Skip to content
2000
image of Synthesis and Biological Properties of Isatin-indole Hybrids: A Review

Abstract

Introduction

Isatin (1-indole-2,3-dione) and indole are versatile scaffolds with diverse pharmacological activities, including antimicrobial, anticancer, antiviral, anticonvulsant, anti-inflammatory, and analgesic effects. Isatin-indole hybrids have emerged as multifunctional agents with significant potential in drug discovery.

Methods

A literature survey (2010-2025) across major databases (PubMed, Google Scholar, ACS, ) included reports on synthesis, biological evaluation, and structure–activity relationship (SAR) analysis.

Results

Numerous synthetic approaches, including both conventional and green methods, have yielded a diverse range of isatin-indole derivatives. Many exhibited potent antimicrobial, anticancer, antioxidant, and antitubercular activities, with SAR studies highlighting the impact of substitution patterns on activity and selectivity.

Discussion

This review aims to provide a comprehensive overview of hybrid molecules in which the isatin core is covalently linked to an indole scaffold. It focuses on their synthesis, diverse biological activities and structure-activity relationship (SAR) studies from 2001 onwards.

Conclusion

This review provides a concise summary of the latest developments and future outlook for the therapeutic potential of isatin-indole hybrids in the development of potent bioactive drugs.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575407443250919042610
2025-10-15
2025-10-18
Loading full text...

Full text loading...

References

  1. Dze K.C. Samad F. Heterocycles, their synthesis and industrial applications: A review. Int J Res Appl Sci Eng Technol 2020 8 10 36 56 10.22214/ijraset.2020.31786
    [Google Scholar]
  2. Amin A. Qadir T. Sharma P.K. Jeelani I. Abe H. A review on the medicinal and industrial applications of N-containing heterocycles. Open Med Chem J 2022 16 1 187410452209010 10.2174/18741045‑v16‑e2209010
    [Google Scholar]
  3. Taylor A.P. Robinson R.P. Fobian Y.M. Blakemore D.C. Jones L.H. Fadeyi O. Modern advances in heterocyclic chemistry in drug discovery. Org Biomol Chem 2016 14 28 6611 6637 10.1039/C6OB00936K 27282396
    [Google Scholar]
  4. Desai N. Trivedi A. Pandit U. Dodiya A. Kameswara Rao V. Desai P. Hybrid bioactive heterocycles as potential antimicrobial agents: A review. Mini Rev Med Chem 2016 16 18 1500 1526 10.2174/1389557516666160609075620 27292782
    [Google Scholar]
  5. Martins P. Jesus J. Santos S. Raposo L. Roma-Rodrigues C. Baptista P. Fernandes A. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s toolbox. Molecules 2015 20 9 16852 16891 10.3390/molecules200916852 26389876
    [Google Scholar]
  6. Baranwal J. Kushwaha S. Singh S. Jyoti A. A review on the synthesis and pharmacological activity of heterocyclic compounds. Curr Phys Chem 2023 13 1 2 19 10.2174/1877946813666221021144829
    [Google Scholar]
  7. Nicolaou K.C. Organic synthesis: The art and science of replicating the molecules of living nature and creating others like them in the laboratory. Proc- Royal Soc, Math Phys Eng Sci 2014 470 2163 20130690 10.1098/rspa.2013.0690 24611027
    [Google Scholar]
  8. Omar A. Anticancer activities of some fused heterocyclic moieties containing nitrogen and/or sulfur heteroatoms. Az J Pharm Sci 2020 62 2 39 54
    [Google Scholar]
  9. Thind T.S. Role of fungicides in crop health management: Prospects and challenges. Dev Fungal Biol Appl Mycol 2017 52 1 433 447 10.1007/978‑981‑10‑4768‑8_22
    [Google Scholar]
  10. Hahn M. The rising spectrum of fungicide resistance in plant pathogens: Implications for future practices. Mol Plant Pathol 2014 15 6 617 627
    [Google Scholar]
  11. Daramola O.S. MacDonald G.E. Kanissery R.G. Devkota P. Effects of co-applied agrochemicals on herbicide performance: A review. Crop Prot 2023 174 106396 10.1016/j.cropro.2023.106396
    [Google Scholar]
  12. Bhosle M.R. Mali J.R. Pal S. Srivastava A.K. Mane R.A. Synthesis and antihyperglycemic evaluation of new 2-hydrazolyl-4-thiazolidinone-5-carboxylic acids having pyrazolyl pharmacophores. Bioorg Med Chem Lett 2014 24 12 2651 2654 10.1016/j.bmcl.2014.04.064 24813740
    [Google Scholar]
  13. Srivastava A. Pandeya S.N. Indole: A versatile nucleus in pharmaceutical field. Int J Curr Pharm Rev Res 2011 1 3 2 17
    [Google Scholar]
  14. Lage O.M. Ramos M.C. Calisto R. Almeida E. Vasconcelos V. Vicente F. Current screening methodologies in drug discovery for selected human diseases. Mar Drugs 2018 16 8 279 10.3390/md16080279 30110923
    [Google Scholar]
  15. Tanaka H. Takahashi T. The role of tryptophan-derived metabolites in the control of cancer. J Exp Clin Cancer Res 2017 36 1 1 10
    [Google Scholar]
  16. Ciulla M.G. Kumar K. The natural and synthetic indole weaponry against bacteria. Tetrahedron Lett 2018 59 34 3223 3233 10.1016/j.tetlet.2018.07.045
    [Google Scholar]
  17. Rosales P.F. Bordin G.S. Gower A.E. Moura S. Indole alkaloids: 2012 until now, highlighting the new chemical structures and biological activities. Fitoterapia 2020 143 104558 10.1016/j.fitote.2020.104558 32198108
    [Google Scholar]
  18. Wan Y. Li Y. Yan C. Yan M. Tang Z. Indole: A privileged scaffold for the design of anti-cancer agents. Eur J Med Chem 2019 183 111691 10.1016/j.ejmech.2019.111691 31536895
    [Google Scholar]
  19. Dadashpour S. Emami S. Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms. Eur J Med Chem 2018 150 9 29 10.1016/j.ejmech.2018.02.065 29505935
    [Google Scholar]
  20. Long S.Y. Li C.L. Hu J. Zhao Q.J. Chen D. Indole alkaloids from the aerial parts of Kopsia fruticosa and their cytotoxic, antimicrobial and antifungal activities. Fitoterapia 2018 129 145 149 10.1016/j.fitote.2018.06.017 29935259
    [Google Scholar]
  21. Zhang M.Z. Jia C.Y. Gu Y.C. Mulholland N. Turner S. Beattie D. Zhang W.H. Yang G.F. Clough J. Synthesis and antifungal activity of novel indole-replaced streptochlorin analogues. Eur J Med Chem 2017 126 669 674 10.1016/j.ejmech.2016.12.001 27936445
    [Google Scholar]
  22. Luthra T. Nayak A.K. Bose S. Chakrabarti S. Gupta A. Sen S. Indole based antimalarial compounds targeting the melatonin pathway: Their design, synthesis and biological evaluation. Eur J Med Chem 2019 168 11 27 10.1016/j.ejmech.2019.02.019 30798050
    [Google Scholar]
  23. Elshemy H.A.H. Zaki M.A. Mohamed E.I. Khan S.I. Lamie P.F. A multicomponent reaction to design antimalarial pyridyl-indole derivatives: Synthesis, biological activities and molecular docking. Bioorg Chem 2020 97 103673 10.1016/j.bioorg.2020.103673 32106041
    [Google Scholar]
  24. Zhang M.Z. Chen Q. Yang G.F. A review on recent developments of indole-containing antiviral agents. Eur J Med Chem 2015 89 421 441 10.1016/j.ejmech.2014.10.065 25462257
    [Google Scholar]
  25. Wang T. Wallace O.B. Zhang Z. Fang H. Yang Z. Robinson B.A. Spicer T.P. Gong Y.F. Blair W.S. Shi P.Y. Lin P.F. Deshpande M. Meanwell N.A. Kadow J.F. A survey of core replacements in indole-based HIV-1 attachment inhibitors. Bioorg Med Chem Lett 2019 29 11 1423 1429 10.1016/j.bmcl.2019.03.018 30940396
    [Google Scholar]
  26. Desai N.C. Somani H. Trivedi A. Bhatt K. Nawale L. Khedkar V.M. Jha P.C. Sarkar D. Synthesis, biological evaluation and molecular docking study of some novel indole and pyridine based 1,3,4-oxadiazole derivatives as potential antitubercular agents. Bioorg Med Chem Lett 2016 26 7 1776 1783 10.1016/j.bmcl.2016.02.043 26920799
    [Google Scholar]
  27. Khan G.A. War J.A. Naikoo G.A. Pandit U.J. Das R. J Saudi Chem Soc 2018 22 6 101 111
    [Google Scholar]
  28. Lian Z.M. Sun J. Zhu H.L. Design, synthesis and antibacterial activity of isatin derivatives as FtsZ inhibitors. J Mol Struct 2016 1117 8 16 10.1016/j.molstruc.2016.03.036
    [Google Scholar]
  29. Qin H.L. Liu J. Fang W.Y. Ravindar L. Rakesh K.P. Indole-based derivatives as potential antibacterial activity against methicillin-resistance Staphylococcus aureus (MRSA). Eur J Med Chem 2020 194 112245 10.1016/j.ejmech.2020.112245 32220687
    [Google Scholar]
  30. Elmongy E.I. Ahmed A.A.S. El Sayed I.E.T. Fathy G. Awad H.M. Salman A.U. Hamed M.A. Synthesis, biocidal and antibiofilm activities of new isatin-quinoline conjugates against multidrug-resistant bacterial pathogens along with their in silico screening. Antibiotics 2022 11 11 1507 10.3390/antibiotics11111507 36358162
    [Google Scholar]
  31. Sun P. Huang Y. Yang X. Liao A. Wu J. The role of indole derivative in the growth of plants: A review. Front Plant Sci 2023 13 1120613 10.3389/fpls.2022.1120613 36726683
    [Google Scholar]
  32. kaur K. Utreja D. Dhillon N.K. Anupam Buttar H.S. Heterocyclic moieties as prospective nematicides: An overview. Curr Org Chem 2022 26 18 1703 1724 10.2174/1385272827666221209094444
    [Google Scholar]
  33. Ji S.J. Li W.C. Hu D.Y. Synthesis and bioactivity of isatin-based indole hybrids as potential pesticides. J Agric Food Chem 2018 66 14 3553 3560
    [Google Scholar]
  34. Song F. Li Z. Bian Y. Huo X. Fang J. Shao L. Zhou M. Indole/isatin‐containing hybrids as potential antibacterial agents. Arch Pharm 2020 353 10 2000143 10.1002/ardp.202000143 32667714
    [Google Scholar]
  35. Gautam N. Kumar R. Kothari V. Kumar S. Singh M.K. Nandy S. Isatin-based indole hybrids: Design, synthesis, antimicrobial evaluation and molecular docking studies. Bioorg Med Chem Lett 2016 26 14 3312 3317
    [Google Scholar]
  36. Sharma A. Singh S. Utreja D. Recent advances in synthesis and antifungal activity of 1,3,5-triazines. Curr Org Synth 2016 13 4 484 503 10.2174/1570179412666150905002356
    [Google Scholar]
  37. Jain N. Utreja D. Dhillon N.K. A convenient one pot synthesis and antinemic studies of nicotinic acid derivatives. Russ J Org Chem 2019 55 6 845 851 10.1134/S1070428019060150
    [Google Scholar]
  38. Anand U. Jacobo-Herrera N. Altemimi A. Lakhssassi N. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites 2019 9 11 258 10.3390/metabo9110258 31683833
    [Google Scholar]
  39. Vibha V. Utreja D. Kaur J. Kaur M. Antifungal activity of dihydropyrimidinones synthesized by using magnesium ferrite nanoparticles as efficient heterogeneous catalyst. Agri Res J 2018 55 2 313 317
    [Google Scholar]
  40. Ismail S. Jiang B. Nasimi Z. Inam-ul-Haq M. Yamamoto N. Danso Ofori A. Khan N. Arshad M. Abbas K. Zheng A. Investigation of streptomyces scabies causing potato scab by various detection techniques, its pathogenicity and determination of host-disease resistance in potato germplasm. Pathogens 2020 9 9 760 10.3390/pathogens9090760 32957549
    [Google Scholar]
  41. Rock E.P. Goodman V. Jiang J.X. Mahjoob K. Verbois S.L. Morse D. Dagher R. Justice R. Pazdur R. Food and Drug Administration drug approval summary: Sunitinib malate for the treatment of gastrointestinal stromal tumor and advanced renal cell carcinoma. Oncologist 2007 12 1 107 113 10.1634/theoncologist.12‑1‑107 17227905
    [Google Scholar]
  42. Dabholkar S. Gao B. Chuong B. Nintedanib—A case of treating concurrent idiopathic pulmonary fibrosis and non‐small cell lung cancer. Respirol Case Rep 2022 10 2 0902 10.1002/rcr2.902 35059200
    [Google Scholar]
  43. Thokagevistk K. François C. Brignone M. Toumi M. From investigational product to active reference: Evolution of oral sumatriptan efficacy versus placebo for the treatment of acute migraine episodes and potential impact in comparative analyses. J Mark Access Health Policy 2019 7 1 1603538 10.1080/20016689.2019.1603538 31044055
    [Google Scholar]
  44. Hidaka H. Izumi N. Aramaki T. Ikeda M. Inaba Y. Imanaka K. Okusaka T. Kanazawa S. Kaneko S. Kora S. Saito H. Furuse J. Matsui O. Yamashita T. Yokosuka O. Morita S. Arioka H. Kudo M. Arai Y. Subgroup analysis of efficacy and safety of orantinib in combination with TACE in Japanese HCC patients in a randomized phase III trial (ORIENTAL). Med Oncol 2019 36 6 52 10.1007/s12032‑019‑1272‑2 31053989
    [Google Scholar]
  45. Frezoulis P. Harper A. The role of toceranib phosphate in dogs with non‐mast cell neoplasia: A systematic review. Vet Comp Oncol 2022 20 2 362 371 10.1111/vco.12799 34981886
    [Google Scholar]
  46. Láinez M.J.A. Rizatriptan in the treatment of migraine. Neuropsychiatr Dis Treat 2006 2 3 247 259 10.2147/nedt.2006.2.3.247 19412472
    [Google Scholar]
  47. Shelton M.J. Hewitt R.G. Adams J. Della-Coletta A. Cox S. Morse G.D. Pharmacokinetics of ritonavir and delavirdine in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 2003 47 5 1694 1699 10.1128/AAC.47.5.1694‑1699.2003 12709342
    [Google Scholar]
  48. Chauhan M. Parry R. Bobo W.V. Vilazodone for major depression in adults: Pharmacological profile and an updated review for clinical practice. Neuropsychiatr Dis Treat 2022 18 1175 1193 10.2147/NDT.S279342 35726313
    [Google Scholar]
  49. Abo-Salem H.M. Nassrallah A. Soliman A.A.F. Ebied M.S. Elawady M.E. Abdelhamid S.A. El-Sawy E.R. Al-Sheikh Y.A. Aboul-Soud M.A.M. Synthesis and bioactivity assessment of novel spiro pyrazole-oxindole congeners exhibiting potent and selective in vitro anticancer effects. Molecules 2020 25 5 1124 10.3390/molecules25051124 32138244
    [Google Scholar]
  50. Perrin C.L. Chang K.L. The complete mechanism of an aldol condensation. J Org Chem 2016 81 13 5631 5635 10.1021/acs.joc.6b00959 27281298
    [Google Scholar]
  51. Al-Warhi T. El Kerdawy A.M. Aljaeed N. Ismael O.E. Ayyad R.R. Eldehna W.M. Abdel-Aziz H.A. Al-Ansary G.H. Synthesis, Biological evaluation and in silico studies of certain oxindole-indole conjugates as anticancer CDK inhibitors. Molecules 2020 25 9 2031 10.3390/molecules25092031 32349307
    [Google Scholar]
  52. Nafie M.S. Shawish I. Fahmy S.A. Diab M.K. Abdelfattah M.M. Hassen B.M. Darwish K.M. El-Faham A. Barakat A. Recent advances in the halogenated spirooxindoles as novel anticancer scaffolds: Chemistry and bioactivity approach. RSC Advances 2025 15 28 22336 22375 10.1039/D5RA03404C 40599572
    [Google Scholar]
  53. Sudhakar B. Murthy M.S. Synthesis, Characterization and in vivo anti-inflammatory activity of some novel schiff’s bases of isatin derivatives. Int J Pharm Biol Sci 2019 9 2 66 70
    [Google Scholar]
  54. Al-Wabli R. Zakaria A. Attia M. Synthesis, spectroscopic characterization and antimicrobial potential of certain new isatin-indole molecular hybrids. Molecules 2017 22 11 1958 10.3390/molecules22111958 29140257
    [Google Scholar]
  55. Wang C. Yan J. Du M. Burlison J.A. Li C. Sun Y. Zhao D. Liu J. One step synthesis of indirubins by reductive coupling of isatins with KBH 4. Tetrahedron 2017 73 19 2780 2785 10.1016/j.tet.2017.03.077
    [Google Scholar]
  56. Fu W. Zhou Y. Song Q. Copper/diboron‐mediated intramolecular oxygenation and allylation/benzylation of nitroalkynes for the synthesis of C2‐quaternary Indolin‐3‐ones. Chem Asian J 2018 13 17 2511 2515 10.1002/asia.201800500 29714051
    [Google Scholar]
  57. Poomathi N. Mayakrishnan S. Muralidharan D. Srinivasan R. Perumal P.T. Reaction of isatins with 6-amino uracils and isoxazoles: Isatin ring-opening vs. annulations and regioselective synthesis of isoxazole fused quinoline scaffolds in water. Green Chem 2015 17 6 3362 3372 10.1039/C5GC00006H
    [Google Scholar]
  58. Gillam E.M.J. Notley L.M. Cai H. De Voss J.J. Guengerich F.P. Oxidation of indole by cytochrome P450 enzymes. Biochemistry 2000 39 45 13817 13824 10.1021/bi001229u 11076521
    [Google Scholar]
  59. Wee X.K. Yeo W.K. Zhang B. Tan V.B.C. Lim K.M. Tay T.E. Go M.L. Synthesis and evaluation of functionalized isoindigos as antiproliferative agents. Bioorg Med Chem 2009 17 21 7562 7571 10.1016/j.bmc.2009.09.008 19783149
    [Google Scholar]
  60. Nelson A.C. Kalinowski E.S. Jacobson T.L. Grundt P. Formation of tryptanthrin compounds upon Oxone-induced dimerization of indole-3-carbaldehydes. Tetrahedron Lett 2013 54 50 6804 6806 10.1016/j.tetlet.2013.09.124
    [Google Scholar]
  61. Vine K.L. Locke J.M. Ranson M. Pyne S.G. Bremner J.B. Bremner J.B. In vitro cytotoxicity evaluation of some substituted isatin derivatives. Bioorg Med Chem 2007 15 2 931 938 10.1016/j.bmc.2006.10.035 17088067
    [Google Scholar]
  62. Leclerc S. Garnier M. Hoessel R. Marko D. Bibb J.A. Snyder G.L. Greengard P. Biernat J. Wu Y.Z. Mandelkow E.M. Eisenbrand G. Meijer L. Indirubins inhibit glycogen synthase kinase-3 β and CDK5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer’s disease. A property common to most cyclin-dependent kinase inhibitors? J Biol Chem 2001 276 1 251 260 10.1074/jbc.M002466200 11013232
    [Google Scholar]
  63. MacDonald J.P. Badillo J.J. Arevalo G.E. Silva-García A. Franz A.K. Catalytic stereoselective synthesis of diverse oxindoles and spirooxindoles from isatins. ACS Comb Sci 2012 14 4 285 293 10.1021/co300003c 22449252
    [Google Scholar]
  64. Stöckigt J. Antonchick A.P. Wu F. Waldmann H. The Pictet-Spengler reaction in nature and in organic chemistry. Angew Chem Int Ed 2011 50 37 8538 8564 10.1002/anie.201008071 21830283
    [Google Scholar]
  65. El-Sayed M.T. Mahmoud K. Hilgeroth A. Fakhr I.M.I. Synthesis of novel indolo-spirocyclic compounds. J Heterocycl Chem 2016 53 1 188 196 10.1002/jhet.2402
    [Google Scholar]
  66. Annuur R.M. Titisari D.A. Dinarlita R.R. Fadlan A. Ersam T. Nuryastuti T. Santoso M. Synthesis and anti-tuberculosis activity of trisindolines. AIP Conf Proc 2018 2049 1 020088 10.1063/1.5082493
    [Google Scholar]
  67. Nguyen Thi Binh N. Molicotti P. Tran H. Le Thanh P. Nguyen Thi Kieu D. Nguyen Tan C. Le Trong T. Truong Van H. Ngo Viet Quynh T. Application of the resazurin microtitre assay for the detection of isoniazid and/or rifampicin resistant Mycobacterium tuberculosis clinical isolates in Central Vietnam. Journal of Medicine and Pharmacy 2020 10 1 39 44 10.34071/jmp.2020.7.6
    [Google Scholar]
  68. Hakkimane S. Shenoy V.P. Gaonkar S. Bairy I. Guru B.R. Antimycobacterial susceptibility evaluation of rifampicin and isoniazid benz-hydrazone in biodegradable polymeric nanoparticles against Mycobacterium tuberculosis H37Rv strain. Int J Nanomedicine 2018 13 4303 4318 10.2147/IJN.S163925 30087562
    [Google Scholar]
  69. Sai Prathima P. Rajesh P. Venkateswara Rao J. Sai Kailash U. Sridhar B. Mohan Rao M. “On water” expedient synthesis of 3-indolyl-3-hydroxy oxindole derivatives and their anticancer activity in vitro. Eur J Med Chem 2014 84 155 159 10.1016/j.ejmech.2014.07.004 25016373
    [Google Scholar]
  70. Wang C. Zhang L. Ren A. Lu P. Wang Y. Cu-catalyzed synthesis of tryptanthrin derivatives from substituted indoles. Org Lett 2013 15 12 2982 2985 10.1021/ol401144m 23746360
    [Google Scholar]
  71. Zhou X. Recent advances of tryptanthrin and its derivatives as potential anticancer agents. RSC Med Chem 2024 15 4 1127 1147 10.1039/D3MD00698K 38665827
    [Google Scholar]
  72. Brahmachari G. Banerjee B. Facile and one-pot access of 3,3-bis(indol-3-yl) indolin-2-ones and 2,2-bis(indol-3-yl) acenaphthylen-1(2H)-one derivatives via an eco-friendly pseudo-multicomponent reaction at room temperature using sulfamic acid as an organo-catalyst. 2014 2 12 2802 2812 10.1021/sc500575h
    [Google Scholar]
  73. Hosseini-Sarvari M. Tavakolian M. Preparation, characterization, and catalysis application of nano-rods zinc oxide in the synthesis of 3-indolyl-3-hydroxy oxindoles in water. Appl Catal A Gen 2012 441-442 65 71 10.1016/j.apcata.2012.07.009
    [Google Scholar]
  74. Praveen C. Ayyanar A. Perumal P.T. Practical synthesis, anticonvulsant, and antimicrobial activity of N -allyl and N -propargyl di(indolyl)indolin-2-ones. Bioorg Med Chem Lett 2011 21 13 4072 4077 10.1016/j.bmcl.2011.04.117 21621411
    [Google Scholar]
  75. Li Z. Qin J. Yang Z. Ye C. Synthesis and structural characterization of a new polysiloxane with second‐order nonlinear optical effect. J Appl Polym Sci 2004 94 2 769 774 10.1002/app.20942
    [Google Scholar]
  76. Damodiran M. Muralidharan D. Perumal P.T. Regioselective synthesis and biological evaluation of bis(indolyl)methane derivatized 1,4-disubstituted 1,2,3-bistriazoles as anti-infective agents. Bioorg Med Chem Lett 2009 19 13 3611 3614 10.1016/j.bmcl.2009.04.131 19447624
    [Google Scholar]
  77. Frain D. Kirby F. McArdle P. O’Leary P. Preparation, structure and catalytic activity of copper(II) complexes of novel 4,4′-BOX ligands. Tetrahedron Lett 2010 51 31 4103 4106 10.1016/j.tetlet.2010.05.135
    [Google Scholar]
  78. Chao J. Yue Y. Wang K. Guo X. Sun C. Xu Y. Liu J. Copper-catalyzed oxidative dehydrogenative dearomatization of indole derivatives: A new strategy to construct spirocyclic indolenines. iScience 2022 25 12 105669 10.1016/j.isci.2022.105669 36536679
    [Google Scholar]
  79. Yogeeswari P. Sriram D. Thirumurugan R. Raghavendran J.V. Sudhan K. Pavana R.K. Stables J. Discovery of N-(2,6-dimethylphenyl)-substituted semicarbazones as anticonvulsants: Hybrid pharmacophore-based design. J Med Chem 2005 48 20 6202 6211 10.1021/jm050283b 16190747
    [Google Scholar]
  80. Castel-Branco M.M. Alves G.L. Figueiredo I.V. Falcão A.C. Caramona M.M. The maximal electroshock seizure (MES) model in the preclinical assessment of potential new antiepileptic drugs. Methods Find Exp Clin Pharmacol 2009 31 2 101 106 10.1358/mf.2009.31.2.1338414 19455265
    [Google Scholar]
  81. Kamal A. Srikanth Y.V.V. Khan M.N.A. Shaik T.B. Ashraf M. Ashraf M. Synthesis of 3,3-diindolyl oxyindoles efficiently catalysed by FeCl3 and their in vitro evaluation for anticancer activity. Bioorg Med Chem Lett 2010 20 17 5229 5231 10.1016/j.bmcl.2010.06.152 20673629
    [Google Scholar]
  82. Deng J. Zhang S. Ding P. Jiang H. Wang W. Li J. Facile creation of 3-indolyl-3-hydroxy-2-oxindoles by an organocatalytic enantioselective Friedel-Crafts reaction of indoles with isatins. Adv Synth Catal 2010 352 5 833 838 10.1002/adsc.200900851
    [Google Scholar]
  83. Suzuka T. Ooshiro Y. Ogihara K. Friedel-Crafts-type alkylation of indoles in water using amphiphilic resin-supported 1,10-phenanthroline-palladium complex under aerobic conditions. Catalysts 2020 10 2 193 10.3390/catal10020193
    [Google Scholar]
  84. Silva J.F.M. Garden S.J. Pinto A.C. The chemistry of isatins: A review from 1975 to 1999. J Braz Chem Soc 2001 12 3 273 324 10.1590/S0103‑50532001000300002
    [Google Scholar]
  85. Bouchikhi F. Anizon F. Moreau P. Synthesis and antiproliferative activities of isoindigo and azaisoindigo derivatives. Eur J Med Chem 2008 43 4 755 762 10.1016/j.ejmech.2007.05.012 17628214
    [Google Scholar]
  86. Hassan A.S. Morsy N.M. Aboulthana W.M. Ragab A. Exploring novel derivatives of isatin-based Schiff bases as multi-target agents: Design, synthesis, in vitro biological evaluation, and in silico ADMET analysis with molecular modeling simulations. RSC Advances 2023 13 14 9281 9303 10.1039/D3RA00297G 36950709
    [Google Scholar]
  87. Bonvicini F. Locatelli A. Morigi R. Leoni A. Gentilomi G.A. Isatin bis-indole and bis-imidazothiazole hybrids: Synthesis and antimicrobial activity. Molecules 2022 27 18 5781 10.3390/molecules27185781 36144518
    [Google Scholar]
  88. Paolini J.P. Lendvay L.J. Heterocyclic systems with a bridgehead nitrogen. II. 6-Chloroimidazo[2,1-b]thiazole and some of its 5-substituted derivatives. J Med Chem 1969 12 6 1031 1034 10.1021/jm00306a015 5351444
    [Google Scholar]
  89. Nonhebel D.C. Waters W.A. A study of the mechanism of the Sandmeyer reaction. Proc R Soc Lond A Math Phys Sci 1957 242 1228 16 27 10.1098/rspa.1957.0150
    [Google Scholar]
  90. Gandhi P.V. Burande S.R. Charde M.S. Chakole R.D. A review on isatin and its derivatives: Synthesis, reactions and applications. Int J Adv Sci Res 2021 12 4 1 11
    [Google Scholar]
  91. Fujii N. Mallari J.P. Hansell E.J. Mackey Z. Doyle P. Zhou Y.M. Gut J. Rosenthal P.J. McKerrow J.H. Guy R.K. Discovery of potent thiosemicarbazone inhibitors of rhodesain and cruzain. Bioorg Med Chem Lett 2005 15 1 121 123 10.1016/j.bmcl.2004.10.023 15582423
    [Google Scholar]
  92. Reddy G.S. Hossain K.A. Kumar J.S. Thirupataiah B. Edwin R.K. Giliyaru V.B. Chandrashekhar Hariharapura R. Shenoy G.G. Misra P. Pal M. Novel isatin–indole derivatives as potential inhibitors of chorismate mutase (CM): Their synthesis along with unexpected formation of 2-indolylmethylamino benzoate ester under Pd–Cu catalysis. RSC Advances 2020 10 1 289 297 10.1039/C9RA09236F 35492515
    [Google Scholar]
  93. Kumar S. Saini A. Legac J. Rosenthal P.J. Raj R. Kumar V. Amalgamating Isatin/Indole/Nitroimidazole with 7‐chloroquinolines via azide‐alkyne cycloaddition: Synthesis, anti‐plasmodial, and cytotoxic evaluation. Chem Biol Drug Des 2020 96 6 1355 1361 10.1111/cbdd.13738 32515142
    [Google Scholar]
  94. Sharma B. Singh A. Gu L. Saha S.T. Singh-Pillay A. Cele N. Singh P. Kaur M. Kumar V. Diastereoselective approach to rationally design tetrahydro-β-carboline–isatin conjugates as potential SERMs against breast cancer. RSC Advances 2019 9 17 9809 9819 10.1039/C9RA00744J 35520746
    [Google Scholar]
  95. Fu X. Cook J.M. General approach for the synthesis of ajmaline-related alkaloids. Enantiospecific total synthesis of (-)-suaveoline, (-)-raumacline, and (-)-Nb-methylraumacline. J Org Chem 1993 58 3 661 672 10.1021/jo00055a019
    [Google Scholar]
  96. Yu P. Cook J.M. Enantiospecific total synthesis of the Sarpagine related indole alkaloids Talpinine and Talcarpine: The oxyanion-Cope approach. J Org Chem 1998 63 25 9160 9161 10.1021/jo981815h
    [Google Scholar]
  97. Hu Y.Q. Song X.F. Fan J. Design, synthesis and in vitro antimycobacterial activity of propylene-tethered isatin dimers. J Heterocycl Chem 2018 55 1 265 268 10.1002/jhet.3042
    [Google Scholar]
  98. Abdelrahman M.A. Almahli H. Al-Warhi T. Majrashi T.A. Abdel-Aziz M.M. Eldehna W.M. Said M.A. Development of novel isatin-tethered quinolines as anti-tubercular agents against multi and extensively drug-resistant Mycobacterium tuberculosis. Molecules 2022 27 24 8807 10.3390/molecules27248807 36557937
    [Google Scholar]
  99. Xie Z. Wang G. Wang J. Chen M. Peng Y. Li L. Deng B. Chen S. Li W. Synthesis, biological evaluation and molecular docking studies of novel isatin-thiazole derivatives as α-glucosidase inhibitors. Molecules 2017 22 4 659 10.3390/molecules22040659 28425975
    [Google Scholar]
  100. Abdel-Aziz H. Eldehna W. Keeton A. Piazza G. Kadi A. Attwa M. Abdelhameed A. Attia M. Isatin-benzoazine molecular hybrids as potential antiproliferative agents: Synthesis and in vitro pharmacological profiling. Drug Des Devel Ther 2017 11 2333 2346 10.2147/DDDT.S140164 28848327
    [Google Scholar]
  101. Sharma P.K. Balwani S. Mathur D. Malhotra S. Singh B.K. Prasad A.K. Len C. Van der Eycken E.V. Ghosh B. Richards N.G.J. Parmar V.S. Synthesis and anti-inflammatory activity evaluation of novel triazolyl-isatin hybrids. J Enzyme Inhib Med Chem 2016 31 6 1520 1526 10.3109/14756366.2016.1151015 27146339
    [Google Scholar]
  102. Mishra P. Kumar A. Mamidi P. Kumar S. Basantray I. Saswat T. Das I. Nayak T.K. Chattopadhyay S. Subudhi B.B. Chattopadhyay S. Inhibition of chikungunya virus replication by 1-[(2-methylbenzimidazol-1-yl) methyl]-2-oxo-indolin-3-ylidene] amino] thiourea (MBZM-N-IBT). Sci Rep 2016 6 1 20122 10.1038/srep20122 26843462
    [Google Scholar]
  103. Raj R. Biot C. Carrère-Kremer S. Kremer L. Guérardel Y. Gut J. Rosenthal P.J. Forge D. Kumar V. 7-chloroquinoline-isatin conjugates: Antimalarial, antitubercular, and cytotoxic evaluation. Chem Biol Drug Des 2014 83 5 622 629 10.1111/cbdd.12273 24341638
    [Google Scholar]
  104. Varun V. Sonam S. Kakkar R. Isatin and its derivatives: A survey of recent syntheses, reactions, and applications. MedChemComm 2019 10 3 351 368 10.1039/C8MD00585K 30996856
    [Google Scholar]
  105. Blažević T. Heiss E.H. Atanasov A.G. Breuss J.M. Dirsch V.M. Uhrin P. Indirubin and indirubin derivatives for counteracting proliferative diseases. Evid Based Complement Alternat Med 2015 2015 1 654098 10.1155/2015/654098 26457112
    [Google Scholar]
  106. Wang J. Chen L. Zheng Q. Chen S. Hou Z. Liu P. Indirubin induces apoptosis in ovarian cancer cells via the mitochondrial pathway. Am J Transl Res 2024 16 10 6119 6129 10.62347/IOFY5604 39544767
    [Google Scholar]
  107. Pawar Y. Sonawane A. Nagle P. Mahulikar P. More D. Synthesis of 1,4-benzothiazine compound containing isatin moieties as antimicrobial agent. Int J Curr Pharm Res 2011 3 3 1 5
    [Google Scholar]
  108. Sonawane A.E. Pawar Y.A. Nagle P.S. Mahulikar P.P. More D.H. Synthesis of 1,4-benzothiazine compounds containing isatin hydrazone moiety as antimicrobial agent. Chin J Chem 2009 27 10 2049 2054 10.1002/cjoc.200990344
    [Google Scholar]
  109. Solomon V.R. Hu C. Lee H. Hybrid pharmacophore design and synthesis of isatin–benzothiazole analogs for their anti-breast cancer activity. Bioorg Med Chem 2009 17 21 7585 7592 10.1016/j.bmc.2009.08.068 19804979
    [Google Scholar]
  110. Bekircan O. Bektas H. Synthesis of Schiff and Mannich bases of isatin derivatives with 4-amino-4,5-dihydro-1H-1,2,4-triazole-5-ones. Molecules 2008 13 9 2126 2135 10.3390/molecules13092126 18830145
    [Google Scholar]
  111. Pandeya S.N. Sriram D. Nath G. de Clercq E. Synthesis, antibacterial, antifungal and anti-HIV evaluation of Schiff and Mannich bases of isatin and its derivatives with triazole. Arzneimittelforschung 2000 50 1 55 59 10.1055/s‑0031‑1300164 10683717
    [Google Scholar]
  112. Selvam P. Chandramohan M. De Clercq E. Witvrouw M. Pannecouque C. Synthesis and anti-HIV activity of 4-[(1,2-dihydro-2-oxo-3H-indol-3-ylidene) amino]-N(4,6-dimethyl-2-pyrimidinyl)-benzene sulfonamide and its derivatives. Eur J Pharm Sci 2001 14 4 313 316 10.1016/S0928‑0987(01)00197‑X 11684405
    [Google Scholar]
  113. Yan L. Huo P. Hale J.J. Mills S.G. Hajdu R. Keohane C.A. Rosenbach M.J. Milligan J.A. Shei G.J. Chrebet G. Bergstrom J. Card D. Mandala S.M. SAR studies of 3-arylpropionic acids as potent and selective agonists of sphingosine-1-phosphate receptor-1 (S1P1) with enhanced pharmacokinetic properties. Bioorg Med Chem Lett 2007 17 3 828 831 10.1016/j.bmcl.2006.10.057 17092714
    [Google Scholar]
  114. Schubert T.J. Oboh E. Peek H. Philo E. Teixeira J.E. Stebbins E.E. Miller P. Oliva J. Sverdrup F.M. Griggs D.W. Huston C.D. Meyers M.J. Structure-activity relationship studies of the aryl acetamide triazolopyridazines against Cryptosporidium reveals remarkable role of fluorine. J Med Chem 2023 66 12 7834 7848 10.1021/acs.jmedchem.3c00110 37267631
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575407443250919042610
Loading
/content/journals/mrmc/10.2174/0113895575407443250919042610
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test