Skip to content
2000
Volume 25, Issue 19
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Introduction

Isatin (1-indole-2,3-dione) and indole are versatile scaffolds with diverse pharmacological activities, including antimicrobial, anticancer, antiviral, anticonvulsant, anti-inflammatory, and analgesic effects. Isatin-indole hybrids have emerged as multifunctional agents with significant potential in drug discovery.

Methods

A literature survey (2010-2025) across major databases (PubMed, Google Scholar, ACS, ) included reports on synthesis, biological evaluation, and structure–activity relationship (SAR) analysis.

Results

Numerous synthetic approaches, including both conventional and green methods, have yielded a diverse range of isatin-indole derivatives. Many exhibited potent antimicrobial, anticancer, antioxidant, and antitubercular activities, with SAR studies highlighting the impact of substitution patterns on activity and selectivity.

Discussion

This review aims to provide a comprehensive overview of hybrid molecules in which the isatin core is covalently linked to an indole scaffold. It focuses on their synthesis, diverse biological activities and structure-activity relationship (SAR) studies from 2001 onwards.

Conclusion

This review provides a concise summary of the latest developments and future outlook for the therapeutic potential of isatin-indole hybrids in the development of potent bioactive drugs.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575407443250919042610
2025-10-15
2026-01-01
Loading full text...

Full text loading...

References

  1. DzeK.C. SamadF. Heterocycles, their synthesis and industrial applications: A review.Int. J. Res. Appl. Sci. Eng. Technol.2020810365610.22214/ijraset.2020.31786
    [Google Scholar]
  2. AminA. QadirT. SharmaP.K. JeelaniI. AbeH. A review on the medicinal and industrial applications of N-containing heterocycles.Open Med. Chem. J.202216118741045220901010.2174/18741045‑v16‑e2209010
    [Google Scholar]
  3. TaylorA.P. RobinsonR.P. FobianY.M. BlakemoreD.C. JonesL.H. FadeyiO. Modern advances in heterocyclic chemistry in drug discovery.Org. Biomol. Chem.201614286611663710.1039/C6OB00936K 27282396
    [Google Scholar]
  4. DesaiN. TrivediA. PanditU. DodiyaA. Kameswara RaoV. DesaiP. Hybrid bioactive heterocycles as potential antimicrobial agents: A review.Mini Rev. Med. Chem.201616181500152610.2174/1389557516666160609075620 27292782
    [Google Scholar]
  5. MartinsP. JesusJ. SantosS. RaposoL. Roma-RodriguesC. BaptistaP. FernandesA. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s toolbox.Molecules2015209168521689110.3390/molecules200916852 26389876
    [Google Scholar]
  6. BaranwalJ. KushwahaS. SinghS. JyotiA. A review on the synthesis and pharmacological activity of heterocyclic compounds.Curr. Phys. Chem.202313121910.2174/1877946813666221021144829
    [Google Scholar]
  7. NicolaouK.C. Organic synthesis: The art and science of replicating the molecules of living nature and creating others like them in the laboratory.Proc.- Royal Soc., Math. Phys. Eng. Sci.201447021632013069010.1098/rspa.2013.0690 24611027
    [Google Scholar]
  8. OmarA. Anticancer activities of some fused heterocyclic moieties containing nitrogen and/or sulfur heteroatoms.Az. J. Pharm. Sci.20206223954
    [Google Scholar]
  9. ThindT.S. Role of fungicides in crop health management: Prospects and challenges.Dev. Fungal Biol. Appl. Mycol.201752143344710.1007/978‑981‑10‑4768‑8_22
    [Google Scholar]
  10. HahnM. The rising spectrum of fungicide resistance in plant pathogens: Implications for future practices.Mol. Plant Pathol.2014156617627
    [Google Scholar]
  11. DaramolaO.S. MacDonaldG.E. KanisseryR.G. DevkotaP. Effects of co-applied agrochemicals on herbicide performance: A review.Crop Prot.202317410639610.1016/j.cropro.2023.106396
    [Google Scholar]
  12. BhosleM.R. MaliJ.R. PalS. SrivastavaA.K. ManeR.A. Synthesis and antihyperglycemic evaluation of new 2-hydrazolyl-4-thiazolidinone-5-carboxylic acids having pyrazolyl pharmacophores.Bioorg. Med. Chem. Lett.201424122651265410.1016/j.bmcl.2014.04.064 24813740
    [Google Scholar]
  13. SrivastavaA. PandeyaS.N. Indole: A versatile nucleus in pharmaceutical field.Int. J. Curr. Pharm. Rev. Res.201113217
    [Google Scholar]
  14. LageO.M. RamosM.C. CalistoR. AlmeidaE. VasconcelosV. VicenteF. Current screening methodologies in drug discovery for selected human diseases.Mar. Drugs201816827910.3390/md16080279 30110923
    [Google Scholar]
  15. TanakaH. TakahashiT. The role of tryptophan-derived metabolites in the control of cancer.J. Exp. Clin. Cancer Res.2017361110
    [Google Scholar]
  16. CiullaM.G. KumarK. The natural and synthetic indole weaponry against bacteria.Tetrahedron Lett.201859343223323310.1016/j.tetlet.2018.07.045
    [Google Scholar]
  17. RosalesP.F. BordinG.S. GowerA.E. MouraS. Indole alkaloids: 2012 until now, highlighting the new chemical structures and biological activities.Fitoterapia202014310455810.1016/j.fitote.2020.104558 32198108
    [Google Scholar]
  18. WanY. LiY. YanC. YanM. TangZ. Indole: A privileged scaffold for the design of anti-cancer agents.Eur. J. Med. Chem.201918311169110.1016/j.ejmech.2019.111691 31536895
    [Google Scholar]
  19. DadashpourS. EmamiS. Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms.Eur. J. Med. Chem.201815092910.1016/j.ejmech.2018.02.065 29505935
    [Google Scholar]
  20. LongS.Y. LiC.L. HuJ. ZhaoQ.J. ChenD. Indole alkaloids from the aerial parts of Kopsia fruticosa and their cytotoxic, antimicrobial and antifungal activities.Fitoterapia201812914514910.1016/j.fitote.2018.06.017 29935259
    [Google Scholar]
  21. ZhangM.Z. JiaC.Y. GuY.C. MulhollandN. TurnerS. BeattieD. ZhangW.H. YangG.F. CloughJ. Synthesis and antifungal activity of novel indole-replaced streptochlorin analogues.Eur. J. Med. Chem.201712666967410.1016/j.ejmech.2016.12.001 27936445
    [Google Scholar]
  22. LuthraT. NayakA.K. BoseS. ChakrabartiS. GuptaA. SenS. Indole based antimalarial compounds targeting the melatonin pathway: Their design, synthesis and biological evaluation.Eur. J. Med. Chem.2019168112710.1016/j.ejmech.2019.02.019 30798050
    [Google Scholar]
  23. ElshemyH.A.H. ZakiM.A. MohamedE.I. KhanS.I. LamieP.F. A multicomponent reaction to design antimalarial pyridyl-indole derivatives: Synthesis, biological activities and molecular docking.Bioorg. Chem.20209710367310.1016/j.bioorg.2020.103673 32106041
    [Google Scholar]
  24. ZhangM.Z. ChenQ. YangG.F. A review on recent developments of indole-containing antiviral agents.Eur. J. Med. Chem.20158942144110.1016/j.ejmech.2014.10.065 25462257
    [Google Scholar]
  25. WangT. WallaceO.B. ZhangZ. FangH. YangZ. RobinsonB.A. SpicerT.P. GongY.F. BlairW.S. ShiP.Y. LinP.F. DeshpandeM. MeanwellN.A. KadowJ.F. A survey of core replacements in indole-based HIV-1 attachment inhibitors.Bioorg. Med. Chem. Lett.201929111423142910.1016/j.bmcl.2019.03.018 30940396
    [Google Scholar]
  26. DesaiN.C. SomaniH. TrivediA. BhattK. NawaleL. KhedkarV.M. JhaP.C. SarkarD. Synthesis, biological evaluation and molecular docking study of some novel indole and pyridine based 1,3,4-oxadiazole derivatives as potential antitubercular agents.Bioorg. Med. Chem. Lett.20162671776178310.1016/j.bmcl.2016.02.043 26920799
    [Google Scholar]
  27. KhanG.A. WarJ.A. NaikooG.A. PanditU.J. DasR. J. Saudi Chem. Soc.2018226101111
    [Google Scholar]
  28. LianZ.M. SunJ. ZhuH.L. Design, synthesis and antibacterial activity of isatin derivatives as FtsZ inhibitors.J. Mol. Struct.2016111781610.1016/j.molstruc.2016.03.036
    [Google Scholar]
  29. QinH.L. LiuJ. FangW.Y. RavindarL. RakeshK.P. Indole-based derivatives as potential antibacterial activity against methicillin-resistance Staphylococcus aureus (MRSA).Eur. J. Med. Chem.202019411224510.1016/j.ejmech.2020.112245 32220687
    [Google Scholar]
  30. ElmongyE.I. AhmedA.A.S. El SayedI.E.T. FathyG. AwadH.M. SalmanA.U. HamedM.A. Synthesis, biocidal and antibiofilm activities of new isatin-quinoline conjugates against multidrug-resistant bacterial pathogens along with their in silico screening.Antibiotics20221111150710.3390/antibiotics11111507 36358162
    [Google Scholar]
  31. SunP. HuangY. YangX. LiaoA. WuJ. The role of indole derivative in the growth of plants: A review.Front Plant. Sci.202313112061310.3389/fpls.2022.1120613 36726683
    [Google Scholar]
  32. kaur, K.; Utreja, D.; Dhillon, N.K.; Anupam; Buttar, H.S. Heterocyclic moieties as prospective nematicides: An overview.Curr. Org. Chem.202226181703172410.2174/1385272827666221209094444
    [Google Scholar]
  33. JiS.J. LiW.C. HuD.Y. Synthesis and bioactivity of isatin-based indole hybrids as potential pesticides.J. Agric. Food Chem.2018661435533560
    [Google Scholar]
  34. SongF. LiZ. BianY. HuoX. FangJ. ShaoL. ZhouM. Indole/isatin-containing hybrids as potential antibacterial agents.Arch. Pharm.202035310200014310.1002/ardp.202000143 32667714
    [Google Scholar]
  35. GautamN. KumarR. KothariV. KumarS. SinghM.K. NandyS. Isatin-based indole hybrids: Design, synthesis, antimicrobial evaluation and molecular docking studies.Bioorg. Med. Chem. Lett.2016261433123317
    [Google Scholar]
  36. SharmaA. SinghS. UtrejaD. Recent advances in synthesis and antifungal activity of 1,3,5-triazines.Curr. Org. Synth.201613448450310.2174/1570179412666150905002356
    [Google Scholar]
  37. JainN. UtrejaD. DhillonN.K. A convenient one pot synthesis and antinemic studies of nicotinic acid derivatives.Russ. J. Org. Chem.201955684585110.1134/S1070428019060150
    [Google Scholar]
  38. AnandU. Jacobo-HerreraN. AltemimiA. LakhssassiN. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery.Metabolites201991125810.3390/metabo9110258 31683833
    [Google Scholar]
  39. VibhaV. UtrejaD. KaurJ. KaurM. Antifungal activity of dihydropyrimidinones synthesized by using magnesium ferrite nanoparticles as efficient heterogeneous catalyst.Agri. Res. J.2018552313317
    [Google Scholar]
  40. IsmailS. JiangB. NasimiZ. Inam-ul-Haq, M.; Yamamoto, N.; Danso Ofori, A.; Khan, N.; Arshad, M.; Abbas, K.; Zheng, A. Investigation of streptomyces scabies causing potato scab by various detection techniques, its pathogenicity and determination of host-disease resistance in potato germplasm.Pathogens20209976010.3390/pathogens9090760 32957549
    [Google Scholar]
  41. RockE.P. GoodmanV. JiangJ.X. MahjoobK. VerboisS.L. MorseD. DagherR. JusticeR. PazdurR. Food and Drug Administration drug approval summary: Sunitinib malate for the treatment of gastrointestinal stromal tumor and advanced renal cell carcinoma.Oncologist200712110711310.1634/theoncologist.12‑1‑107 17227905
    [Google Scholar]
  42. DabholkarS. GaoB. ChuongB. Nintedanib—A case of treating concurrent idiopathic pulmonary fibrosis and non-small cell lung cancer.Respirol. Case Rep.2022102090210.1002/rcr2.90235059200
    [Google Scholar]
  43. ThokagevistkK. FrançoisC. BrignoneM. ToumiM. From investigational product to active reference: Evolution of oral sumatriptan efficacy versus placebo for the treatment of acute migraine episodes and potential impact in comparative analyses.J. Mark. Access Health Policy201971160353810.1080/20016689.2019.1603538 31044055
    [Google Scholar]
  44. HidakaH. IzumiN. AramakiT. IkedaM. InabaY. ImanakaK. OkusakaT. KanazawaS. KanekoS. KoraS. SaitoH. FuruseJ. MatsuiO. YamashitaT. YokosukaO. MoritaS. AriokaH. KudoM. AraiY. Subgroup analysis of efficacy and safety of orantinib in combination with TACE in Japanese HCC patients in a randomized phase III trial (ORIENTAL).Med. Oncol.20193665210.1007/s12032‑019‑1272‑2 31053989
    [Google Scholar]
  45. FrezoulisP. HarperA. The role of toceranib phosphate in dogs with non-mast cell neoplasia: A systematic review.Vet. Comp. Oncol.202220236237110.1111/vco.12799 34981886
    [Google Scholar]
  46. LáinezM.J.A. Rizatriptan in the treatment of migraine.Neuropsychiatr. Dis. Treat.20062324725910.2147/nedt.2006.2.3.247 19412472
    [Google Scholar]
  47. SheltonM.J. HewittR.G. AdamsJ. Della-ColettaA. CoxS. MorseG.D. Pharmacokinetics of ritonavir and delavirdine in human immunodeficiency virus-infected patients.Antimicrob. Agents Chemother.20034751694169910.1128/AAC.47.5.1694‑1699.2003 12709342
    [Google Scholar]
  48. ChauhanM. ParryR. BoboW.V. Vilazodone for major depression in adults: Pharmacological profile and an updated review for clinical practice.Neuropsychiatr. Dis. Treat.2022181175119310.2147/NDT.S279342 35726313
    [Google Scholar]
  49. Abo-SalemH.M. NassrallahA. SolimanA.A.F. EbiedM.S. ElawadyM.E. AbdelhamidS.A. El-SawyE.R. Al-SheikhY.A. Aboul-SoudM.A.M. Synthesis and bioactivity assessment of novel spiro pyrazole-oxindole congeners exhibiting potent and selective in vitro anticancer effects.Molecules2020255112410.3390/molecules25051124 32138244
    [Google Scholar]
  50. PerrinC.L. ChangK.L. The complete mechanism of an aldol condensation.J. Org. Chem.201681135631563510.1021/acs.joc.6b00959 27281298
    [Google Scholar]
  51. Al-WarhiT. El KerdawyA.M. AljaeedN. IsmaelO.E. AyyadR.R. EldehnaW.M. Abdel-AzizH.A. Al-AnsaryG.H. Synthesis, Biological evaluation and in silico studies of certain oxindole-indole conjugates as anticancer CDK inhibitors.Molecules2020259203110.3390/molecules25092031 32349307
    [Google Scholar]
  52. NafieM.S. ShawishI. FahmyS.A. DiabM.K. AbdelfattahM.M. HassenB.M. DarwishK.M. El-FahamA. BarakatA. Recent advances in the halogenated spirooxindoles as novel anticancer scaffolds: Chemistry and bioactivity approach.RSC Advances20251528223362237510.1039/D5RA03404C 40599572
    [Google Scholar]
  53. SudhakarB. MurthyM.S. Synthesis, Characterization and in vivo anti-inflammatory activity of some novel schiff’s bases of isatin derivatives.Int. J. Pharm. Biol. Sci.2019926670
    [Google Scholar]
  54. Al-WabliR. ZakariaA. AttiaM. Synthesis, spectroscopic characterization and antimicrobial potential of certain new isatin-indole molecular hybrids.Molecules20172211195810.3390/molecules22111958 29140257
    [Google Scholar]
  55. WangC. YanJ. DuM. BurlisonJ.A. LiC. SunY. ZhaoD. LiuJ. One step synthesis of indirubins by reductive coupling of isatins with KBH 4.Tetrahedron201773192780278510.1016/j.tet.2017.03.077
    [Google Scholar]
  56. FuW. ZhouY. SongQ. Copper/diboron-mediated intramolecular oxygenation and allylation/benzylation of nitroalkynes for the synthesis of C2-quaternary Indolin-3-ones.Chem. Asian J.201813172511251510.1002/asia.201800500 29714051
    [Google Scholar]
  57. PoomathiN. MayakrishnanS. MuralidharanD. SrinivasanR. PerumalP.T. Reaction of isatins with 6-amino uracils and isoxazoles: Isatin ring-opening vs. annulations and regioselective synthesis of isoxazole fused quinoline scaffolds in water.Green Chem.20151763362337210.1039/C5GC00006H
    [Google Scholar]
  58. GillamE.M.J. NotleyL.M. CaiH. De VossJ.J. GuengerichF.P. Oxidation of indole by cytochrome P450 enzymes.Biochemistry20003945138171382410.1021/bi001229u 11076521
    [Google Scholar]
  59. WeeX.K. YeoW.K. ZhangB. TanV.B.C. LimK.M. TayT.E. GoM.L. Synthesis and evaluation of functionalized isoindigos as antiproliferative agents.Bioorg. Med. Chem.200917217562757110.1016/j.bmc.2009.09.008 19783149
    [Google Scholar]
  60. NelsonA.C. KalinowskiE.S. JacobsonT.L. GrundtP. Formation of tryptanthrin compounds upon Oxone-induced dimerization of indole-3-carbaldehydes.Tetrahedron Lett.201354506804680610.1016/j.tetlet.2013.09.124
    [Google Scholar]
  61. VineK.L. LockeJ.M. RansonM. PyneS.G. BremnerJ.B. BremnerJ.B. In vitro cytotoxicity evaluation of some substituted isatin derivatives.Bioorg. Med. Chem.200715293193810.1016/j.bmc.2006.10.035 17088067
    [Google Scholar]
  62. LeclercS. GarnierM. HoesselR. MarkoD. BibbJ.A. SnyderG.L. GreengardP. BiernatJ. WuY.Z. MandelkowE.M. EisenbrandG. MeijerL. Indirubins inhibit glycogen synthase kinase-3 β and CDK5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer’s disease. A property common to most cyclin-dependent kinase inhibitors?J. Biol. Chem.2001276125126010.1074/jbc.M002466200 11013232
    [Google Scholar]
  63. MacDonaldJ.P. BadilloJ.J. ArevaloG.E. Silva-GarcíaA. FranzA.K. Catalytic stereoselective synthesis of diverse oxindoles and spirooxindoles from isatins.ACS Comb. Sci.201214428529310.1021/co300003c 22449252
    [Google Scholar]
  64. StöckigtJ. AntonchickA.P. WuF. WaldmannH. The Pictet-Spengler reaction in nature and in organic chemistry.Angew. Chem. Int. Ed.201150378538856410.1002/anie.201008071 21830283
    [Google Scholar]
  65. El-SayedM.T. MahmoudK. HilgerothA. FakhrI.M.I. Synthesis of novel indolo-spirocyclic compounds.J. Heterocycl. Chem.201653118819610.1002/jhet.2402
    [Google Scholar]
  66. AnnuurR.M. TitisariD.A. DinarlitaR.R. FadlanA. ErsamT. NuryastutiT. SantosoM. Synthesis and anti-tuberculosis activity of trisindolines.AIP Conf. Proc. 20182049102008810.1063/1.5082493
    [Google Scholar]
  67. Nguyen Thi BinhN. MolicottiP. TranH. Le ThanhP. Nguyen Thi KieuD. Nguyen TanC. Le TrongT. Truong VanH. Ngo Viet QuynhT. Application of the resazurin microtitre assay for the detection of isoniazid and/or rifampicin resistant Mycobacterium tuberculosis clinical isolates in Central Vietnam.J. Med. Pharm.2020101394410.34071/jmp.2020.7.6
    [Google Scholar]
  68. HakkimaneS. ShenoyV.P. GaonkarS. BairyI. GuruB.R. Antimycobacterial susceptibility evaluation of rifampicin and isoniazid benz-hydrazone in biodegradable polymeric nanoparticles against Mycobacterium tuberculosis H37Rv strain.Int. J. Nanomedicine2018134303431810.2147/IJN.S163925 30087562
    [Google Scholar]
  69. Sai PrathimaP. RajeshP. Venkateswara RaoJ. Sai KailashU. SridharB. MohanRao M. “On water” expedient synthesis of 3-indolyl-3-hydroxy oxindole derivatives and their anticancer activity in vitro.Eur. J. Med. Chem.20148415515910.1016/j.ejmech.2014.07.004 25016373
    [Google Scholar]
  70. WangC. ZhangL. RenA. LuP. WangY. Cu-catalyzed synthesis of tryptanthrin derivatives from substituted indoles.Org. Lett.201315122982298510.1021/ol401144m 23746360
    [Google Scholar]
  71. ZhouX. Recent advances of tryptanthrin and its derivatives as potential anticancer agents.RSC Med. Chem.20241541127114710.1039/D3MD00698K 38665827
    [Google Scholar]
  72. BrahmachariG. BanerjeeB. Facile and one-pot access of 3,3-bis(indol-3-yl) indolin-2-ones and 2,2-bis(indol-3-yl) acenaph-thylen-1(2H)-one derivatives via an eco-friendly pseudo-multicomponent reaction at room temperature using sulfamic acid as an organo-catalyst.ACS sustain.chem. and Eng20142122802281210.1021/sc500575h
    [Google Scholar]
  73. Hosseini-SarvariM. TavakolianM. Preparation, characterization, and catalysis application of nano-rods zinc oxide in the synthesis of 3-indolyl-3-hydroxy oxindoles in water.Appl. Catal. A Gen.2012441-442657110.1016/j.apcata.2012.07.009
    [Google Scholar]
  74. PraveenC. AyyanarA. PerumalP.T. Practical synthesis, anticonvulsant, and antimicrobial activity of N -allyl and N -propargyl di(indolyl)indolin-2-ones.Bioorg. Med. Chem. Lett.201121134072407710.1016/j.bmcl.2011.04.117 21621411
    [Google Scholar]
  75. LiZ. QinJ. YangZ. YeC. Synthesis and structural characterization of a new polysiloxane with second-order nonlinear optical effect.J. Appl. Polym. Sci.200494276977410.1002/app.20942
    [Google Scholar]
  76. DamodiranM. MuralidharanD. PerumalP.T. Regioselective synthesis and biological evaluation of bis(indolyl)methane derivatized 1,4-disubstituted 1,2,3-bistriazoles as anti-infective agents.Bioorg. Med. Chem. Lett.200919133611361410.1016/j.bmcl.2009.04.131 19447624
    [Google Scholar]
  77. FrainD. KirbyF. McArdleP. O’LearyP. Preparation, structure and catalytic activity of copper(II) complexes of novel 4,4′-BOX ligands.Tetrahedron Lett.201051314103410610.1016/j.tetlet.2010.05.135
    [Google Scholar]
  78. ChaoJ. YueY. WangK. GuoX. SunC. XuY. LiuJ. Copper-catalyz.ed oxidative dehydrogenative dearomatization of indole derivatives: A new strategy to construct spirocyclic indolenines.iScience2022251210566910.1016/j.isci.2022.105669 36536679
    [Google Scholar]
  79. YogeeswariP. SriramD. ThirumuruganR. RaghavendranJ.V. SudhanK. PavanaR.K. StablesJ. Discovery of N-(2,6-dimethylphenyl)-substituted semicarbazones as anticonvulsants: Hybrid pharmacophore-based design.J. Med. Chem.200548206202621110.1021/jm050283b 16190747
    [Google Scholar]
  80. Castel-BrancoM.M. AlvesG.L. FigueiredoI.V. FalcãoA.C. CaramonaM.M. The maximal electroshock seizure (MES) model in the preclinical assessment of potential new antiepileptic drugs.Methods Find. Exp. Clin. Pharmacol.200931210110610.1358/mf.2009.31.2.1338414 19455265
    [Google Scholar]
  81. KamalA. SrikanthY.V.V. KhanM.N.A. ShaikT.B. AshrafM. AshrafM. Synthesis of 3,3-diindolyl oxyindoles efficiently catalysed by FeCl3 and their in vitro evaluation for anticancer activity.Bioorg. Med. Chem. Lett.201020175229523110.1016/j.bmcl.2010.06.152 20673629
    [Google Scholar]
  82. DengJ. ZhangS. DingP. JiangH. WangW. LiJ. Facile creation of 3-indolyl-3-hydroxy-2-oxindoles by an organocatalytic enantioselective Friedel-Crafts reaction of indoles with isatins.Adv. Synth. Catal.2010352583383810.1002/adsc.200900851
    [Google Scholar]
  83. SuzukaT. OoshiroY. OgiharaK. Friedel-Crafts-type alkylation of indoles in water using amphiphilic resin-supported 1,10-phenanthroline-palladium complex under aerobic conditions.Catalysts202010219310.3390/catal10020193
    [Google Scholar]
  84. SilvaJ.F.M. GardenS.J. PintoA.C. The chemistry of isatins: A review from 1975 to 1999.J. Braz. Chem. Soc.200112327332410.1590/S0103‑50532001000300002
    [Google Scholar]
  85. BouchikhiF. AnizonF. MoreauP. Synthesis and antiproliferative activities of isoindigo and azaisoindigo derivatives.Eur. J. Med. Chem.200843475576210.1016/j.ejmech.2007.05.012 17628214
    [Google Scholar]
  86. HassanA.S. MorsyN.M. AboulthanaW.M. RagabA. Exploring novel derivatives of isatin-based Schiff bases as multi-target agents: Design, synthesis, in vitro biological evaluation, and in silico ADMET analysis with molecular modeling simulations.RSC Advances202313149281930310.1039/D3RA00297G 36950709
    [Google Scholar]
  87. BonviciniF. LocatelliA. MorigiR. LeoniA. GentilomiG.A. Isatin bis-indole and bis-imidazothiazole hybrids: Synthesis and antimicrobial activity.Molecules20222718578110.3390/molecules27185781 36144518
    [Google Scholar]
  88. PaoliniJ.P. LendvayL.J. Heterocyclic systems with a bridgehead nitrogen. II. 6-Chloroimidazo[2,1-b]thiazole and some of its 5-substituted derivatives.J. Med. Chem.19691261031103410.1021/jm00306a015 5351444
    [Google Scholar]
  89. NonhebelD.C. WatersW.A. A study of the mechanism of the Sandmeyer reaction.Proc. R. Soc. Lond. A Math. Phys. Sci.19572421228162710.1098/rspa.1957.0150
    [Google Scholar]
  90. GandhiP.V. BurandeS.R. ChardeM.S. ChakoleR.D. A review on isatin and its derivatives: Synthesis, reactions and applications.Int. J. Adv. Sci. Res.2021124111
    [Google Scholar]
  91. FujiiN. MallariJ.P. HansellE.J. MackeyZ. DoyleP. ZhouY.M. GutJ. RosenthalP.J. McKerrowJ.H. GuyR.K. Discovery of potent thiosemicarbazone inhibitors of rhodesain and cruzain.Bioorg. Med. Chem. Lett.200515112112310.1016/j.bmcl.2004.10.023 15582423
    [Google Scholar]
  92. ReddyG.S. HossainK.A. KumarJ.S. ThirupataiahB. EdwinR.K. GiliyaruV.B. Chandrashekhar HariharapuraR. ShenoyG.G. MisraP. PalM. Novel isatin–indole derivatives as potential inhibitors of chorismate mutase (CM): Their synthesis along with unexpected formation of 2-indolylmethylamino benzoate ester under Pd–Cu catalysis.RSC Advances202010128929710.1039/C9RA09236F 35492515
    [Google Scholar]
  93. KumarS. SainiA. LegacJ. RosenthalP.J. RajR. KumarV. Amalgamating Isatin/Indole/Nitroimidazole with 7-chloroquino-lines via azide-alkyne cycloaddition: Synthesis, anti-plasmodial, and cytotoxic evaluation.Chem. Biol. Drug Des.20209661355136110.1111/cbdd.13738 32515142
    [Google Scholar]
  94. SharmaB. SinghA. GuL. SahaS.T. Singh-PillayA. CeleN. SinghP. KaurM. KumarV. Diastereoselective approach to rationally design tetrahydro-β-carboline–isatin conjugates as potential SERMs against breast cancer.RSC Advances20199179809981910.1039/C9RA00744J 35520746
    [Google Scholar]
  95. FuX. CookJ.M. General approach for the synthesis of ajmaline-related alkaloids. Enantiospecific total synthesis of (-)-suaveoline, (-)-raumacline, and (-)-Nb-methylraumacline.J. Org. Chem.199358366167210.1021/jo00055a019
    [Google Scholar]
  96. YuP. CookJ.M. Enantiospecific total synthesis of the Sarpagine related indole alkaloids Talpinine and Talcarpine: The oxyanion-Cope approach.J. Org. Chem.199863259160916110.1021/jo981815h
    [Google Scholar]
  97. HuY.Q. SongX.F. FanJ. Design, synthesis and in vitro antimycobacterial activity of propylene-tethered isatin dimers.J. Heterocycl. Chem.201855126526810.1002/jhet.3042
    [Google Scholar]
  98. AbdelrahmanM.A. AlmahliH. Al-WarhiT. MajrashiT.A. Abdel-AzizM.M. EldehnaW.M. SaidM.A. Development of novel isatin-tethered quinolines as anti-tubercular agents against multi and extensively drug-resistant Mycobacterium tuberculosis.Molecules20222724880710.3390/molecules27248807 36557937
    [Google Scholar]
  99. XieZ. WangG. WangJ. ChenM. PengY. LiL. DengB. ChenS. LiW. Synthesis, biological evaluation and molecular docking studies of novel isatin-thiazole derivatives as α-glucosidase inhibitors.Molecules201722465910.3390/molecules22040659 28425975
    [Google Scholar]
  100. Abdel-AzizH. EldehnaW. KeetonA. PiazzaG. KadiA. AttwaM. AbdelhameedA. AttiaM. Isatin-benzoazine molecular hybrids as potential antiproliferative agents: Synthesis and in vitro pharmacological profiling.Drug Des. Devel. Ther.2017112333234610.2147/DDDT.S140164 28848327
    [Google Scholar]
  101. SharmaP.K. BalwaniS. MathurD. MalhotraS. SinghB.K. PrasadA.K. LenC. Van der EyckenE.V. GhoshB. RichardsN.G.J. ParmarV.S. Synthesis and anti-inflammatory activity evaluation of novel triazolyl-isatin hybrids.J. Enzyme Inhib. Med. Chem.20163161520152610.3109/14756366.2016.1151015 27146339
    [Google Scholar]
  102. MishraP. KumarA. MamidiP. KumarS. BasantrayI. SaswatT. DasI. NayakT.K. ChattopadhyayS. SubudhiB.B. ChattopadhyayS. Inhibition of chikungunya virus replication by 1-[(2-methylbenzimidazol-1-yl) methyl]-2-oxo-indolin-3-ylidene] amino] thiourea (MBZM-N-IBT).Sci. Rep.2016612012210.1038/srep20122 26843462
    [Google Scholar]
  103. RajR. BiotC. Carrère-KremerS. KremerL. GuérardelY. GutJ. RosenthalP.J. ForgeD. KumarV. 7-chloroquinoline-isatin conjugates: Antimalarial, antitubercular, and cytotoxic evaluation.Chem. Biol. Drug Des.201483562262910.1111/cbdd.12273 24341638
    [Google Scholar]
  104. VarunV. SonamS. KakkarR. Isatin and its derivatives: A survey of recent syntheses, reactions, and applications.MedChemComm201910335136810.1039/C8MD00585K 30996856
    [Google Scholar]
  105. BlaževićT. HeissE.H. AtanasovA.G. BreussJ.M. DirschV.M. UhrinP. Indirubin and indirubin derivatives for counteracting proliferative diseases.Evid. Based Complement. Alternat. Med.20152015165409810.1155/2015/654098 26457112
    [Google Scholar]
  106. WangJ. ChenL. ZhengQ. ChenS. HouZ. LiuP. Indirubin induces apoptosis in ovarian cancer cells via the mitochondrial pathway.Am. J. Transl. Res.202416106119612910.62347/IOFY5604 39544767
    [Google Scholar]
  107. PawarY. SonawaneA. NagleP. MahulikarP. MoreD. Synthesis of 1,4-benzothiazine compound containing isatin moieties as antimicrobial agent.Int. J. Curr. Pharm. Res.20113315
    [Google Scholar]
  108. SonawaneA.E. PawarY.A. NagleP.S. MahulikarP.P. MoreD.H. Synthesis of 1,4-benzothiazine compounds containing isatin hydrazone moiety as antimicrobial agent.Chin. J. Chem.200927102049205410.1002/cjoc.200990344
    [Google Scholar]
  109. SolomonV.R. HuC. LeeH. Hybrid pharmacophore design and synthesis of isatin–benzothiazole analogs for their anti-breast cancer activity.Bioorg. Med. Chem.200917217585759210.1016/j.bmc.2009.08.068 19804979
    [Google Scholar]
  110. BekircanO. BektasH. Synthesis of Schiff and Mannich bases of isatin derivatives with 4-amino-4,5-dihydro-1H-1,2,4-triazole-5-ones.Molecules20081392126213510.3390/molecules13092126 18830145
    [Google Scholar]
  111. PandeyaS.N. SriramD. NathG. de ClercqE. Synthesis, antibacterial, antifungal and anti-HIV evaluation of Schiff and Mannich bases of isatin and its derivatives with triazole.Arzneimittelforschung2000501555910.1055/s‑0031‑1300164 10683717
    [Google Scholar]
  112. SelvamP. ChandramohanM. De ClercqE. WitvrouwM. PannecouqueC. Synthesis and anti-HIV activity of 4-[(1,2-dihydro-2-oxo-3H-indol-3-ylidene) amino]-N(4,6-dimethyl-2-pyrimidinyl)-benzene sulfonamide and its derivatives.Eur. J. Pharm. Sci.200114431331610.1016/S0928‑0987(01)00197‑X 11684405
    [Google Scholar]
  113. YanL. HuoP. HaleJ.J. MillsS.G. HajduR. KeohaneC.A. RosenbachM.J. MilliganJ.A. SheiG.J. ChrebetG. BergstromJ. CardD. MandalaS.M. SAR studies of 3-arylpropionic acids as potent and selective agonists of sphingosine-1-phosphate receptor-1 (S1P1) with enhanced pharmacokinetic properties.Bioorg. Med. Chem. Lett.200717382883110.1016/j.bmcl.2006.10.057 17092714
    [Google Scholar]
  114. SchubertT.J. ObohE. PeekH. PhiloE. TeixeiraJ.E. StebbinsE.E. MillerP. OlivaJ. SverdrupF.M. GriggsD.W. HustonC.D. MeyersM.J. Structure-activity relationship studies of the aryl acetamide triazolopyridazines against Cryptosporidium reveals remarkable role of fluorine.J. Med. Chem.202366127834784810.1021/acs.jmedchem.3c00110 37267631
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575407443250919042610
Loading
/content/journals/mrmc/10.2174/0113895575407443250919042610
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test