS. Kaushik-BasuN. AroraP. BasuA. NicholsD. TaleleT.T. Microwave-assisted synthesis of some novel flurbiprofen hydrazide-hydrazones as anti-HCV NS5B and anticancer agents.Med. Chem. Res.20131712634
    [Google Scholar]
  68. AlamM.M. VermaG. MarellaA. ShaquiquzzamanM. AkhtarM. AliM.R. A review exploring biological activities of hydrazones.J. Pharm. Bioallied Sci.201462698010.4103/0975‑7406.12917024741273
    [Google Scholar]
  69. NasrT. BondockS. YounsM. Anticancer activity of new coumarin substituted hydrazide–hydrazone derivatives.Eur. J. Med. Chem.20147653954810.1016/j.ejmech.2014.02.02624607878
    [Google Scholar]
  70. MandewaleM.C. PatilU.C. ShedgeS.V. DappadwadU.R. YamgarR.S. A review on quinoline hydrazone derivatives as a new class of potent antitubercular and anticancer agents.Beni. Suef Univ. J. Basic Appl. Sci.20176435436110.1016/j.bjbas.2017.07.005
    [Google Scholar]
  71. Witusik-PerkowskaM. GłowackaP. PieczonkaA.M. ŚwiderskaE. PudlarzA. RachwalskiM. SzymańskaJ. ZakrzewskaM. JaskólskiD.J. SzemrajJ. Autophagy inhibition with chloroquine increased pro-apoptotic potential of new aziridine-hydrazide hydrazone derivatives against glioblastoma cells.Cells20231214190610.3390/cells1214190637508570
    [Google Scholar]
  72. SharmaB. ChowdharyS. LegacJ. RosenthalP.J. KumarV. Quinoline‐based heterocyclic hydrazones: Design, synthesis, anti‐plasmodial assessment, and mechanistic insights.Chem. Biol. Drug Des.2023101482983610.1111/cbdd.1418536418231
    [Google Scholar]
  73. RollasS. KüçükgüzelS.G. Biological activities of hydrazone derivatives.Molecules20071281910193910.3390/1208191017960096
    [Google Scholar]
  74. NarangR. NarasimhanB. SharmaS. A review on biological activities and chemical synthesis of hydrazide derivatives.Curr. Med. Chem.201219456961210.2174/09298671279891878922204327
    [Google Scholar]
  75. TayadeK. YeomG.S. SahooS.K. PuschmannH. NimseS.B. KuwarA. Exploration of molecular structure, DFT calculations, and antioxidant activity of a hydrazone derivative.Antioxidants20221111213810.3390/antiox1111213836358512
    [Google Scholar]
  76. NegiV. SharmaA. NegiJ. RamV.J. Biological activities of hydrazone derivatives in the new millennium.Int. J. Pharm. Chem.20124100109
    [Google Scholar]
  77. AcostaM.E. GotopoL. GamboaN. RodriguesJ.R. HenriquesG.C. CabreraG. RomeroA.H. Antimalarial activity of highly coordinative fused heterocycles targeting β-hematin crystallization.ACS Omega2022797499751410.1021/acsomega.1c0539335284702
    [Google Scholar]
  78. ViciniP. GeronikakiA. IncertiM. BusoneraB. PoniG. CabrasC.A. La CollaP. Synthesis and biological evaluation of benzo[d]isothiazole, benzothiazole and thiazole Schiff bases.Bioorg. Med. Chem.200311224785478910.1016/S0968‑0896(03)00493‑014556794
    [Google Scholar]
  79. DabholkarV.V. SyedS.A.S. Synthesis of novel oxazoles and their hydrazones.Rasayan J. Chem.201034761765
    [Google Scholar]
  80. MunjP.P. SomaniR.R. ChavanA.V. Synthesis and biological evaluation of some newer triazole-based Schiff’s bases.Pharma Chem.20102198103
    [Google Scholar]
  81. SaeediM. HaririR. IrajiA. AhmadiA. MojtabaviS. GolshaniS. FaramarziM.A. AkbarzadehT. Novel N′-substituted benzylidene benzohydrazides linked to 1,2,3-triazoles: potent α-glucosidase inhibitors.Sci. Rep.2023131896010.1038/s41598‑023‑36046‑y37268722
    [Google Scholar]
  82. KenderekarP.S. SiddiquiR.F. PatilP.S. BhusareS.R. PawarR.P. Synthesis and antibacterial activity of Schiff bases and 4-thiazolidinones.Indian J. Pharm. Sci.2003653313315
    [Google Scholar]
  83. PatelN.B. PatelJ.C. Synthesis and antimicrobial activity of Schiff bases and 2-azetidinones derived from quinazolin-4(3H)-one.Arab. J. Chem.20114440341110.1016/j.arabjc.2010.07.005
    [Google Scholar]
  84. AlharthyR.D. ZahraS.B. FatimaN. TabassumA. UllahS. HalimS.A. KhanA. HussainJ. Al-HarrasiA. ShafiqZ. Synthesis and biological evaluation of novel isatin-hydrazide conjugates as potential antidiabetic agents.J. Mol. Struct.2023128813578310.1016/j.molstruc.2023.135783
    [Google Scholar]
  85. OsmanH.M. ElsamanT. YousefB.A. ElhadiE. AhmedA.A.E. EltayibE.M. MohamedM.S. MohamedM.A. Schiff bases of isatin and adamantane-1-carbohydrazide: Synthesis, characterization, and anti-convulsant activity.J. Chem.2021202111110.1155/2021/6659156
    [Google Scholar]
  86. WangY. ChanF.Y. SunN. LuiH.K. SoP.K. YanS.C. ChanK.F. ChiouJ. ChenS. AbagyanR. LeungY.C. WongK.Y. Structure-based design, synthesis, and biological evaluation of isatin derivatives as potential glycosyltransferase inhibitors.Chem. Biol. Drug Des.201484668569610.1111/cbdd.1236124890564
    [Google Scholar]
  87. MokN.Y. ChadwickJ. KellettK. Casas-ArceE. HooperN.M. JohnsonA.P. FishwickCWJ. Discovery of biphenylacetamide-derived inhibitors of BACE1 using de novo structure-based molecular design.J. Med. Chem.201356518431852
    [Google Scholar]
  88. RandhawaH. KambojA. SalujaA.K. Synthesis, pharmacological evaluation, and computational studies of some novel hydrazine derivatives of thiophene chalcone as anti-microbial and anti-oxidant agents.World J. Pharm. Res.2014331463159
    [Google Scholar]
  89. PandeyaS.N. ManjulaH. SinghP.N. Antidepressant activity of some phenylaceticacid hydrazones and 2-chlorophenyl semicarbazones.Indian J. Physiol. Pharmacol.200044450951011214512
    [Google Scholar]
  90. ArgirovaM. GunchevaM. MomekovG. ChernevaE. MihaylovaR. RangelovM. TodorovaN. DenevP. AnichinaK. MavrovaA. YanchevaD. Modulation effect on tubulin polymerization, cytotoxicity, and antioxidant activity of 1H-benzimidazole-2-yl hydrazones.Molecules202228129110.3390/molecules2801029136615483
    [Google Scholar]
  91. MagwazaR.N. AbubakerM. HussainB. HaleyM. CouperK. FreemanS. NirmalanN.J. Evaluation of 4-aminoquinoline hydrazone analogues as potential leads for drug-resistant malaria.Molecules20232818647110.3390/molecules2818647137764248
    [Google Scholar]
  92. PalekarV.S. DamleA.J. ShuklaS.R. Synthesis and antibacterial activity of some novel bis-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles and bis-4-thiazolidinone derivatives from terephthalic dihydrazide.Eur. J. Med. Chem.200944125112511610.1016/j.ejmech.2009.07.02319683841
    [Google Scholar]
  93. Mohamed EissaA.A.H. SolimanG.A.E.H. KhataibehM.H. Design, synthesis and anti-inflammatory activity of structurally simple anthranilic acid congeners devoid of ulcerogenic side effects.Chem. Pharm. Bull.201260101290130010.1248/cpb.c12‑0051622863798
    [Google Scholar]
  94. Salgın-GökşenU. Gökhan-KelekçiN. GöktaşÖ. KöysalY. KılıçE. IşıkŞ. AktayG. ÖzalpM. 1-Acylthiosemicarbazides, 1,2,4-triazole-5(4H)-thiones, 1,3,4-thiadiazoles and hydrazones containing 5-methyl-2-benzoxazolinones: Synthesis, analgesic-anti-inflammatory and antimicrobial activities.Bioorg. Med. Chem.200715175738575110.1016/j.bmc.2007.06.00617587585
    [Google Scholar]
  95. KhanK.M. KhanM. AliM. TahaM. RasheedS. PerveenS. ChoudharyM.I. Synthesis of bis-Schiff bases of isatins and their antiglycation activity.Bioorg. Med. Chem.200917227795780110.1016/j.bmc.2009.09.02819837595
    [Google Scholar]
  96. Salgın-GökşenU. Gökhan-KelekçiN. Yabanoglu-ÇiftciS. YelekçiK. UçarG. Synthesis, molecular modeling, and in vitro screening of monoamine oxidase inhibitory activities of some novel hydrazone derivatives.J. Neural Transm.2013120688389110.1007/s00702‑013‑0968‑223328949
    [Google Scholar]
  97. CutshallNS OnrustR RohdeA GragerovS HamiltonL HarbolK Novel 2-methoxyacylhydrazones as potent, selective PDE10A inhibitors with activity in animal models of schizophreniaBioorg. Med. Chem. Lett.2012221755955599
    [Google Scholar]
  98. YepesA.F. Quintero-SaumethJ. Cardona-GaleanoW. Biologically active quinoline-hydrazone conjugates as potential Trypanosoma cruzi DHFR-TS inhibitors: docking, molecular dynamics, MM/PBSA and drug-likeness studies.ChemistrySelect20216122928293810.1002/slct.202100238
    [Google Scholar]
  99. GerpeA. ÁlvarezG. BenítezD. BoianiL. QuirogaM. HernándezP. SortinoM. ZacchinoS. GonzálezM. CerecettoH. 5-Nitrofuranes and 5-nitrothiophenes with anti-Trypanosoma cruzi activity and ability to accumulate squalene.Bioorg. Med. Chem.200917217500750910.1016/j.bmc.2009.09.01319811923
    [Google Scholar]
  100. CaputtoM.E. FabianL.E. BenítezD. MerlinoA. RíosN. CerecettoH. MoltrasioG.Y. MoglioniA.G. GonzálezM. FinkielszteinL.M. Thiosemicarbazones derived from 1-indanones as new anti-Trypanosoma cruzi agents.Bioorg. Med. Chem.201119226818682610.1016/j.bmc.2011.09.03722000947
    [Google Scholar]
  101. HassanE.M. SolimanS.M. MoneerE.A. HagarM. BarakatA. HaukkaM. RasheedH. Synthesis, X-ray structure, hirshfeld, DFT conformational, cytotoxic, and anti-Toxoplasma studies of new indole-hydrazone derivatives.Int. J. Mol. Sci.202324171325110.3390/ijms24171325137686056
    [Google Scholar]
  102. BawaS KumarS. Synthesis of Schiff’s bases of 8-methyl-tetrazolo[1,5-a]quinoline as potential anti-inflammatory and antimicrobial agents.IJC-B200948 B01142145
    [Google Scholar]
  103. PanneerselvamP. ReddyR.S. MuraliK. KumarN.R. Synthesis, analgesic, anti-inflammatory and antimicrobial activities of some novel Schiff’s bases of 5-substituted Isatin.Pharma Chem.2010212837
    [Google Scholar]
  104. KumarK.S. GangulyS. Synthesis, antiviral and cytotoxic investigations of 2-(4-chlorophenyl)-3-substituted quinazolin-4(3H)-ones.Int. J. Drug Des. Discov.201231702712
    [Google Scholar]
  105. SridharS.K. SaravananM. RameshA. Synthesis and antibacterial screening of hydrazones, Schiff and Mannich bases of isatin derivatives.Eur. J. Med. Chem.2001367-861562510.1016/S0223‑5234(01)01255‑711600231
    [Google Scholar]
  106. AlagarsamyV. VijayakumarS. Raja SolomonV. Synthesis of 2-mercapto-3-substituted-5,6-dimethylthieno[2,3-d] pyrimidin-4(3H)-ones as new analgesic, anti-inflammatory agents.Biomed. Pharmacother.200761528529110.1016/j.biopha.2007.02.00817391907
    [Google Scholar]
  107. YadavPS PrakashD SenthilkumarGP Benzothiazole: Different methods of synthesis and diverse biological activities.Int. J. Pharm. Sci. Drug Res.20113117
    [Google Scholar]
  108. PrabhuP.P. PandeS. ShastryC.S. Synthesis and biological evaluation of Schiff’s bases of some new benzothiazole derivatives as antimicrobial agents.Int. J. Chemtech Res.20113185191
    [Google Scholar]
  109. VoraJ.J. VasavaS.B. ParmarK.C. ChauhanS.K. SharmaS.S. Synthesis, spectral and microbial studies of some novel Schiff base derivatives of 4-methylpyridin-2-amine.J. Chem.2009641205121010.1155/2009/247209
    [Google Scholar]
  110. GhadageR.V. ShiroteP.J. Synthesis and anticonvulsant activity of Schiff’s bases of 3-[2-((E)-[(substituted) phenyl] methylidene amino) ethyl] amino quinoxalin-2(1H)-one.Bangladesh J. Pharmacol.201162929910.3329/bjp.v6i2.8671
    [Google Scholar]
  111. AtiaA.J.K. Synthesis and antibacterial activities of new metronidazole and imidazole derivatives.Molecules20091472431244610.3390/molecules1407243119633614
    [Google Scholar]
  112. AsiriA.M. KhanS.A. Synthesis and anti-bacterial activities of some novel Schiff bases derived from aminophenazone.Molecules201015106850685810.3390/molecules1510685020938399
    [Google Scholar]
  113. HossainM.I. BhuiyanM.M.H. Synthesis and antimicrobial activities of some new thieno and furopyrimidine derivatives.J. Sci. Res.20091231732510.3329/jsr.v1i2.2299
    [Google Scholar]
  114. ParveenS KhanS IqbalT DeraAA HussainR KhanY Synthesis, spectroscopy and biological investigation via DFT, ADMET and molecular docking of Thiadiazole/Oxadiazole based bis-Schiff bases: A potential towards diabetes and microbes.Results Chem2024112024101787
    [Google Scholar]
  115. HassanS.M. MorsyJ.M. HassaninH.M. OthmanE.S. MostafaM.A. New synthetic chitosan Schiff bases bearing pyranoquinolinone or benzonaphthyridine and their silver nanoparticles derivatives with potential activity as antioxidant and molecular docking study for EGFR inhibitors.RSC Advances20241441299192993310.1039/D4RA05117C39309650
    [Google Scholar]
  116. WaziriI. YusufT.L. KelaniM.T. AkintemiE.O. OlofinsanK.A. MullerA.J. Exploring the potential of N-benzylidenebenzohydrazide derivatives as antidiabetic and antioxidant agents: Design, synthesis, spectroscopic, crystal structure, DFT and molecular docking study.ChemistrySelect2024935e20240163110.1002/slct.202401631
    [Google Scholar]
  117. ZawadzińskaK. GostyńskiB. Nitrosubstituted analogs of isoxazolines and isoxazolidines: A surprising estimation of their biological activity via molecular docking.Scientiae Radices202321254610.58332/scirad2023v2i1a02
    [Google Scholar]
  118. KulaK. DoboszJ. JasińskiR. Kącka-ZychA. Łapczuk-KrygierA. MirosławB. DemchukO.M. [3+2] Cycloaddition of diaryldiazomethanes with (E)-3,3,3-trichloro-1-nitroprop-1-ene: An experimental, theoretical and structural study.J. Mol. Struct.2020120312747310.1016/j.molstruc.2019.127473
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575320413250126041041
Loading
/content/journals/mrmc/10.2174/0113895575320413250126041041
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biological potency; Design; drug designing; drug development; heterocyclic; schiff bases
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test