Skip to content
2000
Volume 25, Issue 10
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Sustainable chemistry and nature-friendly protocols are not only luxury but has become essential requirement for the modern society as it progresses towards a more responsible future. To match the current needs of the community, industries and in particular chemical industry is looking for novel and cheap strategies that have less adverse effects on the environment. Heterocyclic compounds are one particular motif, which is prevalent in nature. It is found in a wide range of synthetic and natural compounds, both established and in development as potent therapeutic candidates. According to the US retail market in 2014-2015, heterocyclic moieties constitute the basic skeletons for 80% of marketed pharmaceuticals. However, majority of the synthetic methodologies still uses classical approaches with toxic solvents, stoichiometric reagents, reactions with less atom economy . Thus, there is an urgent need for green, sustainable alternatives of the classical reactions. In recent years, an array of diverse approaches and technologies have been discovered by the scientific community to address the issue of eco-friendly manufacture of various pharmaceutically and medicinally important heterocyclic molecules. In this context, the current review will summarize various reported green pathways to the heterocyclic architecture, particularly O, N, and S-heterocyclic compounds. The methods highlighted in this article includes reaction in environment friendly nonconventional media, solvent-free approaches, heterogeneous catalysis, organocatalysis, electrochemical reactions, microwave-mediated reactions, ultrasound-based reactions, enzymatic reactions, biocatalysis, and others.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575341409241201171848
2025-01-16
2025-07-19
Loading full text...

Full text loading...

References

  1. JampilekJ. Heterocycles in medicinal chemistry.Molecules20192421383910.3390/molecules2421383931731387
    [Google Scholar]
  2. KabirE. UzzamanM. A review on biological and medicinal impact of heterocyclic compounds.Results Chem.2022410060610.1016/j.rechem.2022.100606
    [Google Scholar]
  3. AlfonsiK. ColbergJ. DunnP.J. FevigT. JenningsS. JohnsonT.A. KleineH.P. KnightC. NagyM.A. PerryD.A. StefaniakM. Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation.Green Chem.2008101313610.1039/B711717E
    [Google Scholar]
  4. RoughleyS.D. JordanA.M. The medicinal chemist’s toolbox: An analysis of reactions used in the pursuit of drug candidates.J. Med. Chem.201154103451347910.1021/jm200187y21504168
    [Google Scholar]
  5. CoresÁ. VillacampaM. MenéndezJ.C. Organocatalysis in synthetic heterocyclic chemistry.HeterocyclesWiley MeloT.M.V.D.P. PineiroM. 20228511510.1002/9783527832002.ch4
    [Google Scholar]
  6. SantosA.S. RaydanD. CunhaJ.C. ViduedoN. SilvaA.M.S. MarquesM.M.B. Advances in green catalysis for the synthesis of medicinally relevant N-heterocycles.Catalysts2021119110810.3390/catal11091108
    [Google Scholar]
  7. DeyN. MandalA. JanaR. BeraA. AzadS.A. GiriS. IkbalM. SamantaS. Recent developments in the solvent-free synthesis of heterocycles.New J. Chem.20234728130351307910.1039/D3NJ01991H
    [Google Scholar]
  8. KühlbornJ. GroßJ. OpatzT. Making natural products from renewable feedstocks: Back to the roots?Nat. Prod. Rep.202037338042410.1039/C9NP00040B31625546
    [Google Scholar]
  9. BrandãoP. PineiroM. Pinho e MeloT.M.V.D. Flow chemistry: Towards a more sustainable heterocyclic synthesis.Eur. J. Org. Chem.20192019437188721710.1002/ejoc.201901335
    [Google Scholar]
  10. KarS. SandersonH. RoyK. BenfenatiE. LeszczynskiJ. Green chemistry in the synthesis of pharmaceuticals.Chem. Rev.202212233637371010.1021/acs.chemrev.1c0063134910451
    [Google Scholar]
  11. MishraM. SharmaM. DubeyR. KumariP. RanjanV. PandeyJ. Green synthesis interventions of pharmaceutical industries for sustainable development.Curr. Res. Green . Sustain. Chem.2021410017410.1016/j.crgsc.2021.100174
    [Google Scholar]
  12. CrombieA.L. AntrilliT.M. CampbellB.A. CrandallD.L. FailliA.A. HeY. KernJ.C. MooreW.J. NogleL.M. TrybulskiE.J. Synthesis and evaluation of azabicyclo[3.2.1]octane derivatives as potent mixed vasopressin antagonists.Bioorg. Med. Chem. Lett.201020123742374510.1016/j.bmcl.2010.04.06820471258
    [Google Scholar]
  13. ScottS.A. SpencerC.T. O’ReillyM.C. BrownK.A. LavieriR.R. ChoC.H. JungD.I. LarockR.C. BrownH.A. LindsleyC.W. Discovery of desketoraloxifene analogues as inhibitors of mammalian, Pseudomonas aeruginosa, and NAPE phospholipase D enzymes.ACS Chem. Biol.201510242143210.1021/cb500828m25384256
    [Google Scholar]
  14. TakimiyaK. OsakaI. MoriT. NakanoM. Organic semiconductors based on [1]benzothieno[3,2-b][1]benzothiophene substructure.Acc. Chem. Res.20144751493150210.1021/ar400282g24785263
    [Google Scholar]
  15. WangM. FanQ. JiangX. Transition-metal-free diarylannulated sulfide and selenide construction via radical/anion-mediated sulfur-iodine and selenium–iodine exchange.Org. Lett.201618215756575910.1021/acs.orglett.6b0307827783528
    [Google Scholar]
  16. XuJ. YuX. YanJ. SongQ. Synthesis of 3-(arylsulfonyl) benzothiophenes and benzoselenophenes via TBHP-initiated radical cyclization of 2-alkynylthioanisoles or-selenoanisoles with sulfinic acids.Org. Lett.201719236292629510.1021/acs.orglett.7b0297129160713
    [Google Scholar]
  17. FaiziD.J. DavisA.J. MeanyF.B. BlumS.A. Catalyst‐free formal thioboration to synthesize borylated benzothiophenes and dihydrothiophenes.Angew. Chem. Int. Ed.20165546142861429010.1002/anie.20160809027735114
    [Google Scholar]
  18. YanJ. PulisA.P. PerryG.J.P. ProcterD.J. Metal‐free synthesis of benzothiophenes by twofold C−H functionalization: Direct access to materials‐oriented heteroaromatics.Angew. Chem. Int. Ed.20195844156751567910.1002/anie.20190831931479175
    [Google Scholar]
  19. VasuD. HausmannJ.N. SaitoH. YanagiT. YorimitsuH. OsukaA. Robust palladium‐catalyzed arylation of catalyst‐poisoning ortho ‐sulfanyl aryl halides with tetraarylborates and its application to synthesis of π‐extended dibenzothiophenes.Asian J. Org. Chem.20176101390139310.1002/ajoc.201700323
    [Google Scholar]
  20. ShenJ. YuA. ZhangL. MengX. Construction of benzothiophene fused pyrrolidone in water via a catalyst-free process and a mechanism study.Green Chem.202022206798680310.1039/D0GC01860K
    [Google Scholar]
  21. SucunzaD. CuadroA.M. Alvarez-BuillaJ. VaqueroJ.J. Recent advances in the synthesis of azonia aromatic heterocycles.J. Org. Chem.20168121101261013510.1021/acs.joc.6b0109227385555
    [Google Scholar]
  22. RaghavD. AshrafS.M. MohanL. RathinasamyK. Berberine induces toxicity in HeLa cells through perturbation of microtubule polymerization by binding to tubulin at a unique site.Biochemistry201756202594261110.1021/acs.biochem.7b0010128459539
    [Google Scholar]
  23. KuoH.P. ChuangT.C. YehM.H. HsuS.C. WayT.D. ChenP.Y. WangS.S. ChangY.H. KaoM.C. LiuJ.Y. Growth suppression of HER2-overexpressing breast cancer cells by berberine via modulation of the HER2/PI3K/Akt signaling pathway.J. Agric. Food Chem.201159158216822410.1021/jf201258421699261
    [Google Scholar]
  24. SouliéM. FrongiaC. LobjoisV. Fery-ForguesS. Fluorescent organic ion pairs based on berberine: counter-ion effect on the formation of particles and on the uptake by colon cancer cells.RSC Advances2015521181119010.1039/C4RA09993A
    [Google Scholar]
  25. LuoC.Z. GandeepanP. ChengC.H. A convenient synthesis of quinolizinium salts through Rh(iii) or Ru(ii)-catalyzed C–H bond activation of 2-alkenylpyridines.Chem. Commun.201349768528853010.1039/c3cc45004j23938459
    [Google Scholar]
  26. LuoC.Z. GandeepanP. WuY.C. TsaiC.H. ChengC.H. Cooperative C(sp 3)–H and C(sp2)–H Activation of 2-Ethylpyridines by Copper and Rhodium: A Route toward Quinolizinium Salts.ACS Catal.2015584837484110.1021/acscatal.5b01244
    [Google Scholar]
  27. NúñezA. CuadroA.M. Alvarez-BuillaJ. VaqueroJ.J. A unified approach to quinolizinium cations and related systems by ring-closing metathesis.Org. Lett.20046224125412710.1021/ol048177b15496115
    [Google Scholar]
  28. NúñezA. CuadroA.M. Alvarez-BuillaJ. VaqueroJ.J. A new approach to polycyclic azonia cations by ring-closing metathesis.Org. Lett.20079162977298010.1021/ol070773t17625878
    [Google Scholar]
  29. NuñezA. AbarcaB. CuadroA.M. Alvarez-BuillaJ. VaqueroJ.J. Ring-closing metathesis reactions on azinium salts: straightforward access to quinolizinium cations and their dihydro derivatives.J. Org. Chem.200974114166417610.1021/jo900292b19405504
    [Google Scholar]
  30. WangZ. YinJ. ZhouF. LiuY. YouJ. Multicomponent reactions of pyridines to give ring‐fused pyridiniums: In situ activation strategy using 1,2‐dichloroethane as a vinyl equivalent.Angew. Chem. Int. Ed.201958125425810.1002/anie.20181216730421489
    [Google Scholar]
  31. ToriumiN. AsanoN. MiyamotoK. MuranakaA. UchiyamaM. N-alkynylpyridinium salts: Highly electrophilic alkyne–pyridine conjugates as precursors of cationic nitrogen-embedded polycyclic aromatic hydrocarbons.J. Am. Chem. Soc.2018140113858386210.1021/jacs.8b0035629502394
    [Google Scholar]
  32. ChenL. HuangR. LiK. YunX.H. YangC.L. YanS.J. An environmentally benign cascade reaction of chromone-3-carboxaldehydes with ethyl 2-(pyridine-2-yl)acetate derivatives for highly site-selective synthesis of quinolizines and quinolizinium salts in water.Green Chem.202022206943695310.1039/D0GC02460K
    [Google Scholar]
  33. PrakashS. MuralirajanK. ChengC.H. Cobalt‐catalyzed oxidative annulation of nitrogen‐containing arenes with alkynes: An atom‐economical route to heterocyclic quaternary ammonium salts.Angew. Chem. Int. Ed.20165551844184810.1002/anie.20150931626791886
    [Google Scholar]
  34. YipW.M. YuQ. TantipanjapornA. ChanW.C. DengJ.R. KoB.C. WongM.K. Synthesis of new quinolizinium-based fluorescent compounds and studies on their applications in photocatalysis.Org. Biomol. Chem.202119398507851510.1039/D1OB00716E34542126
    [Google Scholar]
  35. LueP. GreenhillJ.V. Enaminones in heterocyclic synthesis.Adv. Heterocycl. Chem.19966720734310.1016/S0065‑2725(08)60072‑0
    [Google Scholar]
  36. ElassarA.Z.A. El-KhairA.A. Recent developments in the chemistry of enaminones.Tetrahedron200359438463848010.1016/S0040‑4020(03)01201‑8
    [Google Scholar]
  37. SannaP. CartaA. LorigaM. ZanettiS. SechiL. Preparation and biological evaluation of 6/7-trifluoromethyl(nitro)-, 6,7-difluoro-3-alkyl (aryl)-substituted-quinoxalin-2-ones. Part 3.Farmaco199954316917710.1016/S0014‑827X(99)00011‑710371030
    [Google Scholar]
  38. TahaM.O. AtallahN. Al-BakriA.G. Paradis-BleauC. ZalloumH. YounisK.S. LevesqueR.C. Discovery of new MurF inhibitors via pharmacophore modeling and QSAR analysis followed by in-silico screening.Bioorg. Med. Chem.20081631218123510.1016/j.bmc.2007.10.07617988876
    [Google Scholar]
  39. TayyemR.F. ZalloumH.M. ElmaghrabiM.R. YousefA.M. MubarakM.S. Ligand-based designing, in silico screening, and biological evaluation of new potent fructose-1,6-bisphosphatase (FBPase) inhibitors.Eur. J. Med. Chem.201256709510.1016/j.ejmech.2012.08.00422960695
    [Google Scholar]
  40. HabashM. AbdelazeemA.H. TahaM.O. Elaborate ligand-based modeling reveals new human neutrophil elastase inhibitors.Med. Chem. Res.20142383876389610.1007/s00044‑014‑0966‑4
    [Google Scholar]
  41. KulakovI.V. KarbainovaA.A. ShulgauZ.T. SeilkhanovT.M. GatilovY.V. FisyukA.S. Synthesis and analgesic activity of bis(3,4-dihydroquinoxalin-2(1h)-one) and bis(3,4-dihydro-2h-1,4-benzoxazin-2-one) derivatives.Chem. Heterocycl. Compd.201753101094109710.1007/s10593‑017‑2178‑6
    [Google Scholar]
  42. XiM. JiaJ. SunH. SunZ. JiangJ. WangY. ZhangM. ZhuJ. XuL. JiangZ. XueX. YeM. YangX. GaoY. TaoL. GuoX. XuX. GuoQ. ZhangX. HuR. YouQ. 3-aroylmethylene-2,3,6,7-tetrahydro-1H-pyrazino[2,1-a]isoquinolin-4(11bH)-ones as potent Nrf2/ARE inducers in human cancer cells and AOM-DSS treated mice.J. Med. Chem.201356207925793810.1021/jm400944k24053646
    [Google Scholar]
  43. PetronijevićJ. JankovićN. StanojkovićT.P. JoksimovićN. GrozdanićN.Đ. VranešM. TotA. BugarčićZ. Biological evaluation of selected 3,4‐dihydro‐2(1 H )‐quinoxalinones and 3,4‐dihydro‐1,4‐benzoxazin‐2‐ones: Molecular docking study.Arch. Pharm. (Weinheim)20183515170030810.1002/ardp.20170030829656443
    [Google Scholar]
  44. MashevskayaI.V. TolmachevaI.A. VoronovaÉ.V. OdegovaT.F. AleksandrovaG.A. GolenevaA.F. Kol’tsovaS.V. MaslivetsA.N. A comparative study of the antimicrobial activity of some quinoxalines, 1, 4-benzoxazines, and aza-analogs.Pharm. Chem. J.2002362323410.1023/A:1016064014955
    [Google Scholar]
  45. BabenyshevaA.V. LisovskayaN.A. BelevichI.O. LisovenkoN.Y. Synthesis and antimicrobial activity of substituted benzoxazines and quinoxalines.Pharm. Chem. J.2006401161161310.1007/s11094‑006‑0204‑6
    [Google Scholar]
  46. YaoQ.C. WuD.E. MaR.Z. XiaM. Study on the structure-property relationship in a series of novel BF2 chelates with multicolor fluorescence.J. Organomet. Chem.20137431910.1016/j.jorganchem.2013.06.012
    [Google Scholar]
  47. XuJ. HuangL. HeL. NiZ. ShenJ. LiX. ChenK. LiW. ZhangP. A combination of heterogeneous catalysis and photocatalysis for the olefination of quinoxalin-2(1H)-ones with ketones in water: A green and efficient route to (Z)-enaminones.Green Chem.20212352123212910.1039/D0GC04235H
    [Google Scholar]
  48. SasakiY. KatoD. BogerD.L. Asymmetric total synthesis of vindorosine, vindoline, and key vinblastine analogues.J. Am. Chem. Soc.201013238135331354410.1021/ja106284s20809620
    [Google Scholar]
  49. MoriM. NakanishiM. KajishimaD. SatoY. A novel and general synthetic pathway to strychnos indole alkaloids: total syntheses of (-)-tubifoline, (-)-dehydrotubifoline, and (-)-strychnine using palladium-catalyzed asymmetric allylic substitution.J. Am. Chem. Soc.2003125329801980710.1021/ja029382u12904045
    [Google Scholar]
  50. DounayA.B. HumphreysP.G. OvermanL.E. WrobleskiA.D. Total synthesis of the strychnos alkaloid (+)-minfiensine: Tandem enantioselective intramolecular Heck-iminium ion cyclization.J. Am. Chem. Soc.2008130155368537710.1021/ja800163v18303837
    [Google Scholar]
  51. HeW. HuJ. WangP. ChenL. JiK. YangS. LiY. XieZ. XieW. Highly enantioselective tandem michael addition of tryptamine‐derived oxindoles to alkynones: Concise synthesis of strychnos alkaloids.Angew. Chem. Int. Ed.201857143806380910.1002/anie.20180056729418057
    [Google Scholar]
  52. MorenoJ. PicazoE. MorrillL.A. SmithJ.M. GargN.K. Enantioselective total syntheses of akuammiline alkaloids (+)-Strictamine,(−)-2 (s)-Cathafoline, and (−)-Aspidophylline A.J. Am. Chem. Soc.201613841162116510.1021/jacs.5b1288026783944
    [Google Scholar]
  53. WangC. ZhangS. WangY. HuangS.H. HongR. Total synthesis of strictamine: A tutorial for novel and efficient synthesis.Org. Chem. Front.20185344745210.1039/C7QO00837F
    [Google Scholar]
  54. XuZ. WangQ. ZhuJ. Metamorphosis of cycloalkenes for the divergent total synthesis of polycyclic indole alkaloids.Chem. Soc. Rev.201847217882789810.1039/C8CS00454D30123914
    [Google Scholar]
  55. SayaJ.M. RuijterE. OrruR.V.A. Total synthesis of aspidosperma and strychnos alkaloids through indole dearomatization.Chemistry201925388916893510.1002/chem.20190113030994212
    [Google Scholar]
  56. BonjochJ. SoléD. Synthesis of strychnine.Chem. Rev.200010093455348210.1021/cr990254711777429
    [Google Scholar]
  57. ChenW. YangX.D. TanW.Y. ZhangX.Y. LiaoX.L. ZhangH. Total synthesis of (−)‐vindorosine.Angew. Chem. Int. Ed.20175640123271233110.1002/anie.20170724928782228
    [Google Scholar]
  58. KizilM. PatroB. CallaghanO. MurphyJ.A. HursthouseM.B. HibbsD. Tandem radical cyclizations on iodoaryl azides: Synthesis of the core tetracycle of aspidosperma alkaloids.J. Org. Chem.199964217856786210.1021/jo990891x
    [Google Scholar]
  59. ZhouS. BommezijnS. MurphyJ.A. Formal total synthesis of (+/-)-vindoline by tandem radical cyclization.Org. Lett.20024344344510.1021/ol017161811820900
    [Google Scholar]
  60. BoonsombatJ. ZhangH. ChughtaiM.J. HartungJ. PadwaA. A general synthetic entry to the pentacyclic strychnos alkaloid family, using a [4 + 2]-cycloaddition/rearrangement cascade sequence.J. Org. Chem.20087393539355010.1021/jo800371618376864
    [Google Scholar]
  61. MizoguchiH. OikawaH. OguriH. Biogenetically inspired synthesis and skeletal diversification of indole alkaloids.Nat. Chem.201461576410.1038/nchem.179824345948
    [Google Scholar]
  62. WangY. LinJ. WangX. WangG. ZhangX. YaoB. ZhaoY. YuP. LinB. LiuY. ChengM. Brønsted acid‐catalyzed tandem cyclizations of tryptamine‐ynamides yielding 1H ‐pyrrolo[2,3‐ d ]carbazole derivatives.Chemistry201824164026403210.1002/chem.20170518929168592
    [Google Scholar]
  63. DuK. YangH. GuoP. FengL. XuG. ZhouQ. ChungL.W. TangW. Efficient syntheses of (−)-crinine and (−)-aspidospermidine, and the formal synthesis of (−)-minfiensine by enantioselective intramolecular dearomative cyclization.Chem. Sci.2017896247625610.1039/C7SC01859B28989658
    [Google Scholar]
  64. JiangS. CaoW.B. LiH.Y. XuX.P. JiS.J. Convenient synthesis of spiroindolenines from tryptamine-derived isocyanides and organic azides by cobalt catalysis in pure water.Green Chem.20212372619262310.1039/D1GC00270H
    [Google Scholar]
  65. LiS.W. WanQ. KangQ. Chiral-at-metal Rh (III) complex-catalyzed Michael addition of pyrazolones with α, β-unsaturated 2-acyl imidazoles.Org. Lett.20182051312131510.1021/acs.orglett.8b0004029446638
    [Google Scholar]
  66. LippurK. KaabelS. JärvingI. RissanenK. KangerT. CaCl2, bisoxazoline, and malonate: A protocol for an asymmetric Michael reaction.J. Org. Chem.201580126336634110.1021/acs.joc.5b0076926035234
    [Google Scholar]
  67. LiL. ZhangS. HuY. LiY. LiC. ZhaZ. WangZ. Highly diastereo‐ and enantioselective michael addition of nitroalkanes to 2‐enoyl‐pyridine N ‐oxides catalyzed by scandium(III)/copper(II) complexes.Chemistry20152137128851288810.1002/chem.20150212926202331
    [Google Scholar]
  68. KobayashiT. ShimuraT. KuritaY. KatsumataY. KezukaS. Chiral cobalt(II)-salen-catalyzed Michael addition of amines to β-substituted nitroalkenes.Tetrahedron Lett.201455172818282110.1016/j.tetlet.2014.03.062
    [Google Scholar]
  69. KitanosonoT. SakaiM. UenoM. KobayashiS. Chiral-Sc catalyzed asymmetric Michael addition/protonation of thiols with enones in water.Org. Biomol. Chem.201210357134714710.1039/c2ob26264a22850891
    [Google Scholar]
  70. JautzeS. PetersR. Catalytic asymmetric Michael additions of α-cyanoacetates.Synthesis20103365388
    [Google Scholar]
  71. KobayashiS. KakumotoK. MoriY. ManabeK. Chiral lewis acid‐catalyzed enantioselective michael reactions in water.Isr. J. Chem.2001414247250
    [Google Scholar]
  72. HamashimaY. HottaD. UmebayashiN. TsuchiyaY. SuzukiT. SodeokaM. Catalytic enantioselective michael reaction of 1,3‐dicarbonyl compounds via formation of chiral palladium enolate.Adv. Synth. Catal.200534711-131576158610.1002/adsc.200505199
    [Google Scholar]
  73. Bauke AlbadaH. RosatiF. CoquièreD. RoelfesG. LiskampR.M. Enantioselective CuII‐catalyzed diels–alder and michael addition reactions in water using bio‐inspired triazacyclophane‐based ligands.Chemistry2011201197141720
    [Google Scholar]
  74. GuiY. LiY. SunJ. ZhaZ. WangZ. Enantioselective Michael addition of pyrroles with nitroalkenes in aqueous media catalyzed by a water-soluble catalyst.J. Org. Chem.201883147491749910.1021/acs.joc.8b0114129888916
    [Google Scholar]
  75. DongX. YuanZ. QuY. GaoY. PeiX. QiQ. PeiY. LiJ. ChenY. WangC. An ATP–Cu(ii) catalyst efficiently catalyzes enantioselective Michael reactions in water.Green Chem.202123249876988010.1039/D1GC03259C
    [Google Scholar]
  76. HuisgenR. 1, 3‐dipolar cycloadditions. Past and future.Angew. Chem. Int. Ed. Engl.196321056559810.1002/anie.196305651
    [Google Scholar]
  77. TrostB.M. FlemingI. Comprehensive Organic SynthesisOxfordPergamon Press19914
    [Google Scholar]
  78. BreugstM. ReissigH.U. The Huisgen reaction: Milestones of the 1, 3‐dipolar cycloaddition.Angew. Chem. Int. Ed.20205930122931230710.1002/anie.20200311532255543
    [Google Scholar]
  79. PrasanthT. ChakrabortiG. MandalT. RavichandiranV. DashJ. Cycloaddition of N -sulfonyl and N-sulfamoyl azides with alkynes in aqueous media for the selective synthesis of 1,2,3-triazoles.Green Chem.202224291191510.1039/D1GC03340A37823060
    [Google Scholar]
  80. SmithA.L. DeMorinF.F. ParasN.A. HuangQ. PetkusJ.K. DohertyE.M. NixeyT. KimJ.L. WhittingtonD.A. EpsteinL.F. LeeM.R. RoseM.J. BabijC. FernandoM. HessK. LeQ. BeltranP. CarnahanJ. Selective inhibitors of the mutant B-Raf pathway: discovery of a potent and orally bioavailable aminoisoquinoline.J. Med. Chem.200952206189619210.1021/jm901081g19764794
    [Google Scholar]
  81. YangS.H. VanH.T.M. LeT.N. KhadkaD.B. ChoS.H. LeeK.T. ChungH.J. LeeS.K. AhnC.H. LeeY.B. ChoW.J. Synthesis, in vitro and in vivo evaluation of 3-arylisoquinolinamines as potent antitumor agents.Bioorg. Med. Chem. Lett.201020175277528110.1016/j.bmcl.2010.06.13220667733
    [Google Scholar]
  82. WeiX. ZhaoM. DuZ. LiX. Synthesis of 1-aminoisoquinolines via Rh(III)-catalyzed oxidative coupling.Org. Lett.201113174636463910.1021/ol201850521812407
    [Google Scholar]
  83. LiJ. JohnM. AckermannL. Amidines for versatile ruthenium(II)-catalyzed oxidative C-H activations with internal alkynes and acrylates.Chemistry201420185403540810.1002/chem.20130494424677682
    [Google Scholar]
  84. LiJ. TangM. ZangL. ZhangX. ZhangZ. AckermannL. Amidines for versatile cobalt(III)-catalyzed synthesis of isoquinolines through C–H functionalization with diazo compounds.Org. Lett.201618112742274510.1021/acs.orglett.6b0119927219713
    [Google Scholar]
  85. ZhouY. WangY. LouY. SongQ. Cu-Catalyzed denitrogenative transannulation of 3-aminoindazoles to assemble 1-aminoisoquinolines and 3-aminobenzothiophenes.Org. Lett.201921228869887310.1021/acs.orglett.9b0228831432684
    [Google Scholar]
  86. LiY. GaoL. ZhuH. LiG. ChenZ. Silver triflate and triflic anhydride-promoted expedient synthesis of acylated 1-aminoisoquinolines.Org. Biomol. Chem.201412366982698510.1039/C4OB01301H25111030
    [Google Scholar]
  87. SharmaH. KumarM. SethiA. Poonam RathiB. Metal-free construction of aminated isoquinoline frameworks from 2-(2-oxo-2-arylethyl) benzonitrile in an aqueous medium.Green Chem.202325116717110.1039/D2GC04044A
    [Google Scholar]
  88. KeriR.S. PatilM.R. PatilS.A. BudagumpiS. A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry.Eur. J. Med. Chem.201589720725110.1016/j.ejmech.2014.10.05925462241
    [Google Scholar]
  89. TaylorA.P. RobinsonR.P. FobianY.M. BlakemoreD.C. JonesL.H. FadeyiO. Modern advances in heterocyclic chemistry in drug discovery.Org. Biomol. Chem.201614286611663710.1039/C6OB00936K27282396
    [Google Scholar]
  90. DelostM.D. SmithD.T. AndersonB.J. NjardarsonJ.T. From oxiranes to oligomers: Architectures of US FDA approved pharmaceuticals containing oxygen heterocycles.J. Med. Chem.20186124109961102010.1021/acs.jmedchem.8b0087630024747
    [Google Scholar]
  91. JohnB. MartinC. MatthewP. PhilipT. Novel compounds.WO Patent 200012514A12000
  92. DonaldP. EstebanM. ToddK. Method of treating muscular degradation.WO Patent 2013173506A22013
  93. TsuruokaA. KakuY. KakinumaH. TsukadaI. YanagisawaM. NaitoT. Synthesis and antifungal activity of novel thiazole-containing triazole antifungals.Chem. Pharm. Bull. (Tokyo)19974571169117610.1248/cpb.45.11699246751
    [Google Scholar]
  94. MichaelC. CharlesB. JianD. TakeruE. KeithJ. NanJ. Complement pathway modulators and uses thereof.WO Patent 2013164802A12013
  95. TogoH. IshigamiS. YokoyamaM. A facile preparative method of C-nucleosides.Chem. Lett.19922191673167610.1246/cl.1992.1673
    [Google Scholar]
  96. CookA.E. MistryS.N. GregoryK.J. FurnessS.G.B. SextonP.M. ScammellsP.J. ConigraveA.D. ChristopoulosA. LeachK. Biased allosteric modulation at the CaS receptor engendered by structurally diverse calcimimetics.Br. J. Pharmacol.2015172118520010.1111/bph.1293725220431
    [Google Scholar]
  97. XuJ. LiuL. YanZ.C. LiuY. QinL. DengN. XuH.J. Photocatalyzed hydroxyalkylation of N -heteroaromatics with aldehydes in the aqueous phase.Green Chem.20232562268227310.1039/D3GC00162H
    [Google Scholar]
  98. LawrenceS.A. Amines: Synthesis, Properties and ApplicationsCambridge, UKCambridge University Press2004
    [Google Scholar]
  99. BaumgartenR.J. CurtisV.A. Deaminations (carbon-nitrogen bond cleavages).Amino, Nitrosco and Nitro Compounds and Their Derivatives (1982): Supplement F: Part 2, Volume 2Wiley PataiS. 198292999710.1002/9780470771679.ch7
    [Google Scholar]
  100. ContenteM.L. ParadisiF. Self-sustaining closed-loop multienzyme-mediated conversion of amines into alcohols in continuous reactions.Nat. Catal.20181645245910.1038/s41929‑018‑0082‑9
    [Google Scholar]
  101. RawalayS.S. ShechterH. Oxidation of primary, secondary, and tertiary amines with neutral permanganate. Simple method for degrading amines to aldehydes and ketones.J. Org. Chem.196732103129313110.1021/jo01285a042
    [Google Scholar]
  102. BaconR.G.R. HannaW.J.W. 913. Metal ions and complexes in organic reactions. Part V. Oxidations of primary and secondary amines with argentic picolinate.J. Chem. Soc.19654962496810.1039/jr9650004962
    [Google Scholar]
  103. SobhaniS. MalekiM. Oxidative deamination of α-aminophosphonates and amines by zinc dichromate trihydrate (ZnCr2O7˙3H2O) under solvent-free conditions at room temperature.Synlett20102010338338610.1055/s‑0029‑1219174
    [Google Scholar]
  104. SobhaniS. AryanejadS. MalekiM.F. Nicotinium dichromate (=3‐carboxypyridinium dichromate; NDC) as an efficient reagent for the oxidative deamination of amines and aminophosphonates.Helv. Chim. Acta201295461361710.1002/hlca.201100404
    [Google Scholar]
  105. BachmannW.E. CavaM.P. DreidingA.S. The conversion of primary amines to carbonyl compounds by a chloromine degradation.J. Am. Chem. Soc.195476215554555510.1021/ja01650a083
    [Google Scholar]
  106. BarmanD.C. SaikiaP. PrajapatiD. SandhuJ.S. Heterogeneous permanganate oxidations. A novel method for the deamination using solid supported iron-permanganate.Synth. Commun.200232223407341210.1081/SCC‑120014768
    [Google Scholar]
  107. PalN.K. SinghK. PatraM. YadavS. PandeyP.K. BeraJ.K. Ni(ii)-catalyzed oxidative deamination of benzyl amines with water.Green Chem.202325166212621710.1039/D3GC00672G
    [Google Scholar]
  108. ZimmermanJ.B. AnastasP.T. ErythropelH.C. LeitnerW. Designing for a green chemistry future.Science2020367647639740010.1126/science.aay306031974246
    [Google Scholar]
  109. BarhamJ.P. KönigB. Synthetic photoelectrochemistry.Angew. Chem. Int. Ed.20205929117321174710.1002/anie.20191376731805216
    [Google Scholar]
  110. BortolatoT. CuadrosS. SimionatoG. Dell’AmicoL. The advent and development of organophotoredox catalysis.Chem. Commun.20225891263128310.1039/D1CC05850A34994368
    [Google Scholar]
  111. Holmberg-DouglasN. NicewiczD.A. Photoredox-catalyzed C–H functionalization reactions.Chem. Rev.202212221925201610.1021/acs.chemrev.1c0031134585909
    [Google Scholar]
  112. GhoshS. PyneP. GhoshA. ChoudhuryS. HajraA. Visible-light-induced cascade reaction: A sustainable approach towards molecular complexity.Org. Biomol. Chem.20232181591162810.1039/D2OB02062A36723242
    [Google Scholar]
  113. SunK. LvQ.Y. ChenX.L. QuL.B. YuB. Recent advances in visible-light-mediated organic transformations in water.Green Chem.202123123224810.1039/D0GC03447A
    [Google Scholar]
  114. OuyangW.T. XiaoF. OuL.J. HeW.M. Green photocatalytic syntheses using water as solvent/hydrogen source/oxygen source.Curr. Opin. Green Sustain. Chem.20234010076010.1016/j.cogsc.2023.100760
    [Google Scholar]
  115. WangY. LiuX.F. HeW.M. Recent advances in the photocatalytic synthesis of aldehydes.Org. Chem. Front.202310164198421010.1039/D3QO01026K
    [Google Scholar]
  116. GribbleG.W. JouleJ.A. Progress in Heterocyclic ChemistryElsevier2018
    [Google Scholar]
  117. BanerjeeB. KoketsuM. Recent developments in the synthesis of biologically relevant selenium-containing scaffolds.Chem. Rev.2017339104127
    [Google Scholar]
  118. DuddeckH. BradenahlR. StefaniakL. JazwinskiJ. KamienskiB. Synthesis and multinuclear magnetic resonance investigation of some 1,3‐selenazole and 1,3‐selenazoline derivatives.Magn. Reson. Chem.2001391170971310.1002/mrc.934
    [Google Scholar]
  119. LiuJ. XuS. HuangC. ShenJ. YuS. YuY. SunQ. DaiQ. Synthesis and activity evaluation of selenazole-coupled CPI-1 irreversible bifunctional inhibitors for botulinum toxin A light chain.Bioorg. Med. Chem. Lett.20227312891310.1016/j.bmcl.2022.12891335914651
    [Google Scholar]
  120. JiH.T. WangK.L. OuyangW.T. LuoQ.X. LiH.X. HeW.M. Photoinduced, additive- and photosensitizer-free multi-component synthesis of naphthoselenazol-2-amines with air in water.Green Chem.202325207983798710.1039/D3GC02575F
    [Google Scholar]
  121. AgalaveS.G. MaujanS.R. PoreV.S. Click chemistry: 1,2,3-triazoles as pharmacophores.Chem. Asian J.20116102696271810.1002/asia.20110043221954075
    [Google Scholar]
  122. RostovtsevV.V. GreenL.G. FokinV.V. SharplessK.B. A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes.Angew. Chem. Int. Ed.200241142596259910.1002/1521‑3773(20020715)41:14<2596::AID‑ANIE2596>3.0.CO;2‑412203546
    [Google Scholar]
  123. KolbH.C. SharplessK.B. The growing impact of click chemistry on drug discovery.Drug Discov. Today20038241128113710.1016/S1359‑6446(03)02933‑714678739
    [Google Scholar]
  124. LiuL. ZhangS. XueF. LouG. ZhangH. MaS. DuanW. WangW. Catalytic enantioselective Henry reactions of isatins: Application in the concise synthesis of (S)-(-)-spirobrassinin.Chemistry201117287791779510.1002/chem.20110102521626595
    [Google Scholar]
  125. DeLorbeJ.E. HorneD. JoveR. MennenS.M. NamS. ZhangF.L. OvermanL.E. General approach for preparing epidithiodioxopiperazines from trioxopiperazine precursors: Enantioselective total syntheses of (+)- and (-)-gliocladine C, (+)-leptosin D, (+)-T988C, (+)-bionectin A, and (+)-gliocladin A.J. Am. Chem. Soc.2013135104117412810.1021/ja400315y23452236
    [Google Scholar]
  126. MohammadiS. HeiranR. HerreraR.P. Marqués-LópezE. Isatin as a strategic motif for asymmetric catalysis.ChemCatChem2013582131214810.1002/cctc.201300050
    [Google Scholar]
  127. VadiveluM. SugirdhaS. DheenkumarP. ArunY. KarthikeyanK. PraveenC. Solvent-free implementation of two dissimilar reactions using recyclable CuO nanoparticles under ball-milling conditions: Synthesis of new oxindole-triazole pharmacophores.Green Chem.201719153601361010.1039/C7GC01284E
    [Google Scholar]
  128. LooperR.E. RunnegarM.T.C. WilliamsR.M. Synthesis of the putative structure of 7-deoxycylindrospermopsin: C7 oxygenation is not required for the inhibition of protein synthesis.Angew. Chem. Int. Ed.200544253879388110.1002/anie.20050052015900531
    [Google Scholar]
  129. KangS.H. KangS.Y. LeeH.S. BuglassA.J. Total synthesis of natural tert-alkylamino hydroxy carboxylic acids.Chem. Rev.2005105124537455810.1021/cr040608g16351053
    [Google Scholar]
  130. VadiveluM. RaheemA.A. SugirdhaS. BhaskarG. KarthikeyanK. PraveenC. Gold catalyzed synthesis of tetrahydropyrimidines and octahydroquinazolines under ball milling conditions and evaluation of anticonvulsant potency.ARKIVOC2018390101
    [Google Scholar]
  131. WangD. LiuK. LiX. LuG. XueW. QianX. Mohamed OK. MengF. Design, synthesis, and in vitro and in vivo anti-angiogenesis study of a novel vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitor based on 1,2,3-triazole scaffold.Eur. J. Med. Chem.202121111308310.1016/j.ejmech.2020.11308333340911
    [Google Scholar]
  132. PonnamD. ArigariN.K. Kalvagunta Venkata NagaS.S. JonnalaK.K. SinghS. MeenaA. MisraP. LuqmanS. Synthesis of non‐toxic anticancer active forskolin‐indole‐triazole conjugates along with their in silico succinate dehydrogenase inhibition studies.J. Heterocycl. Chem.202158112090210110.1002/jhet.4332
    [Google Scholar]
  133. ShiriM. ZolfigolM.A. KrugerH.G. TanbakouchianZ. Bis- and trisindolylmethanes (BIMs and TIMs).Chem. Rev.201011042250229310.1021/cr900195a20041637
    [Google Scholar]
  134. SundaramoorthyR. VadiveluM. KarthikeyanK. PraveenC. Mechanosynthesis of triazolyl‐ bis (indolyl)methane pharmacophores via gold catalysis: A prelude to their molecular electronic properties and biological potency.ChemMedChem2023184e20220052910.1002/cmdc.20220052936529707
    [Google Scholar]
  135. PraveenC. Cycloisomerization of π‐coupled heteroatom nucleophiles by gold catalysis: En route to regiochemically defined heterocycles.Chem. Rec.20212171697173710.1002/tcr.20210010534061426
    [Google Scholar]
  136. CuccuF. De LucaL. DeloguF. ColacinoE. SolinN. MocciR. PorchedduA. Mechanochemistry: New tools to navigate the uncharted territory of “impossible” reactions.ChemSusChem20221517e20220036210.1002/cssc.20220036235867602
    [Google Scholar]
  137. AbdelliA. AzzouniS. PlaisR. GaucherA. EfritM.L. PrimD. Recent advances in the chemistry of 1,2,4-triazoles: Synthesis, reactivity and biological activities.Tetrahedron Lett.20218615351810.1016/j.tetlet.2021.153518
    [Google Scholar]
  138. GavaraL. SevailleL. De LucaF. MercuriP. BebroneC. FellerG. LegruA. CerboniG. TanfoniS. BaudD. CutoloG. BestgenB. CheliniG. VerdirosaF. SannioF. PozziC. BenvenutiM. KwapienK. FischerM. BeckerK. FrèreJ.M. ManganiS. GreshN. BerthomieuD. GalleniM. DocquierJ.D. HernandezJ.F. 4-Amino-1,2,4-triazole-3-thione-derived Schiff bases as metallo-β-lactamase inhibitors.Eur. J. Med. Chem.202020811272010.1016/j.ejmech.2020.11272032937203
    [Google Scholar]
  139. Al Sheikh AliA. KhanD. NaqviA. Al-blewiF.F. RezkiN. AouadM.R. HagarM. Design, synthesis, molecular modeling, anticancer studies, and density functional theory calculations of 4-(1,2,4-triazol-3-ylsulfanylmethyl)-1,2,3-triazole derivatives.ACS Omega20216130131610.1021/acsomega.0c0459533458482
    [Google Scholar]
  140. SundaramoorthyR. VadiveluM. ThirumoorthyK. KarthikeyanK. PraveenC. Step‐economical mechanosynthesis of hybrid azoles: deciphering their π‐orbital and pharmacological characteristics.ChemMedChem20231813e20230000810.1002/cmdc.20230000837055351
    [Google Scholar]
  141. GalambosJ. DományG. NógrádiK. WágnerG. KeserűG.M. BobokA. KolokS. Mikó-BakkM.L. VastagM. SághyK. KótiJ. SzakácsZ. BéniZ. GálK. SzombathelyiZ. GreinerI. 4-Aryl-3-arylsulfonyl-quinolines as negative allosteric modulators of metabotropic GluR5 receptors: From HTS hit to development candidate.Bioorg. Med. Chem. Lett.20162641249125210.1016/j.bmcl.2016.01.02426774652
    [Google Scholar]
  142. HayatF. MoseleyE. SalahuddinA. Van ZylR.L. AzamA. Antiprotozoal activity of chloroquinoline based chalcones.Eur. J. Med. Chem.20114651897190510.1016/j.ejmech.2011.02.00421377771
    [Google Scholar]
  143. MichaelJ.P. Quinoline, quinazoline and acridonealkaloids.Nat. Prod. Rep.200825116618710.1039/B612168N18250901
    [Google Scholar]
  144. StrekowskiL. SayM. HenaryM. RuizP. ManzelL. MacfarlaneD.E. BojarskiA.J. Synthesis and activity of substituted 2-phenylquinolin-4-amines, antagonists of immunostimulatory CpG-oligodeoxynucleotides.J. Med. Chem.20034671242124910.1021/jm020374y12646034
    [Google Scholar]
  145. GrassbergerM.A. TurnowskyF. HildebrandtJ. Preparation and antibacterial activities of new 1,2,3-diazaborine derivatives and analogs.J. Med. Chem.198427894795310.1021/jm00374a0036379179
    [Google Scholar]
  146. HussainI. YawerM.A. LalkM. LindequistU. VillingerA. FischerC. LangerP. Hetero-Diels–Alder reaction of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with arylsulfonylcyanides. Synthesis and antimicrobial activity of 4-hydroxy-2-(arylsulfonyl)pyridines.Bioorg. Med. Chem.200816239898990310.1016/j.bmc.2008.10.03318990580
    [Google Scholar]
  147. LeeH.Y. ChangJ.Y. NienC.Y. KuoC.C. ShihK.H. WuC.H. ChangC.Y. LaiW.Y. LiouJ.P. 5-Amino-2-aroylquinolines as highly potent tubulin polymerization inhibitors. Part 2. The impact of bridging groups at position C-2.J. Med. Chem.201154248517852510.1021/jm201031f22060033
    [Google Scholar]
  148. LiuX.W. WangJ.Q. MaH. ZhuQ. XieL.Y. Ball-milling synthesis of sulfonyl quinolines via coupling of haloquinolines with sulfonic acids.Green Chem.202123197589759310.1039/D1GC02015C
    [Google Scholar]
  149. FyfeJ.W.B. WatsonA.J.B. Recent developments in organoboron chemistry: Old dogs, new tricks.Chem201731315510.1016/j.chempr.2017.05.008
    [Google Scholar]
  150. LennoxA.J.J. Lloyd-JonesG.C. Selection of boron reagents for Suzuki–Miyaura coupling.Chem. Soc. Rev.201443141244310.1039/C3CS60197H24091429
    [Google Scholar]
  151. YangX. KalitaS.J. MaheshuniS. HuangY.Y. Recent advances on transition-metal-catalyzed asymmetric tandem reactions with organoboron reagents.Coord. Chem. Rev.2019392354810.1016/j.ccr.2019.04.009
    [Google Scholar]
  152. HallD.G. Boronic Acids: Preparation and Applications in Organic Synthesis Medicine and MaterialsWeinheimWiley-VCH201110.1002/9783527639328
    [Google Scholar]
  153. ShadeR.E. HydeA.M. OlsenJ.C. MerlicC.A. Copper-promoted coupling of vinyl boronates and alcohols: A mild synthesis of allyl vinyl ethers.J. Am. Chem. Soc.201013241202120310.1021/ja907982w20067245
    [Google Scholar]
  154. ChanD.G. WinternheimerD.J. MerlicC.A. Enol silyl ethers via copper(II)-catalyzed C-O bond formation.Org. Lett.201113102778278110.1021/ol200929721510621
    [Google Scholar]
  155. OhataJ. MinusM.B. AbernathyM.E. BallZ.T. Histidine-directed arylation/alkenylation of backbone N–H bonds mediated by copper (II).J. Am. Chem. Soc.2016138247472747510.1021/jacs.6b0339027249339
    [Google Scholar]
  156. HuangF. QuachT.D. BateyR.A. Copper-catalyzed nondecarboxylative cross coupling of alkenyltrifluoroborate salts with carboxylic acids or carboxylates: Synthesis of enol esters.Org. Lett.201315123150315310.1021/ol401371223734856
    [Google Scholar]
  157. MoD.L. WinkD.A. AndersonL.L. Preparation and rearrangement of N-vinyl nitrones: Synthesis of spiroisoxazolines and fluorene-tethered isoxazoles.Org. Lett.201214205180518310.1021/ol302288523046082
    [Google Scholar]
  158. SonJ. KimK.H. MoD.L. WinkD.J. AndersonL.L. Single‐step modular synthesis of unsaturated morpholine N‐oxides and their cycloaddition reactions.Angew. Chem. Int. Ed.201756113059306310.1002/anie.20161179128261967
    [Google Scholar]
  159. BiH.Y. LiC.J. WeiC. LiangC. MoD.L. Copper-catalyzed tri- or tetrafunctionalization of alkenylboronic acids to prepare tetrahydrocarbazol-1-ones and indolo[2,3- a ]carbazoles.Green Chem.202022175815582110.1039/D0GC01514H
    [Google Scholar]
  160. CaiL. FuL. ZhouC. GaoY. LiS. LiG. Rh(i)-Catalyzed regioselective arylcarboxylation of acrylamides with arylboronic acids and CO 2.Green Chem.202022217328733210.1039/D0GC02667K
    [Google Scholar]
  161. ZhangX. DingQ. WangJ. YangJ. FanX. ZhangG. Pd(ii)-Catalyzed [4 + 1 + 1] cycloaddition of simple o -aminobenzoic acids, CO and amines: Direct and versatile synthesis of diverse N -substituted quinazoline-2,4(1 H, 3 H )-diones.Green Chem.202123152653510.1039/D0GC03254A
    [Google Scholar]
  162. GatadiS. NanduriS. New potential drug leads against MDR-MTB: A short review.Bioorg. Chem.20209510353410.1016/j.bioorg.2019.10353431884135
    [Google Scholar]
  163. ZhaoY. LiuF. HeG. LiK. ZhuC. YuW. ZhangC. XieM. LinJ. ZhangJ. JinY. Discovery of arylamide-5-anilinoquinazoline-8-nitro derivatives as VEGFR-2 kinase inhibitors: Synthesis, in vitro biological evaluation and molecular docking.Bioorg. Med. Chem. Lett.2019292312671110.1016/j.bmcl.2019.12671131668972
    [Google Scholar]
  164. GatadiS. LakshmiT.V. NanduriS. 4(3H)-Quinazolinone derivatives: Promising antibacterial drug leads.Eur. J. Med. Chem.201917015717210.1016/j.ejmech.2019.03.01830884322
    [Google Scholar]
  165. NobleC. CannaertA. LinnetK. StoveC.P. Application of an activity‐based receptor bioassay to investigate the in vitro activity of selected indole‐ and indazole‐3‐carboxamide‐based synthetic cannabinoids at CB1 and CB2 receptors.Drug Test. Anal.201911350151110.1002/dta.251730280499
    [Google Scholar]
  166. IshikuraM. AbeT. ChoshiT. HibinoS. Simple indole alkaloids and those with a nonrearranged monoterpenoid unit.Nat. Prod. Rep.201532101389147110.1039/C5NP00032G26151910
    [Google Scholar]
  167. SravanthiT.V. ManjuS.L. Indoles - A promising scaffold for drug development.Eur. J. Pharm. Sci.20169111010.1016/j.ejps.2016.05.02527237590
    [Google Scholar]
  168. SongC. LiuK. JiangX. DongX. WengY. ChiangC.W. LeiA. Electrooxidation enables selective dehydrogenative [4+ 2] annulation between indole derivatives.Angew. Chem. Int. Ed.202059187193719710.1002/anie.20200022632073715
    [Google Scholar]
  169. NakamuraI. SatoY. TeradaM. Platinum-catalyzed dehydroalkoxylation-cyclization cascade via N-O bond cleavage.J. Am. Chem. Soc.2009131124198419910.1021/ja900174t19267436
    [Google Scholar]
  170. SharpP.P. BanwellM.G. RennerJ. LohmannK. WillisA.C. Consecutive gold(I)-catalyzed cyclization reactions of o-(buta-1,3-diyn-1-yl-)-substituted N-aryl ureas: a one-pot synthesis of pyrimido[1,6-a]indol-1(2H)-ones and related systems.Org. Lett.201315112616261910.1021/ol400798623692341
    [Google Scholar]
  171. ChenZ. ZengX. YanB. ZhaoY. FuY. Au-catalyzed intramolecular annulations toward fused tricyclic [1,3]oxazino[3,4-a]indol-1-ones under extremely mild conditions.RSC Advances2015512110025110025510.1039/C5RA21109C
    [Google Scholar]
  172. ZhangL.B. ZhuM.H. NiS.F. WenL.R. LiM. Silver-mediated indole (4 + 2) dearomative annulation with N-radicals: A strategy to construct heterocycle-fused indolines.ACS Catal.2019931680168510.1021/acscatal.8b04933
    [Google Scholar]
  173. HanZ.P. XuM.M. ZhangR.Y. XuX.P. JiS.J. Rh(iii)-Catalyzed C(sp 2 )–H functionalization/cyclization cascade of N -carboxamide indole and iodonium reagents for access to indoloquinazolinone derivatives.Green Chem.202123176337634010.1039/D1GC01820E
    [Google Scholar]
  174. FinefieldJ.M. FrisvadJ.C. ShermanD.H. WilliamsR.M. Fungal origins of the bicyclo[2.2.2]diazaoctane ring system of prenylated indole alkaloids.J. Nat. Prod.201275481283310.1021/np200954v22502590
    [Google Scholar]
  175. YuanK. JiaY. Recent progress in the synthesis of 3,4-fused indole alkaloids.Youji Huaxue2018389238610.6023/cjoc201705058
    [Google Scholar]
  176. LiL. ChenZ. ZhangX. JiaY. Divergent strategy in natural product total synthesis.Chem. Rev.201811873752383210.1021/acs.chemrev.7b0065329516724
    [Google Scholar]
  177. HuiC. ChenF. PuF. XuJ. Innovation in protecting-group-free natural product synthesis.Nat. Rev. Chem.2019328510710.1038/s41570‑018‑0071‑1
    [Google Scholar]
  178. LiJ. LiJ. XuY. WangY. ZhangL. DingL. XuanY. PangT. LinH. Asymmetric synthesis and biological activities of natural product (+)-balasubramide and its derivatives.Nat. Prod. Res.201630780080510.1080/14786419.2015.107136326247374
    [Google Scholar]
  179. WangL.X. QiuB. AnX.D. DongP.Z. LiuR.B. XiaoJ. Organocatalytic cascade aldimine condensation/[1,6]-hydride transfer/Mannich-type cyclization: Sustainable access to indole-2,3-fused diazocanes.Green Chem.202123208181818610.1039/D1GC02570H
    [Google Scholar]
  180. TarselliM.A. RaehalK.M. BrasherA.K. StreicherJ.M. GroerC.E. CameronM.D. BohnL.M. MicalizioG.C. Synthesis of conolidine, a potent non-opioid analgesic for tonic and persistent pain.Nat. Chem.20113644945310.1038/nchem.105021602859
    [Google Scholar]
  181. ShiB.B. ChenJ. BaoM.F. ZengY. CaiX.H. Alkaloids isolated from Tabernaemontana bufalina display xanthine oxidase inhibitory activity.Phytochemistry201916611206010.1016/j.phytochem.2019.11206031302343
    [Google Scholar]
  182. HuangL. DaiL.X. YouS.L. Enantioselective synthesis of indole-annulated medium-sized rings.J. Am. Chem. Soc.2016138185793579610.1021/jacs.6b0267827093370
    [Google Scholar]
  183. BennasarM.L. ZulaicaE. SoléD. RocaT. García-DíazD. AlonsoS. Total synthesis of the bridged indole alkaloid apparicine.J. Org. Chem.200974218359836810.1021/jo901986v19824689
    [Google Scholar]
  184. ZhaoP. HuangZ. ZhaoC. LiuS. Facile formation of eight‐membered rings of indoloazocine framework via intramolecular oxidative heck cyclization.J. Heterocycl. Chem.201956110811310.1002/jhet.3378
    [Google Scholar]
  185. HuangY. YangY. SongH. LiuY. WangQ. Synthesis of structurally diverse 2,3-Fused Indoles via microwave-assisted AgSbF6-catalysed intramolecular difunctionalization of o-Alkynylanilines.Sci. Rep.2015511351610.1038/srep1351626310858
    [Google Scholar]
  186. McMillsM.C. BergmeierS.C. 1.02 - Aziridines and azirines: Fused-ring derivatives.Comprehensive Heterocyclic Chemistry IIIElsevier2008110517210.1016/B978‑008044992‑0.00102‑4
    [Google Scholar]
  187. KissL. RemeteA.M. VolkB. Aziridines and azirines: Fused-ring derivatives.Comprehensive Heterocyclic Chemistry IVElsevier202211519810.1016/B978‑0‑12‑409547‑2.14757‑2
    [Google Scholar]
  188. DegennaroL. TrincheraP. LuisiR. Recent advances in the stereoselective synthesis of aziridines.Chem. Rev.2014114167881792910.1021/cr400553c24823261
    [Google Scholar]
  189. KirbyG. GrimaudL. VitaleM.R. PrestatG. BerhalF. Iron(ii)-catalyzed intermolecular aziridination of alkenes employing hydroxylamine derivatives as clean nitrene sources.Green Chem.202123239428943210.1039/D1GC03495B
    [Google Scholar]
  190. DelabougliseD. GarnierF. Chiral metals: amino acid-substituted conducting polypyrroles.Synth. Met.199039111712010.1016/0379‑6779(90)90205‑Y
    [Google Scholar]
  191. ZhouC. SunX. HanJ. Chiral conducting polymer nanomaterials: Synthesis and applications in enantioselective recognition.Mater. Chem. Front.2020492499251610.1039/D0QM00103A
    [Google Scholar]
  192. MaZ. MaZ. ZhangD. Synthesis of multi-substituted pyrrole derivatives through [3+2] cycloaddition with tosylmethyl isocyanides (TosMICs) and electron-deficient compounds.Molecules20182310266610.3390/molecules2310266630336556
    [Google Scholar]
  193. GuoL. LiJ. VaccaroL. LiM. GuY. Direct synthesis of N -aryl/alkyl 3-carbonylpyrroles from the Morita–Baylis–Hillman acetate of 2,2-dimethoxyacetaldehyde and a primary amine.Green Chem.202123239465946910.1039/D1GC03635A
    [Google Scholar]
  194. ZhangA.H. JiangN. GuW. MaJ. WangY.R. SongY.C. TanR.X. Characterization, synthesis and self-aggregation of (-)-alternarlactam: A new fungal cytotoxin with cyclopentenone and isoquinolinone scaffolds.Chemistry20101648144791448510.1002/chem.20100220521038331
    [Google Scholar]
  195. LefrancF. SauvageS. Van GoietsenovenG. MégalizziV. Lamoral-TheysD. DebeirO. Spiegl-KreineckerS. BergerW. MathieuV. DecaesteckerC. KissR. Narciclasine, a plant growth modulator, activates Rho and stress fibers in glioblastoma cells.Mol. Cancer Ther.2009871739175010.1158/1535‑7163.MCT‑08‑093219531573
    [Google Scholar]
  196. GrigorjevaL. DaugulisO. Cobalt-catalyzed, aminoquinoline-directed C(sp²)-H bond alkenylation by alkynes.Angew. Chem. Int. Ed.20145338102091021210.1002/anie.20140457925060365
    [Google Scholar]
  197. KathiravanS. NichollsI.A. Cobalt Catalyzed, regioselective c(sp 2 )–h activation of amides with 1,3-diynes.Org. Lett.201719184758476110.1021/acs.orglett.7b0211928846427
    [Google Scholar]
  198. ShiotaH. AnoY. AiharaY. FukumotoY. ChataniN. Nickel-catalyzed chelation-assisted transformations involving ortho C-H bond activation: Regioselective oxidative cycloaddition of aromatic amides to alkynes.J. Am. Chem. Soc.201113338149521495510.1021/ja206850s21875095
    [Google Scholar]
  199. KajitaY. MatsubaraS. KurahashiT. Nickel-catalyzed decarbonylative addition of phthalimides to alkynes.J. Am. Chem. Soc.2008130196058605910.1021/ja711442618412348
    [Google Scholar]
  200. HysterT.K. RovisT. Rhodium-catalyzed oxidative cycloaddition of benzamides and alkynes via C-H/N-H activation.J. Am. Chem. Soc.201013230105651056910.1021/ja103776u20662529
    [Google Scholar]
  201. GuimondN. GouliarasC. FagnouK. Rhodium(III)-catalyzed isoquinolone synthesis: The N-O bond as a handle for C-N bond formation and catalyst turnover.J. Am. Chem. Soc.2010132206908690910.1021/ja102571b20433170
    [Google Scholar]
  202. AckermannL. LyginA.V. HofmannN. Ruthenium-catalyzed oxidative annulation by cleavage of C-H/N-H bonds.Angew. Chem. Int. Ed.201150286379638210.1002/anie.20110194321612009
    [Google Scholar]
  203. AckermannL. FennerS. Ruthenium-catalyzed C-H/N-O bond functionalization: Green isoquinolone syntheses in water.Org. Lett.201113246548655110.1021/ol202861k22077379
    [Google Scholar]
  204. MoJ. MüllerT. OliveiraJ.C.A. DemeshkoS. MeyerF. AckermannL. Iron‐catalyzed C−H activation with propargyl acetates: Mechanistic insights into iron(II) by experiment, kinetics, Mössbauer spectroscopy, and computation.Angew. Chem. Int. Ed.20195837128741287810.1002/anie.20190411031207070
    [Google Scholar]
  205. CeraG. HavenT. AckermannL. Iron-catalyzed C–H/N–H activation by triazole guidance: Versatile alkyne annulation.Chem. Commun.201753486460646310.1039/C7CC03376A28561113
    [Google Scholar]
  206. MengH. XuH. ZhouZ. TangZ. LiY. ZhouY. YiW. WuX. Recyclable rhodium-catalyzed C–H activation/[4 + 2] annulation with unconventional regioselectivity at ambient temperature: Experimental development and mechanistic insight.Green Chem.202224187012702110.1039/D2GC02347D
    [Google Scholar]
  207. LiL. WangM. ZhangX. JiangY. MaD. Assembly of substituted 3-methyleneisoindolin-1-ones via a CuI/l-proline-catalyzed domino reaction process of 2-bromobenzamides and terminal alkynes.Org. Lett.20091161309131210.1021/ol900092219226134
    [Google Scholar]
  208. ZhouB. HouW. YangY. LiY. Rhodium(III)-catalyzed amidation of aryl ketone O-methyl oximes with isocyanates by C-H activation: Convergent synthesis of 3-methyleneisoindolin-1-ones.Chemistry201319154701470610.1002/chem.20120444823460480
    [Google Scholar]
  209. FillmoreB.C. PriceJ. DeanR. BrownA.A. DeckenA. EislerS. Accessing the ene–imine motif in 1 H -isoindole, thienopyrrole, and thienopyridine building blocks.ACS Omega2020536229142292510.1021/acsomega.0c0228232954140
    [Google Scholar]
  210. Folgueiras-AmadorA.A. PhilippsK. GuilbaudS. PoelakkerJ. WirthT. An easy‐to‐machine electrochemical flow microreactor: Efficient synthesis of isoindolinone and flow functionalization.Angew. Chem. Int. Ed.20175648154461545010.1002/anie.20170971729045019
    [Google Scholar]
  211. JiaX. LiP. ZhangX. LiuS. ShiX. MaW. DongH. LuY. NiH. ZhaoF. Metal‐free selective and diverse synthesis of three distinct sets of isoindolinones from 2‐alkynylbenzoic acids and amines.Eur. J. Org. Chem.20202020477343735710.1002/ejoc.202001413
    [Google Scholar]
  212. BanikT. KaliappanK.P. A serendipitous one‐pot cyanation/hydrolysis/enamide formation: Direct access to 3‐methyleneisoindolin‐1‐ones.Chemistry202127262863310.1002/chem.20200320932812249
    [Google Scholar]
  213. SharmaS. NayalO.S. SharmaA. RanaR. MauryaS.K. Tin(II) triflate catalysed synthesis of 3‐methyleneisoindolin‐1‐ones.ChemistrySelect2019461985198810.1002/slct.201804009
    [Google Scholar]
  214. WangZ. ZhuF. LiY. WuX.F. Palladium‐catalyzed carbonylative synthesis of 3‐methyleneisoindolin‐1‐ones from ketimines with hexacarbonylmolybdenum(0) as the carbon monoxide source.ChemCatChem201791949810.1002/cctc.201601306
    [Google Scholar]
  215. WuJ. MaY. WangY. WangC. LuoH. LiD. YangJ. Copper-catalyzed direct synthesis of 3-methylene-2-arylisoindolin-1-ones with calcium carbide as a surrogate of gaseous acetylene.Green Chem.20232593425343010.1039/D2GC03572C
    [Google Scholar]
  216. O’KennedyR. ThornesR.D. Coumarins: Biology, Applications and Mode of ActionNew YorkJohn Wiley & Sons1997360
    [Google Scholar]
  217. MurrayR.D.H. KinghornA.D. FalkH. GibbonsS. AsakawaY. LiuJ-K. DirschV.M. Progress in the Chemistry of Organic Natural ProductsSpringer-Verlag1997
    [Google Scholar]
  218. EmamiS. DadashpourS. Current developments of coumarin-based anti-cancer agents in medicinal chemistry.Eur. J. Med. Chem.201510261163010.1016/j.ejmech.2015.08.03326318068
    [Google Scholar]
  219. Al-WarhiT. SabtA. ElkaeedE.B. EldehnaW.M. Recent advancements of coumarin-based anticancer agents: An up-to-date review.Bioorg. Chem.202010310416310.1016/j.bioorg.2020.10416332890989
    [Google Scholar]
  220. ChenJ. YuY. LiS. DingW. Resveratrol and coumarin: Novel agricultural antibacterial agent against Ralstonia solanacearum in vitro and in vivo.Molecules20162111150110.3390/molecules2111150127834875
    [Google Scholar]
  221. KrügerS. WinheimL. MorlockG.E. Planar chromatographic screening and quantification of coumarin in food, confirmed by mass spectrometry.Food Chem.20182391182119110.1016/j.foodchem.2017.07.05828873538
    [Google Scholar]
  222. StiefelC. SchubertT. MorlockG.E. Bioprofiling of cosmetics with focus on streamlined coumarin analysis.ACS Omega2017285242525010.1021/acsomega.7b0056230023744
    [Google Scholar]
  223. SethnaS.M. ShahN.M. The chemistry of coumarins.Chem. Rev.194536116210.1021/cr60113a001
    [Google Scholar]
  224. MolnarM. LončarićM. KovačM. Green chemistry approaches to the synthesis of coumarin derivatives.Curr. Org. Chem.202024144310.2174/1385272824666200120144305
    [Google Scholar]
  225. BrufaniG. ValentiniF. SabatelliF. Di ErasmoB. AfanasenkoA.M. LiC.J. VaccaroL. Correction: Valorisation of phenols to coumarins through one-pot palladium-catalysed double C–H functionalizations.Green Chem.202224249781978110.1039/D2GC90108K
    [Google Scholar]
  226. JohnsonC.R. Utilization of sulfoximines and derivatives as reagents for organic synthesis.Acc. Chem. Res.197361034134710.1021/ar50070a003
    [Google Scholar]
  227. KennewellP.D. TaylorJ.B. The sulphoximides.Chem. Soc. Rev.19754218910.1039/cs9750400189
    [Google Scholar]
  228. HanY. XingK. ZhangJ. TongT. ShiY. CaoH. YuH. ZhangY. LiuD. ZhaoL. Application of sulfoximines in medicinal chemistry from 2013 to 2020.Eur. J. Med. Chem.202120911288510.1016/j.ejmech.2020.11288533227576
    [Google Scholar]
  229. ReggelinM. ZurC. Sulfoximines: Structures, properties and synthetic applications.Synthesis20002000116410.1055/s‑2000‑6217
    [Google Scholar]
  230. MaY.N. GuoC.Y. ZhaoQ. ZhangJ. ChenX. Synthesis of dibenzothiazines from sulfides by one-pot N, O -transfer and intramolecular C–H amination.Green Chem.201820132953295810.1039/C8GC01057A
    [Google Scholar]
  231. XuH.B. YangJ.H. ChaiX.Y. ZhuY.Y. DongL. Iridium(III)-catalyzed C-H amidation/cyclization of NH -sulfoximines with N -alkoxyamides: Formation of thiadiazine 1-oxides.Org. Lett.20202252060206310.1021/acs.orglett.0c0052032101014
    [Google Scholar]
  232. HuangJ. HuangY. WangT. HuangQ. WangZ. ChenZ. Microwave-assisted Cp*Co III -catalyzed C–H activation/double C–N bond formation reactions to thiadiazine 1-oxides.Org. Lett.20171951128113110.1021/acs.orglett.7b0012028212044
    [Google Scholar]
  233. HirataY. SekineD. KatoY. LinL. KojimaM. YoshinoT. MatsunagaS. Cobalt(III)/chiral carboxylic acid‐catalyzed enantioselective synthesis of benzothiadiazine‐1‐oxides via C−H activation.Angew. Chem. Int. Ed.20226128e20220534110.1002/anie.20220534135491238
    [Google Scholar]
  234. WuC. HuangR. ZhangM. ChenZ. Copper-catalyzed synthesis of thiadiazine-1-oxides in reusable aqueous medium under external [Ag]/ligand/base-free conditions.J. Org. Chem.202085284185010.1021/acs.joc.9b0282831849230
    [Google Scholar]
  235. HommelsheimR. BauschS. van NahlR. WardJ.S. RissanenK. BolmC. Synthesis of 3-amino-substituted benzothiadiazine oxides by a palladium-catalysed cascade reaction.Green Chem.20232583021302610.1039/D3GC00442B
    [Google Scholar]
  236. KehoeR.A. LightM.E. JonesD.J. McGlackenG.P. A phosphine free, inorganic base free, one-pot tandem Mizoroki–Heck olefination/direct arylation/hydrogenation sequence, to give multicyclic alkylated heteroarenes.Green Chem.202325145654566010.1039/D3GC01403G
    [Google Scholar]
  237. VentafriddaV. MartinoG. MandelliV. EmanueliA. Indoprofen, a new analgesic and anti‐inflammatory drug in cancer pain.Clin. Pharmacol. Ther.197517328428910.1002/cpt197517328447281
    [Google Scholar]
  238. JiangY. XuK. ZengC. Use of electrochemistry in the synthesis of heterocyclic structures.Chem. Rev.201811894485454010.1021/acs.chemrev.7b0027129039924
    [Google Scholar]
  239. LunnM.R. RootD.E. MartinoA.M. FlahertyS.P. KelleyB.P. CoovertD.D. BurghesA.H. thi ManN. MorrisG.E. ZhouJ. AndrophyE.J. SumnerC.J. StockwellB.R. Indoprofen upregulates the survival motor neuron protein through a cyclooxygenase-independent mechanism.Chem. Biol.200411111489149310.1016/j.chembiol.2004.08.02415555999
    [Google Scholar]
  240. MesserliF.H. RoushG.C. OparilS. Chlorthalidone and hydrochlorothiazide for treatment of patients with hypertension.JAMA Intern. Med.202018081133113310.1001/jamainternmed.2020.174232568361
    [Google Scholar]
  241. KawamataY. HayashiK. CarlsonE. ShajiS. WaldmannD. SimmonsB.J. EdwardsJ.T. ZapfC.W. SaitoM. BaranP.S. Chemoselective electrosynthesis using rapid alternating polarity.J. Am. Chem. Soc.202114340165801658810.1021/jacs.1c0657234596395
    [Google Scholar]
  242. DasS. AddisD. KnöpkeL.R. BentrupU. JungeK. BrücknerA. BellerM. Selective catalytic monoreduction of phthalimides and imidazolidine-2,4-diones.Angew. Chem. Int. Ed.201150399180918410.1002/anie.20110422621919154
    [Google Scholar]
  243. WangC.Q. YeL. FengC. LohT.P. Bond Cleavage Enabled Redox-NeutralC-F. C–F bond cleavage enabled redox-neutral [4+1] annulation via C–H bond activation.J. Am. Chem. Soc.201713951762176510.1021/jacs.6b1214228098988
    [Google Scholar]
  244. TianC. DhawaU. ScheremetjewA. AckermannL. Cupraelectro-catalyzed alkyne annulation: Evidence for distinct C–H alkynylation and decarboxylative C–H/C–C manifolds.ACS Catal.2019997690769610.1021/acscatal.9b02348
    [Google Scholar]
  245. PatureauF.W. BessetT. GloriusF. Rhodium-catalyzed oxidative olefination of C-H bonds in acetophenones and benzamides.Angew. Chem. Int. Ed.20115051064106710.1002/anie.20100622221268195
    [Google Scholar]
  246. OritoK. HoribataA. NakamuraT. UshitoH. NagasakiH. YuguchiM. YamashitaS. TokudaM. Preparation of benzolactams by Pd(OAc)2-catalyzed direct aromatic carbonylation.J. Am. Chem. Soc.200412644143421434310.1021/ja045342+15521739
    [Google Scholar]
  247. WangC. ZhangL. ChenC. HanJ. YaoY. ZhaoY. Oxalyl amide assisted palladium-catalyzed synthesis of pyrrolidones via carbonylation of γ-C(sp 3 )–H bonds of aliphatic amine substrates.Chem. Sci.2015684610461410.1039/C5SC00519A29619163
    [Google Scholar]
  248. YingJ. FuL.Y. ZhongG. WuX.F. Cobalt-catalyzed direct carbonylative synthesis of free ( NH )-benzo[ cd ]indol-2(1 H )-ones from naphthylamides.Org. Lett.201921145694569810.1021/acs.orglett.9b0203731246481
    [Google Scholar]
  249. RajeshkumarV. LeeT.H. ChuangS.C. Palladium-catalyzed oxidative insertion of carbon monoxide to N-sulfonyl-2-aminobiaryls through C-H bond activation: access to bioactive phenanthridinone derivatives in one pot.Org. Lett.20131571468147110.1021/ol400192223477600
    [Google Scholar]
  250. RousseauxS. GorelskyS.I. ChungB.K.W. FagnouK. Investigation of the mechanism of C(sp3)-H bond cleavage in Pd(0)-catalyzed intramolecular alkane arylation adjacent to amides and sulfonamides.J. Am. Chem. Soc.201013231106921070510.1021/ja103081n20681702
    [Google Scholar]
  251. BisaiV. UnhaleR.A. SunejaA. DhanasekaranS. SinghV.K. An efficient entry to syn - and anti -selective isoindolinones via an organocatalytic direct mannich/lactamization sequence.Org. Lett.20151792102210510.1021/acs.orglett.5b0067625867051
    [Google Scholar]
  252. GuoS. XieY. HuX. XiaC. HuangH. Diastereo- and enantioselective catalytic tandem Michael addition/Mannich reaction: Access to chiral isoindolinones and azetidines with multiple stereocenters.Angew. Chem. Int. Ed.201049152728273110.1002/anie.20090732020217878
    [Google Scholar]
  253. AdachiS. OnozukaM. YoshidaY. IdeM. SaikawaY. NakataM. Smooth isoindolinone formation from isopropyl carbamates via Bischler-Napieralski-type cyclization.Org. Lett.201416235836110.1021/ol403142d24364475
    [Google Scholar]
  254. YuM. GaoY. ZhangL. ZhangY. ZhangY. YiH. HuangZ. LeiA. Electrochemical-induced benzyl C–H amination towards the synthesis of isoindolinones via aroyloxy radical-mediated C–H activation.Green Chem.20222441445145010.1039/D1GC04676D
    [Google Scholar]
  255. KimC.Y. WhittingtonD.A. ChangJ.S. LiaoJ. MayJ.A. ChristiansonD.W. Structural aspects of isozyme selectivity in the binding of inhibitors to carbonic anhydrases II and IV.J. Med. Chem.200245488889310.1021/jm010163d11831900
    [Google Scholar]
  256. GangulyA.K. AlluriS.S. CarocciaD. BiswasD. WangC.H. KangE. ZhangY. McPhailA.T. CarrollS.S. BurleinC. MunshiV. OrthP. StricklandC. Design, synthesis, and X-ray crystallographic analysis of a novel class of HIV-1 protease inhibitors.J. Med. Chem.201154207176718310.1021/jm200778q21916489
    [Google Scholar]
  257. GuinS. MajeeD. SamantaS. Unmasking the reverse reactivity of cyclic N -sulfonyl ketimines: Multifaceted applications in organic synthesis.Chem. Commun.202157729010902810.1039/D1CC03439A34498642
    [Google Scholar]
  258. WangJ. LiuX. WuZ. LiF. ZhangM.L. MiY. WeiJ. ZhouY. LiuL. Ag-Catalyzed ring-opening of tertiary cycloalkanols for C–H functionalization of cyclic aldimines.Chem. Commun.202157121506150910.1039/D0CC07181A33443251
    [Google Scholar]
  259. WangH.X. LiZ.H. LiW.W. QuG.R. YangQ.L. GuoH.M. Electrochemically driven oxidative C–H/N–H cross-coupling reactions of cyclic sulfamidate imines with primary anilines and secondary amines.Green Chem.202224218377838510.1039/D2GC03218J
    [Google Scholar]
  260. WangX. ShiA. HuangX.Q. ChenX. LiT. QuL. YuB. Visible-light-induced cyclization of cyclic N -sulfonyl ketimines to N -sulfonamide fused imidazolidines.Org. Biomol. Chem.202220183798380210.1039/D2OB00460G35445233
    [Google Scholar]
  261. ShiA. SunK. ChenX. QuL. ZhaoY. YuB. Perovskite as recyclable photocatalyst for annulation reaction of N -sulfonyl ketimines.Org. Lett.202224129930310.1021/acs.orglett.1c0396034914402
    [Google Scholar]
  262. ShiA. SunK. WuY. XiangP. KrylovI.B. Terent’evA.O. ChenX. YuB. Oxygen-doped carbon nitride for enhanced photocatalytic activity in visible-light-induced decarboxylative annulation reactions.J. Catal.2022415283610.1016/j.jcat.2022.09.027
    [Google Scholar]
  263. LuY.H. MuS.Y. LiH.X. JiangJ. WuC. ZhouM.H. OuyangW.T. HeW.M. EtOH-catalyzed electrosynthesis of imidazolidine-fused sulfamidates from N -sulfonyl ketimines, N -arylglycines and formaldehyde.Green Chem.202325145539554210.1039/D2GC04906F
    [Google Scholar]
  264. LinY. FanH. LiY. ZhanX. Thiazole-based organic semiconductors for organic electronics.Adv. Mater.2012242330873106, 308110.1002/adma.20120072122581766
    [Google Scholar]
  265. FrijaL.M.T. PombeiroA.J.L. KopylovichM.N. Coordination chemistry of thiazoles, isothiazoles and thiadiazoles.Coord. Chem. Rev.2016308325510.1016/j.ccr.2015.10.003
    [Google Scholar]
  266. AyatiA. EmamiS. AsadipourA. ShafieeA. ForoumadiA. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery.Eur. J. Med. Chem.20159769971810.1016/j.ejmech.2015.04.01525934508
    [Google Scholar]
  267. GümüşM. YakanM. Kocaİ. Recent advances of thiazole hybrids in biological applications.Future Med. Chem.201911151979199810.4155/fmc‑2018‑019631517529
    [Google Scholar]
  268. MishraI. MishraR. MujwarS. ChandraP. SachanN. A retrospect on antimicrobial potential of thiazole scaffold.J. Heterocycl. Chem.20205762304232910.1002/jhet.3970
    [Google Scholar]
  269. LinoC.I. Gonçalves de SouzaI. BorelliB.M. Silvério MatosT.T. Santos TeixeiraI.N. RamosJ.P. Maria de Souza FagundesE. de Oliveira FernandesP. MaltarolloV.G. JohannS. de OliveiraR.B. Synthesis, molecular modeling studies and evaluation of antifungal activity of a novel series of thiazole derivatives.Eur. J. Med. Chem.201815124826010.1016/j.ejmech.2018.03.08329626797
    [Google Scholar]
  270. WangW.L. YaoD.Y. GuM. FanM.Z. LiJ.Y. XingY.C. NanF.J. Synthesis and biological evaluation of novel bisheterocycle-containing compounds as potential anti-influenza virus agents.Bioorg. Med. Chem. Lett.200515235284528710.1016/j.bmcl.2005.08.04616183283
    [Google Scholar]
  271. BanM. TaguchiH. KatsushimaT. TakahashiM. ShinodaK. WatanabeA. TominagaT. Novel antiallergic and antiinflammatory agents. Part I: Synthesis and pharmacology of glycolic amide derivatives.Bioorg. Med. Chem.1998671069107610.1016/S0968‑0896(98)00065‑09730244
    [Google Scholar]
  272. KalkhambkarR.G. KulkarniG.M. ShivkumarH. RaoR.N. Synthesis of novel triheterocyclic thiazoles as anti-inflammatory and analgesic agents.Eur. J. Med. Chem.200742101272127610.1016/j.ejmech.2007.01.02317337096
    [Google Scholar]
  273. ZhuJ. HanL. DiaoY. RenX. XuM. XuL. LiS. LiQ. DongD. HuangJ. LiuX. ZhaoZ. WangR. ZhuL. XuY. QianX. LiH. Design, synthesis, X-ray crystallographic analysis, and biological evaluation of thiazole derivatives as potent and selective inhibitors of human dihydroorotate dehydrogenase.J. Med. Chem.20155831123113910.1021/jm501127s25580811
    [Google Scholar]
  274. Shin-yaK. WierzbaK. MatsuoK. OhtaniT. YamadaY. FurihataK. HayakawaY. SetoH. Telomestatin, a novel telomerase inhibitor from Streptomyces anulatus.J. Am. Chem. Soc.200112361262126310.1021/ja005780q11456694
    [Google Scholar]
  275. AyatiA. EmamiS. MoghimiS. ForoumadiA. Thiazole in the targeted anticancer drug discovery.Future Med. Chem.201911151929195210.4155/fmc‑2018‑041631313595
    [Google Scholar]
  276. AlizadehS.R. HashemiS.M. Development and therapeutic potential of 2-aminothiazole derivatives in anticancer drug discovery.Med. Chem. Res.202130477180610.1007/s00044‑020‑02686‑233469255
    [Google Scholar]
  277. KumawatM.K. Thiazole containing heterocycles with antimalarial activity.Curr. Drug Discov. Technol.201815319620010.2174/157016381466617072511415928745209
    [Google Scholar]
  278. KurtB.Z. GaziogluI. BasileL. SonmezF. GinexT. KucukislamogluM. GuccioneS. Potential of aryl–urea–benzofuranylthiazoles hybrids as multitasking agents in Alzheimer’s disease.Eur. J. Med. Chem.2015102809210.1016/j.ejmech.2015.07.00526244990
    [Google Scholar]
  279. JaishreeV. RamdasN. SachinJ. RameshB. In vitro antioxidant properties of new thiazole derivatives.J. Saudi Chem. Soc.201216437137610.1016/j.jscs.2011.02.007
    [Google Scholar]
  280. DjukicM. FesatidouM. XenikakisI. GeronikakiA. AngelovaV.T. SavicV. PasicM. KrilovicB. DjukicD. GobeljicB. PavlicaM. DjuricA. StanojevicI. VojvodicD. SasoL. In vitro antioxidant activity of thiazolidinone derivatives of 1,3-thiazole and 1,3,4-thiadiazole.Chem. Biol. Interact.201828611913110.1016/j.cbi.2018.03.01329574026
    [Google Scholar]
  281. LiD. ChenL. JinY. WangX. LiuL. LiY. ChenG. WuG. QinY. YangL. WangM. ZhaoL. XuZ. WenJ. An electrochemical-enabled cascaded cyclization of enaminones with potassium thiocyanate and alcohols to access 2-alkoxythiazoles.Green Chem.202325124656466110.1039/D3GC01194A
    [Google Scholar]
  282. AgerD.J. PrakashI. SchaadD.R. 1,2-amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis.Chem. Rev.199696283587610.1021/cr950003811848773
    [Google Scholar]
  283. SukhoverkovK.V. BreeseK.J. DebowskiA.W. MurchaM.W. StubbsK.A. MylneJ.S. Inhibition of chloroplast translation as a new target for herbicides.RSC Chem. Biol.202231374310.1039/D1CB00192B35128407
    [Google Scholar]
  284. ZhaoQ. XinL. LiuY. LiangC. LiJ. JianY. LiH. ShiZ. LiuH. CaoW. Current landscape and future perspective of oxazolidinone scaffolds containing antibacterial drugs.J. Med. Chem.20216415105571058010.1021/acs.jmedchem.1c0048034260235
    [Google Scholar]
  285. ZhouX.Q. TangH.T. CuiF.H. LiangY. LiS-H. PanY.M. Electrocatalytic three-component reactions: Synthesis of tellurium-containing oxazolidinone for anticancer agents.Green Chem.202325135024502910.1039/D3GC01288C
    [Google Scholar]
  286. MüllerK. FaehC. DiederichF. Fluorine in pharmaceuticals: Looking beyond intuition.Science200731758461881188610.1126/science.113194317901324
    [Google Scholar]
  287. PurserS. MooreP.R. SwallowS. GouverneurV. Fluorine in medicinal chemistry.Chem. Soc. Rev.200837232033010.1039/B610213C18197348
    [Google Scholar]
  288. HagmannW.K. The many roles for fluorine in medicinal chemistry.J. Med. Chem.200851154359436910.1021/jm800219f18570365
    [Google Scholar]
  289. WangJ. Sánchez-RosellóM. AceñaJ.L. del PozoC. SorochinskyA.E. FusteroS. SoloshonokV.A. LiuH. Fluorine in pharmaceutical industry: Fluorine-containing drugs introduced to the market in the last decade (2001-2011).Chem. Rev.201411442432250610.1021/cr400287924299176
    [Google Scholar]
  290. PrchalováE. ŠtěpánekO. SmrčekS. KotoraM. Medicinal applications of perfluoroalkylated chain-containing compounds.Future Med. Chem.20146101201122910.4155/fmc.14.5325078138
    [Google Scholar]
  291. FujiwaraT. O’HaganD. Successful fluorine-containing herbicide agrochemicals.J. Fluor. Chem.2014167162910.1016/j.jfluchem.2014.06.014
    [Google Scholar]
  292. GillisE.P. EastmanK.J. HillM.D. DonnellyD.J. MeanwellN.A. Applications of fluorine in medicinal chemistry.J. Med. Chem.201558218315835910.1021/acs.jmedchem.5b0025826200936
    [Google Scholar]
  293. CarpenterW. HaymakerA. MooreD.W. Fluorinated 1,2,3-triazolines.J. Org. Chem.196631378979210.1021/jo01341a033
    [Google Scholar]
  294. RigbyW. BaileyP.M. McClevertyJ.A. MaitlisP.M. Pentamethylcyclopentadienyl-rhodium and -iridium complexes. Part 19. Preparation and reactions of azido-, cyanato-, thiocyanato-, nitrito-, and nitrato-rhodium complexes.J. Chem. Soc., Dalton Trans.1979237138110.1039/dt9790000371
    [Google Scholar]
  295. KobayashiY. YamashitaT. TakahashiK. KurodaH. KumadakiI. Studies on organic fluorine compounds. XLII. Synthesis and reactions of phenyltrifluoromethylacetylenes.Chem. Pharm. Bull. (Tokyo)198432114402440910.1248/cpb.32.4402
    [Google Scholar]
  296. MeazzaG. ZanardiG. Aryl trifluoromethyl-1,2,3-triazoles.J. Fluor. Chem.199155219920610.1016/S0022‑1139(00)80122‑0
    [Google Scholar]
  297. DanenceL.J.T. GaoY. LiM. HuangY. WangJ. Organocatalytic enamide-azide cycloaddition reactions: regiospecific synthesis of 1,4,5-trisubstituted-1,2,3-triazoles.Chemistry201117133584358710.1002/chem.20100277521341323
    [Google Scholar]
  298. RozinY.A. LebanJ. DehaenW. NenajdenkoV.G. MuzalevskiyV.M. EltsovO.S. BakulevV.A. Regioselective synthesis of 5-trifluoromethyl-1,2,3-triazoles via CF3-directed cyclization of 1-trifluoromethyl-1,3-dicarbonyl compounds with azides.Tetrahedron201268261461810.1016/j.tet.2011.10.110
    [Google Scholar]
  299. ZhangJ. JinG. XiaoS. WuJ. CaoS. Novel synthesis of 1,4,5-trisubstituted 1,2,3-triazoles via a one-pot three-component reaction of boronic acids, azide, and active methylene ketones.Tetrahedron201369102352235610.1016/j.tet.2012.12.086
    [Google Scholar]
  300. PengW. ZhuS. Efficient synthesis of 5-fluoroalkylated 1H-1,2,3-triazoles and application of the bromodifluoromethylated triazole to the synthesis of novel bicyclic gem-difluorinated 1H-pyrano[3,4-d][1,2,3]-triazol-4-one compounds.Tetrahedron200359244395440410.1016/S0040‑4020(03)00621‑5
    [Google Scholar]
  301. NingY. WangH. SivaguruP. LiS. ZanoniG. NolanS.P. BiX. Defluorinative [4 + 1] annulation of perfluoroalkyl N -mesylhydrazones with primary amines provides 5-fluoroalkyl 1,2,3-triazoles.Green Chem.202123207976798110.1039/D1GC02749B
    [Google Scholar]
  302. WrightJ.B. The chemistry of the benzimidazoles.Chem. Rev.195148339754110.1021/cr60151a00224541208
    [Google Scholar]
  303. AlamgirM. BlackD.S.C. KumarN. Synthesis, reactivity and biological activity of benzimidazoles.Top. Heterocycl. Chem.200798711810.1007/7081_2007_088
    [Google Scholar]
  304. NoëlS. CadetS. GrasE. HureauC. The benzazole scaffold: A SWAT to combat Alzheimer’s disease.Chem. Soc. Rev.201342197747776210.1039/c3cs60086f23793644
    [Google Scholar]
  305. BansalY. SilakariO. The therapeutic journey of benzimidazoles: A review.Bioorg. Med. Chem.201220216208623610.1016/j.bmc.2012.09.01323031649
    [Google Scholar]
  306. TahlanS. KumarS. RamasamyK. LimS.M. ShahS.A.A. ManiV. PathaniaR. NarasimhanB. Design, synthesis and biological profile of heterocyclic benzimidazole analogues as prospective antimicrobial and antiproliferative agents.BMC Chem.20191315010.1186/s13065‑019‑0567‑x31384798
    [Google Scholar]
  307. CarvalhoL.C.R. FernandesE. MarquesM.M.B. Developments towards regioselective synthesis of 1,2-disubstituted benzimidazoles.Chemistry20111745125441255510.1002/chem.20110150821989969
    [Google Scholar]
  308. BahramiK. KhodaeiM.M. NejatiA. Synthesis of 1,2-disubstituted benzimidazoles, 2-substituted benzimidazoles and 2-substituted benzothiazoles in SDS micelles.Green Chem.20101271237124110.1039/c000047g
    [Google Scholar]
  309. LiZ. SongH. GuoR. ZuoM. HouC. SunS. HeX. SunZ. ChuW. Visible-light-induced condensation cyclization to synthesize benzimidazoles using fluorescein as a photocatalyst.Green Chem.201921133602360510.1039/C9GC01359H
    [Google Scholar]
  310. SharmaH. SinghN. JangD.O. A ball-milling strategy for the synthesis of benzothiazole, benzimidazole and benzoxazole derivatives under solvent-free conditions.Green Chem.201416124922493010.1039/C4GC01142B
    [Google Scholar]
  311. LiH. ZhangY. YanZ. LaiZ. YangR. PengM. SunY. AnJ. Methanol as the C 1 source: Redox coupling of nitrobenzenes and alcohols for the synthesis of benzimidazoles.Green Chem.202224274875310.1039/D1GC03907E
    [Google Scholar]
  312. McGlackenG.P. FairlambI.J.S. 2-Pyrone natural products and mimetics: Isolation, characterisation and biological activity.Nat. Prod. Rep.200522336938510.1039/b416651p16010346
    [Google Scholar]
  313. TemponeA.G. FerreiraD.D. LimaM.L. Costa SilvaT.A. BorboremaS.E.T. ReimãoJ.Q. GaluppoM.K. GuerraJ.M. RussellA.J. WynneG.M. LaiR.Y.L. CadelisM.M. CoppB.R. Efficacy of a series of alpha-pyrone derivatives against Leishmania (L.) infantum and Trypanosoma cruzi.Eur. J. Med. Chem.20171392094796010.1016/j.ejmech.2017.08.05528881289
    [Google Scholar]
  314. Al-KhdhairawiA.A.Q. CordellG.A. ThomasN.F. Shivanagere NagojappaN.B. WeberJ.F.F. Natural diterpene pyrones: Cchemistry and biology.Org. Biomol. Chem.201917408943895710.1039/C9OB01501A31482157
    [Google Scholar]
  315. MarkóI.E. WarrinerS.L. AugustynsB. Radical-Initiated, Skeletal Rearrangements of Bicyclo[2.2.2] Lactones.Org. Lett.20002203123312510.1021/ol006324+11009361
    [Google Scholar]
  316. WangY. LiH. WangY.Q. LiuY. FoxmanB.M. DengL. Asymmetric diels-alder reactions of 2-pyrones with a bifunctional organic catalyst.J. Am. Chem. Soc.2007129206364636510.1021/ja070859h17469829
    [Google Scholar]
  317. MeguroT. ChenS. KanemotoK. YoshidaS. HosoyaT. Modular synthesis of unsymmetrical doubly-ring-fused benzene derivatives based on a sequential ring construction strategy using oxadiazinones as a platform molecule.Chem. Lett.201948658258510.1246/cl.190118
    [Google Scholar]
  318. MaS. YinS. LiL. TaoF. K(2)CO(3)-catalyzed Michael addition-lactonization reaction of 1,2-allenyl ketones with electron-withdrawing group substituted acetates. An efficient synthesis of α-pyrone derivatives.Org. Lett.20024450550710.1021/ol017085911843577
    [Google Scholar]
  319. LouieJ. GibbyJ.E. FarnworthM.V. TekavecT.N. Efficient nickel-catalyzed [2 + 2 + 2] cycloaddition of CO2 and diynes.J. Am. Chem. Soc.200212451151881518910.1021/ja027438e12487590
    [Google Scholar]
  320. MaS. YuS. YinS. Studies on K2CO3-catalyzed 1,4-addition of 1,2-allenic ketones with diethyl malonate: Controlled selective synthesis of β,γ-unsaturated enones and α-pyrones.J. Org. Chem.200368238996900210.1021/jo034633i14604373
    [Google Scholar]
  321. ZhuX.F. SchaffnerA.P. LiR.C. KwonO. Phosphine-catalyzed synthesis of 6-substituted 2-pyrones: Manifestation of E/Z-isomerism in the zwitterionic intermediate.Org. Lett.20057142977298010.1021/ol050946j15987184
    [Google Scholar]
  322. WangY. BurtonD.J. A facile, general synthesis of 3,4-difluoro-6-substituted-2-pyrones.J. Org. Chem.200671103859386210.1021/jo060362a16674060
    [Google Scholar]
  323. MingoP. ZhangS. LiebeskindL.S. One-step synthesis of substituted α-pyrones from cyclobutenediones and lithiated O -silyl cyanohydrins.J. Org. Chem.19996462145214810.1021/jo982271m11674317
    [Google Scholar]
  324. ZhuY. GongY. Construction of 2-pyrone skeleton via domino sequence between 2-acyl-1-chlorocyclopropanecarboxylate and amines.J. Org. Chem.201580149049810.1021/jo502502z25458055
    [Google Scholar]
  325. LuoJ. ZhongA.Q. QiuJ.H. LiuX.W. TianY.P. ZhangB.H. ChenG.S. ShuW. LiuY.L. Green and effective synthesis of multisubstituted α-pyrones via K 2 CO 3 catalyzed formal insertion of ketenimines into C(CO)–C bonds of 1,3-diketones.Green Chem.202325208057806710.1039/D3GC02073H
    [Google Scholar]
  326. Pinho e MeloT. Recent advances on the synthesis and reactivity of isoxazoles.Curr. Org. Chem.200591092595810.2174/1385272054368420
    [Google Scholar]
  327. ZhuX.Q. YuanH. SunQ. ZhouB. HanX.Q. ZhangZ.X. LuX. YeL-W. Benign catalysis with zinc: Atom-economical and divergent synthesis of nitrogen heterocycles by formal [3 + 2] annulation of isoxazoles with ynol ethers.Green Chem.201820184287429110.1039/C8GC02051E
    [Google Scholar]
  328. SeverinA. TabeiK. TenoverF. ChungM. ClarkeN. TomaszA. High level oxacillin and vancomycin resistance and altered cell wall composition in Staphylococcus aureus carrying the staphylococcal mecA and the enterococcal vanA gene complex.J. Biol. Chem.200427953398340710.1074/jbc.M30959320014613936
    [Google Scholar]
  329. Jia-JieW. ZhuY. ZhanZ.P. The synthesis of aromatic heterocycles from propargylic compounds.Asian J. Org. Chem.20121210812910.1002/ajoc.201200053
    [Google Scholar]
  330. MoritaT. YugandarS. FuseS. NakamuraH. Recent progresses in the synthesis of functionalized isoxazoles.Tetrahedron Lett.201859131159117110.1016/j.tetlet.2018.02.020
    [Google Scholar]
  331. HuF. SzostakM. Recent developments in the synthesis and reactivity of isoxazoles: Metal catalysis and beyond.Adv. Synth. Catal.2015357122583261410.1002/adsc.201500319
    [Google Scholar]
  332. WangD. ZhangF. XiaoF. DengG.J. A three-component approach to isoxazolines and isoxazoles under metal-free conditions.Org. Biomol. Chem.201917419163916810.1039/C9OB01909J31595941
    [Google Scholar]
  333. HuM. LinZ. LiJ. WuW. JiangH. Palladium-catalyzed ionic liquid-accelerated oxidative annulation of acetylenic oximes with unactivated long-chain enols.Green Chem.202022175584558810.1039/D0GC02037K
    [Google Scholar]
  334. ZaniF. ViciniP. Antimicrobial activity of some 1,2-benzisothiazoles having a benzenesulfonamide moiety.Arch. Pharm. (Weinheim)1998331621922310.1002/(SICI)1521‑4184(199806)331:6<219::AID‑ARDP219>3.0.CO;2‑U9713255
    [Google Scholar]
  335. ViciniP. GeronikakiA. IncertiM. BusoneraB. PoniG. CabrasC.A. La CollaP. Synthesis and biological evaluation of benzo[d]isothiazole, benzothiazole and thiazole Schiff bases.Bioorg. Med. Chem.200311224785478910.1016/S0968‑0896(03)00493‑014556794
    [Google Scholar]
  336. MoriniG. PoliE. CominiM. MenozziA. PozzoliC. Benzisothiazoles and β-adrenoceptors: Synthesis and pharmacological investigation of novel propanolamine and oxypro-panolamine derivatives in isolated rat tissues.Arch. Pharm. Res.200528121317132310.1007/BF0297789416392661
    [Google Scholar]
  337. GeronikakiA. EleftheriouP. ViciniP. AlamI. DixitA. SaxenaA.K. 2-Thiazolylimino/heteroarylimino-5-arylidene-4-thiazolidinones as new agents with SHP-2 inhibitory action.J. Med. Chem.200851175221522810.1021/jm800430618702480
    [Google Scholar]
  338. Cabrera-AfonsoM.J. CembellínS. Halima-SalemA. BertonM. MarzoL. MiloudiA. MaestroM.C. AlemánJ. Metal-free visible light-promoted synthesis of isothiazoles: A catalytic approach for N–S bond formation from iminyl radicals under batch and flow conditions.Green Chem.202022206792679710.1039/D0GC02618B
    [Google Scholar]
  339. GuchhaitS.K. ChandgudeA.L. PriyadarshaniG. CuSO4-glucose for in situ generation of controlled Cu(I)-Cu(II) bicatalysts: Multicomponent reaction of heterocyclic azine and aldehyde with alkyne, and cycloisomerization toward synthesis of N-fused imidazoles.J. Org. Chem.20127794438444410.1021/jo300302422486279
    [Google Scholar]
  340. SahaA. JanaA. ChoudhuryL.H. Lemon juice mediated multicomponent reactions for the synthesis of fused imidazoles.New J. Chem.20184222179091792210.1039/C8NJ03480J
    [Google Scholar]
  341. ChenF. LeiM. HuL. Thiamine hydrochloride (VB1)-catalyzed one-pot synthesis of (E)-N-benzylidene-2-phenyl-1H-benzo[d]imidazo[1,2-a]imidazol-3-amine derivatives.Tetrahedron201369142954296010.1016/j.tet.2013.02.022
    [Google Scholar]
  342. SelvarajuM. YeT.Y. LiC.H. HoP.H. SunC.M. Copper catalyzed aerobic oxidative cyclization and ketonization: One pot synthesis of benzoimidazo[1,2-a]imidazolones.Chem. Commun.201652396621662410.1039/C6CC01828A27116678
    [Google Scholar]
  343. ChenJ. SunZ. XiaoF. DengG.J. Base-promoted aerobic oxidative synthesis of fused 1,3,5-triazines under metal-free conditions.Green Chem.202022206778678210.1039/D0GC02691C
    [Google Scholar]
  344. ÖnkolT. DogruerD.S. ItoS. SahinM.F. Synthesis and antinociceptive activity of (5-chloro-2-benzothiazolinon-3-yl)acetamide derivatives.Arch. Pharm. (Weinheim)20003331033734010.1002/1521‑4184(200010)333:10<337::AID‑ARDP337>3.0.CO;2‑A11092136
    [Google Scholar]
  345. BonnertR.V. BrownR.C. ChapmanD. CheshireD.R. DixonJ. InceF. KinchinE.C. LyonsA.J. DavisA.M. HallamC. HarperS.T. UnittJ.F. DougallI.G. JacksonD.M. McKechnieK. YoungA. SimpsonW.T. Dual D2-receptor and β2-adrenoceptor agonists for the treatment of airway diseases. 1. Discovery and biological evaluation of some 7-(2-aminoethyl)-4-hydroxybenzothiazol-2(3H)-one analogues.J. Med. Chem.199841254915491710.1021/jm980421f9836607
    [Google Scholar]
  346. StocksM.J. AlcarazL. BaileyA. BonnertR. CadoganE. ChristieJ. ConnollyS. CookA. FisherA. FlahertyA. HillS. HumphriesA. IngallA. JordanS. LawsonM. MullenA. NichollsD. PaineS. PairaudeauG. St-GallayS. YoungA. Design driven HtL: The discovery and synthesis of new high efficacy β 2 -agonists.Bioorg. Med. Chem. Lett.201121134027403110.1016/j.bmcl.2011.04.13521652207
    [Google Scholar]
  347. AustinR.P. BartonP. BonnertR.V. BrownR.C. CageP.A. CheshireD.R. DavisA.M. DougallI.G. InceF. PairaudeauG. YoungA. QSAR and the rational design of long-acting dual D2-receptor/β 2-adrenoceptor agonists.J. Med. Chem.200346153210322010.1021/jm020886c12852752
    [Google Scholar]
  348. WanY. AltermanM. LarhedM. HallbergA. Dimethylformamide as a carbon monoxide source in fast palladium-catalyzed aminocarbonylations of aryl bromides.J. Org. Chem.200267176232623510.1021/jo025965a12182668
    [Google Scholar]
  349. WuX. MahalingamA.K. WanY. AltermanM. Fast microwave promoted palladium-catalyzed synthesis of phthalides from bromobenzyl alcohols utilizing DMF and Mo(CO) 6 as carbon monoxide sources.Tetrahedron Lett.200445244635463810.1016/j.tetlet.2004.04.110
    [Google Scholar]
  350. TroisiL. GranitoC. PerroneS. RosatoF. Synthesis of benzo-fused five- and six-membered heterocycles by palladium-catalyzed cyclocarbonylation.Tetrahedron Lett.201152334330433210.1016/j.tetlet.2011.06.049
    [Google Scholar]
  351. DingS. JiaoN. N,N-dimethylformamide: A multipurpose building block.Angew. Chem. Int. Ed.201251379226923710.1002/anie.20120085922930476
    [Google Scholar]
  352. YuB. ZhangH. ZhaoY. ChenS. XuJ. HaoL. LiuZ. DBU-based ionic-liquid-catalyzed carbonylation of o -phenylenediamines with CO 2 to 2-benzimidazolones under solvent-free conditions.ACS Catal.2013392076208210.1021/cs400256j
    [Google Scholar]
  353. JingY. LiuR. LinY. ZhouX. Lanthanide-catalyzed cyclocarbonylation and cyclothiocarbonylation: A facile synthesis of benzannulated 1,3-diheteroatom five- and six-membered heterocycles.Sci. China Chem.20145781117112510.1007/s11426‑014‑5149‑0
    [Google Scholar]
  354. ZhouB. HongH. WangH. ZhangT. HanL. ZhuN. Efficient synthesis of benzothiazolone derivatives by a domino reaction of disulfide and COS under mild conditions.Eur. J. Org. Chem.20182018486983699010.1002/ejoc.201801393
    [Google Scholar]
  355. RanC.K. SongL. NiuY.N. WeiM-K. ZhangZ. ZhouX-Y. YuD-G. Transition-metal-free synthesis of thiazolidin-2-ones and 1,3-thiazinan-2-ones from arylamines, elemental sulfur and CO 2.Green Chem.202123127427910.1039/D0GC03723K
    [Google Scholar]
  356. Antkiewicz-MichalukL. WąsikA. MichalukJ. 1-Methyl-1,2,3,4-tetrahydroisoquinoline, an endogenous amine with unexpected mechanism of action: new vistas of therapeutic application.Neurotox. Res.201425111210.1007/s12640‑013‑9402‑723719903
    [Google Scholar]
  357. ScottJ.D. WilliamsR.M. Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics.Chem. Rev.200210251669173010.1021/cr010212u11996547
    [Google Scholar]
  358. BembenekM.E. AbellC.W. ChriseyL.A. RozwadowskaM.D. GessnerW. BrossiA. Inhibition of monoamine oxidases A and B by simple isoquinoline alkaloids: Racemic and optically active 1,2,3,4-tetrahydro-, 3,4-dihydro-, and fully aromatic isoquinolines.J. Med. Chem.199033114715210.1021/jm00163a0252296014
    [Google Scholar]
  359. NaitoR. YonetokuY. OkamotoY. ToyoshimaA. IkedaK. TakeuchiM. Synthesis and antimuscarinic properties of quinuclidin-3-yl 1,2,3,4-tetrahydroisoquinoline-2-carboxylate derivatives as novel muscarinic receptor antagonists.J. Med. Chem.200548216597660610.1021/jm050099q16220976
    [Google Scholar]
  360. AlagiriK. DevadigP. PrabhuK.R. CDC reactions of N-aryl tetrahydroisoquinolines using catalytic amounts of DDQ: C-H activation under aerobic conditions.Chemistry201218175160516410.1002/chem.20120010022431410
    [Google Scholar]
  361. TheerthagiriP. LalithaA. Benzylation of β-dicarbonyl compounds and 4-hydroxycoumarin using TMSOTf catalyst: A simple, mild, and efficient method.Tetrahedron Lett.201051415454545810.1016/j.tetlet.2010.08.019
    [Google Scholar]
  362. VukovicN. SukdolakS. SolujicS. NiciforovicN. Substituted imino and amino derivatives of 4-hydroxycoumarins as novel antioxidant, antibacterial and antifungal agents: Synthesis and in vitro assessments.Food Chem.201012041011101810.1016/j.foodchem.2009.11.040
    [Google Scholar]
  363. YuX.M. ShenG. NeckersL. BlakeH. HolzbeierleinJ. CronkB. BlaggB.S.J. Hsp90 inhibitors identified from a library of novobiocin analogues.J. Am. Chem. Soc.200512737127781277910.1021/ja053586416159253
    [Google Scholar]
  364. LiB. WendlandtA.E. StahlS.S. Replacement of stoichiometric DDQ with a low potential o -quinone catalyst enabling aerobic dehydrogenation of tertiary indolines in pharmaceutical intermediates.Org. Lett.20192141176118110.1021/acs.orglett.9b0011130702297
    [Google Scholar]
  365. MutaiP. BreuzardG. PaganoA. AllegroD. PeyrotV. ChibaleK. Synthesis and biological evaluation of 4 arylcoumarin analogues as tubulin-targeting antitumor agents.Bioorg. Med. Chem.20172551652166510.1016/j.bmc.2017.01.03528174064
    [Google Scholar]
  366. MyungN. ConnellyS. KimB. ParkS.J. WilsonI.A. KellyJ.W. ChoiS. Bifunctional coumarin derivatives that inhibit transthyretin amyloidogenesis and serve as fluorescent transthyretin folding sensors.Chem. Commun.201349809188919010.1039/c3cc44667k23989101
    [Google Scholar]
  367. KongY. KimJ.K. LiY. ZhangJ. HuangM. WuY. An oxidant- and catalyst-free electrooxidative cross-coupling approach to 3-tetrahydroisoquinoline substituted coumarins.Green Chem.20212331274127910.1039/D0GC03930F
    [Google Scholar]
  368. FateG.D. BennerC.P. GrodeS.H. GilbertsonT.J. The biosynthesis of sulfomycin elucidated by isotopic labeling studies.J. Am. Chem. Soc.199611846113631136810.1021/ja961864g
    [Google Scholar]
  369. BoddyC.N. HottaK. TseM.L. WattsR.E. KhoslaC. Precursor-directed biosynthesis of epothilone in Escherichia coli.J. Am. Chem. Soc.2004126247436743710.1021/ja048108s15198579
    [Google Scholar]
  370. AtwellG.J. FanJ.Y. TanK. DennyW.A. DNA-Directed alkylating agents. 7. Synthesis, DNA interaction, and antitumor activity of bis(hydroxymethyl)- and bis(carbamate)-substituted pyrrolizines and imidazoles.J. Med. Chem.199841244744475410.1021/jm98031199822545
    [Google Scholar]
  371. YamamotoT. UemuraT. TanimotoA. SasakiS. Synthesis and chemical properties of π-conjugated poly(imidazole-2,5-diyl)s.Macromolecules20033641047105310.1021/ma0211232
    [Google Scholar]
  372. BanerjeeA. NarayanaL. RajeF.A. PisalD.V. KadamP.A. GullapalliS. KumarH. MoreS.V. BajpaiM. SanganaR.R. JadhavS. GudiG.S. Khairatkar-JoshiN. MeruguR.R.T. VoletiS.R. GharatL.A. Discovery of benzo[d]imidazo[5,1-b]thiazole as a new class of phosphodiesterase 10A inhibitors.Bioorg. Med. Chem. Lett.201323246747675410.1016/j.bmcl.2013.10.02724231362
    [Google Scholar]
  373. ChaoQ. SprankleK.G. GrotzfeldK.M. LaiA.G. CarterT.A. VelascoA.M. GunawardaneR.N. CramerM.D. GardnerM.F. JamesJ. ZarrinkarP.P. PatelH.K. BhagwatS.S. Identification of N-(5-tert-Butyl-isoxazol-3-yl)-N′-{4-[7-(2-morpholin-4-yl-ethoxy)imidazo[2,1-b][1,3]benzothiazol-2-yl]phenyl}urea dihydrochloride (AC220), a uniquely potent, selective, and efficacious FMS-like tyrosine kinase-3 (FLT3) inhibitor.J. Med. Chem.200952237808781610.1021/jm900753319754199
    [Google Scholar]
  374. LiuK.G. RobichaudA.J. BernotasR.C. YanY. LoJ.R. ZhangM.Y. HughesZ.A. HuseltonC. ZhangG.M. ZhangJ.Y. KowalD.M. SmithD.L. SchechterL.E. ComeryT.A. 5-Piperazinyl-3-sulfonylindazoles as potent and selective 5-hydroxytryptamine-6 antagonists.J. Med. Chem.201053217639764610.1021/jm100782520932009
    [Google Scholar]
  375. Da PozzoE. La PietraV. CosimelliB. Da SettimoF. GiacomelliC. MarinelliL. MartiniC. NovellinoE. TalianiS. GrecoG. p53 functional inhibitors behaving like pifithrin-β counteract the Alzheimer peptide non-β-amyloid component effects in human SH-SY5Y cells.ACS Chem. Neurosci.20145539039910.1021/cn400220824646317
    [Google Scholar]
  376. ZhaoJ. XiaoQ. ChenJ. XuJ. Metal‐free synthesis of imidazo[2,1‐ b]thiazoles from thioimidazoles and ketones mediated by selectfluor.Eur. J. Org. Chem.20202020325201520610.1002/ejoc.202000815
    [Google Scholar]
  377. MukkuN. MaitiB. On water catalyst-free synthesis of benzo[d]imidazo[2,1- b] thiazoles and novel N -alkylated 2-aminobenzo[d]oxazoles under microwave irradiation.RSC Advances202010277077810.1039/C9RA08929B35494448
    [Google Scholar]
  378. BalweS.G. JeongY.T. Iron-catalyzed unprecedented formation of benzo[d]imidazo[2,1-b]thiazoles under solvent-free conditions.RSC Advances2016610910722510723210.1039/C6RA24183B
    [Google Scholar]
  379. QuC.H. SongG.T. XuJ. YanW. ZhouC.H. LiH.Y. ChenZ.Z. XuZ.G. Merging visible light with cross-coupling: The photochemical direct C–H difluoroalkylation of imidazopyridines.Org. Lett.201921208169817310.1021/acs.orglett.9b0248731430159
    [Google Scholar]
  380. WangJ. LiJ. ZhuQ. Copper-promoted cycloaddition of α-methylenyl isocyanides with benzothiazoles: Tunable access to benzo[ d ]imidazothiazoles.Org. Lett.201517215336533910.1021/acs.orglett.5b0269426509678
    [Google Scholar]
  381. YanK. YangD. WeiW. SunP. LuY. WangH. A copper-catalyzed cascade reaction of o-bromoarylisothiocyanates with isocyanides leading to benzo[d]imidazo[5,1-b]thiazoles under ligand-free conditions.Org. Chem. Front.20163555656010.1039/C6QO00030D
    [Google Scholar]
  382. HaoW. SangX. JiangJ. CaiM. Copper(I)-catalyzed cascade reaction of 2-haloaryl isothiocyanates with isocyanides: A strategy to construct benzo[d]imidazo[5,1-b]thiazoles.Tetrahedron Lett.201657131511151410.1016/j.tetlet.2016.02.084
    [Google Scholar]
  383. YanK. LiuM. WenJ. LiuX. WangX. ChenX. LiJ. WangS. WangX. WangH. Visible-light-promoted cascade cyclization towards benzo[d]imidazo[5,1-b]thiazoles under metal- and photocatalyst-free conditions.Green Chem.20212331286129110.1039/D0GC04135A
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575341409241201171848
Loading
/content/journals/mrmc/10.2174/0113895575341409241201171848
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test