Skip to content
2000
Volume 25, Issue 11
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Currently, the synthesis of bioactive sulfonamides using amino acid as a starting reagent has become an area of research interest in organic chemistry. Over the years, an amine-sulfonyl chloride reaction has been adopted as a common step in traditional sulfonamide synthetic methods. However, recent developments have shown amino acids to be better precursors than amines in the synthesis of sulfonamides. Although amines and amino acids have some structural similarities, using amino acids rather than amines in the synthesis of sulfonamides minimizes several drawbacks. Comparatively, amino acids are preferred to amines as starting reagents in sulfonamide synthesis due to their biological relevance, chirality, stereochemistry, diversity of side chains, orthogonality in functional group manipulation, the potential for peptide and protein synthesis, mild reaction conditions, alignment with green chemistry principles, diverse synthetic applications, easy availability, and economic viability. Amino acids, having the aforementioned properties, offer a versatile platform for the synthesis of sulfonamides with tailored structures. The reaction mechanism of the synthesis of amino acid-derived sulfonamides involves a nucleophilic attack by the amino group on the activated sulfonyl species to produce a sulfonamide functional group. Amino acid-based sulfonamides have numerous pharmacological activities, including antibacterial, antiviral, anticancer, antioxidant, anti-inflammatory, anti-plasmodial, antimalarial, anti-trypanosomal, and insect growth regulatory properties. This review discusses several synthetic processes, emphasizing established ways, cutting-edge techniques, and novel approaches that emphasize the significance of amino acids in the synthesis of sulfonamides. The structure-activity relationship of amino acid-derived sulfonamides and their pharmacological activities are also highlighted.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575353663241129064820
2025-01-13
2025-12-21
Loading full text...

Full text loading...

References

  1. EgbujorM.C. OkoroU.C. OkaforS.N. AmasiatuI.S. AmadiU.B. EgwuatuP.I. Synthesis, molecular docking and pharmacological investigation of some 4-Methylphenylsulphamoyl carboxylic acid analogs.Int. J. Pharm. Sci. Res.20201145357536610.26452/ijrps.v11i4.3157
    [Google Scholar]
  2. EgbujorM. UchechukwuO. SundayO. NwankwoN.E. Synthesis, characterization, and in silico studies of novel alkanoylated 4-Methylphenyl sulphonamoyl carboxylic acids as potential antimicrobial and antioxidant agents. eIJPPR,2019938997
    [Google Scholar]
  3. LogemannW. GiraldiP.N. ParentiM.A. Sulphonamides with diuretic activity.Nature19591844700Suppl. 221711171110.1038/1841711a0 14417969
    [Google Scholar]
  4. OnoabedjeE.A. IbezimA. OkoroU.C. BatraS. Synthesis, molecular docking, antiplasmodial and antioxidant activities of new sulfonamido-pepetide derivatives.Heliyon202069e0495810.1016/j.heliyon.2020.e04958 33005786
    [Google Scholar]
  5. UgwujaD.I. OkoroU.C. SomanS.S. SoniR. OkaforS.N. UgwuD.I. New peptide derived antimalaria and antimicrobial agents bearing sulphonamide moiety.J. Enzyme Inhib. Med. Chem.20193411388139910.1080/14756366.2019.1651313 31392901
    [Google Scholar]
  6. EgbujorM.C. GarridoJ. BorgesF. SasoL. Sulfonamide a valid scaffold for antioxidant drug development.Mini Rev. Org. Chem.202320219020910.2174/1570193X19666220411134006
    [Google Scholar]
  7. EgbujorM.C. PetrosinoM. ZuhraK. SasoL. The role of organosulfur compounds as Nrf2 activators and their antioxidant effects.Antioxidants2022117125510.3390/antiox11071255 35883746
    [Google Scholar]
  8. DakhlaouiI. BernardP.J. PietrzakD. SimakovA. MajM. RefouveletB. BéduneauA. CornuR. JozwiakK. ChabchoubF. IriepaI. MartinH. Marco-ContellesJ. IsmailiL. Exploring the potential of sulfonamide-dihydropyridine hybrids as multitargeted ligands for alzheimer’s disease treatment.Int. J. Mol. Sci.20232411974210.3390/ijms24119742 37298693
    [Google Scholar]
  9. EgbujorM.C. Sulfonamide derivatives: Recent compounds with potent anti-alzheimer’s disease activity.Cent. Nerv. Syst. Agents Med. Chem.20242418210410.2174/0118715249278489231128042135 38275073
    [Google Scholar]
  10. WanY. FangG. ChenH. DengX. TangZ. Sulfonamide derivatives as potential anti-cancer agents and their SARs elucidation.Eur. J. Med. Chem.202122611383710.1016/j.ejmech.2021.113837 34530384
    [Google Scholar]
  11. WaniT.A. ZargarS. AlkahtaniH.M. AltwaijryN. Al-RasheedL.S. Anticancer potential of sulfonamide moieties via in-vitro and in silico approaches: Comparative investigations for future drug development.Int. J. Mol. Sci.2023249795310.3390/ijms24097953 37175658
    [Google Scholar]
  12. ActorP. ChowA.W. DutkoF.J. McKinlayM.A. Chemotherapeutics.In: Ullmann’s Encyclopedia of Industrial Chemistry.Wiley200010.1002/14356007.a06_173
    [Google Scholar]
  13. TacicA. NikolicV. NikolicL. SavicI. Antimicrobial sulfonamide drugs.Adv techn,20176587110.5937/savteh1701058T
    [Google Scholar]
  14. ShahzadS. QadirM.A. AhmedM. AhmadS. KhanM.J. GulzarA. MuddassarM. Folic acid-sulfonamide conjugates as antibacterial agents: Design, synthesis and molecular docking studies.RSC Advances20201070429834299210.1039/D0RA09051D 35514930
    [Google Scholar]
  15. OvungA. BhattacharyyaJ. Sulfonamide drugs: Structure, antibacterial property, toxicity, and biophysical interactions.Biophys. Rev.202113225927210.1007/s12551‑021‑00795‑9 33936318
    [Google Scholar]
  16. al-RashidaM. HussainS. HamayounM. AltafA. IqbalJ. Sulfa drugs as inhibitors of carbonic anhydrase: New targets for the old drugs.BioMed Res. Int.2014201411010.1155/2014/162928 25538942
    [Google Scholar]
  17. FerraroniM. CornelioB. SapiJ. SupuranC.T. ScozzafavaA. Sulfonamide carbonic anhydrase inhibitors: Zinc coordination and tail effects influence inhibitory efficacy and selectivity for different isoforms.Inorg. Chim. Acta201847012813210.1016/j.ica.2017.03.038
    [Google Scholar]
  18. AngeliA. PaolettiN. SupuranC.T. Five-membered heterocyclic sulfonamides as carbonic anhydrase inhibitors.Molecules2023287322010.3390/molecules28073220 37049983
    [Google Scholar]
  19. TsikasD. Acetazolamide and human carbonic anhydrases: Retrospect, review and discussion of an intimate relationship.J. Enzyme Inhib. Med. Chem.2024391229133610.1080/14756366.2023.2291336 38078375
    [Google Scholar]
  20. GulatiS. ArefA.A. Oral acetazolamide for intraocular pressure lowering: Balancing efficacy and safety in ophthalmic practice.Expert Rev. Clin. Pharmacol.202114895596110.1080/17512433.2021.1931123 34003717
    [Google Scholar]
  21. IsakovichR. CatesV.C. PentzB.A. BirdJ.D. Vanden BergE.R. de FreitasE.M. NystenC.E. LeacyJ.K. O’HalloranK.D. BrutsaertT.D. SherpaM.T. DayT.A. Using modified Fenn diagrams to assess ventilatory acclimatization during ascent to high altitude: Effect of acetazolamide.Exp. Physiol.202410971080109810.1113/EP091748 38747161
    [Google Scholar]
  22. SelamJ.L. Pharmacokinetics of hypoglycemic sulfonamides: Ozidia, a new concept.Diabetes Metab.1997233943 9463023
    [Google Scholar]
  23. Markowicz-PiaseckaM. HuttunenK.M. BroncelM. SikoraJ. Sulfenamide and sulfonamide derivatives of Metformin: A new option to improve endothelial function and plasma haemostasis.Sci. Rep.201991657310.1038/s41598‑019‑43083‑z 31024058
    [Google Scholar]
  24. ScarimC.B. ChelucciR.C. Dos SantosJ.L. ChinC.M. The use of sulfonamide derivatives in the treatment of Trypanosomatid parasites including Trypanosoma cruzi, Trypanosoma brucei, and Leishmania ssp.Med. Chem.2020161243810.2174/1573406415666190620141109
    [Google Scholar]
  25. EkohO.C. OkoroU. UgwuD. AliR. OkaforS. UgwujaD. AttahS. Novel dipeptides bearing sulfonamide as antimalarial and antitrypanosomal Agents.Synthesis and Molecular Docking. MC20221839440510.2174/1573406417666210604101201 34097595
    [Google Scholar]
  26. PedersenP.S. BlakemoreD.C. ChinigoG.M. KnauberT. MacMillanD.W.C. One-pot synthesis of sulfonamides from unactivated acids and amines via aromatic decarboxylative halosulfonylation.J. Am. Chem. Soc.202314539211892119610.1021/jacs.3c08218 37729614
    [Google Scholar]
  27. BartzattRonald CirilloSuat Cirillo, J.D. Three sulfonamide drugs that inhibit methicillin resistant (MRSA) and susceptible (MSSA) Staphylococcus aureus. Curr Trend. Med Chem,2008
    [Google Scholar]
  28. ChenG. LianZ. Multicomponent reactions based on SO2 surrogates: Recent advances.Eur. J. Org. Chem.20232625e20230021710.1002/ejoc.202300217
    [Google Scholar]
  29. FengR. LiZ.Y. LiuY.J. DongZ.B. Selective synthesis of sulfonamides and sulfenamides from sodium sulfinates and amines.J. Org. Chem.20248931736174710.1021/acs.joc.3c02444 38215479
    [Google Scholar]
  30. ShaoZ. LiuW. TaoH. LiuF. ZengR. ChampagneP.A. CaoY. HoukK.N. LiangY. Bioorthogonal release of sulfonamides and mutually orthogonal liberation of two drugs.Chem. Commun. (Camb.)201854100140891409210.1039/C8CC08533A 30480281
    [Google Scholar]
  31. GioielloA. RosatelliE. TeofrastiM. FilipponiP. PellicciariR. Building a sulfonamide library by eco-friendly flow synthesis.ACS Comb. Sci.201315523523910.1021/co400012m 23514257
    [Google Scholar]
  32. WenW. AiZ.P. WuZ.L. CaiT. GuoQ.X. Stereoselective synthesis of Δ(1)-pyrroline sulfonamides via a chiral aldehyde mediated cascade reaction.Org. Chem. Front.202311115616310.1039/D3QO01675G
    [Google Scholar]
  33. MukherjeeP. WorochC.P. ClearyL. RusznakM. FranzeseR.W. ReeseM.R. TuckerJ.W. HumphreyJ.M. EtukS.M. KwanS.C. am Ende, C.W.; Ball, N.D. Sulfonamide synthesis via calcium triflimide activation of sulfonyl fluorides.Org. Lett.201820133943394710.1021/acs.orglett.8b01520 29888600
    [Google Scholar]
  34. KanyivaK.S. HamadaD. MakinoS. TakanoH. ShibataT. α‐amino acid sulfonamides as versatile sulfonylation reagents: Silver‐catalyzed synthesis of coumarins and oxindoles by radical cyclization.Eur. J. Org. Chem.20182018435905590910.1002/ejoc.201800901
    [Google Scholar]
  35. EgbujorM.C. OkoroU.C. OkaforS. Design, synthesis, molecular docking, antimicrobial, and antioxidant activities of new phenylsulfamoyl carboxylic acids of pharmacological interest.Med. Chem. Res.201928122118212710.1007/s00044‑019‑02440‑3
    [Google Scholar]
  36. EgbujorM.C. OkoroU.C. EmeruwaC.N. UmehO.R. EziafakaegoM.I. EgwuatuP.I. AmasiatuI.S. Synthesis of sulphonamides using threonine, and evaluation of their biological activities.In: Challenges and Advances in Pharmaceutical Research.Book Publisher International20229510710.9734/bpi/capr/v2/2274E
    [Google Scholar]
  37. DeviV. KumariN. AwasthiP. Synthesis, characterization and insect growth regulating study of beta-alanine substituted sulfonamide derivatives as juvenile hormone mimics.Phosphorus Sulfur Silicon Relat. Elem.2022197101080109010.1080/10426507.2022.2061970
    [Google Scholar]
  38. ParvanehShafieyoon Mehdipour, E.; Michalski, J. Synthesis, characterization, and biological investigation of alanine-based sulfonamide derivative: FT-IR, 1H NMR Spectra: MEP, HOMO–LUMO analysis, and molecular docking.Russ. J. Phys. Chem. A. Focus Chem.20199371285129610.1134/S0036024419070215
    [Google Scholar]
  39. EgbujorM.C. Novel alanine-based antimicrobial and antioxidant agents: Synthesis and molecular docking.Indian J. Sci. Technol.20201391003101410.17485/ijst/2020/v013i09/146687
    [Google Scholar]
  40. EgbujorM.C. OkoroU.C. UdehC.M. AniezeC.O. AmadiU.B. Okenwa AnU.G. ChidebeluI.C. Synthesis and characterization of benzoylated sulfamoyl carboxylic acids. MOJ Biorg. Org. Chem.,20202225
    [Google Scholar]
  41. El-DinN.S. Synthesis of some sulfonamide derivatives with potential antibacterial activity.Chem. Heterocycl. Compd.200036444945410.1007/BF02269544
    [Google Scholar]
  42. EzeF.U. OkoroU.C. UgwuD.I. OkaforS.N. Biological activity evaluation of some new Benzenesulphonamide derivatives.Front Chem.2019763410.3389/fchem.2019.00634 31620427
    [Google Scholar]
  43. UgwujaD.I. OkoroU. SomanS. IbezimA. UgwuD. SoniR. ObiB. EzugwuJ. EkohO. New glycine derived peptides bearing benzenesulphonamide as an antiplasmodial agent.New J. Chem.20214573660367410.1039/D0NJ04387G
    [Google Scholar]
  44. QadirM.A. AhmedM. KhaleeqA. Synthesis, antibacterial and antifungal possession of amino acids containing sulfonamide moieties.Pak. J. Pharm. Sci.201629516091613 27731819
    [Google Scholar]
  45. HansenJ.C. Bjørn-YoshimotoW.E. BisballeN. NielsenB. JensenA.A. BunchL. β-Sulfonamido functionalized aspartate analogues as excitatory amino acid transporter inhibitors: Distinct subtype selectivity profiles arising from subtle structural differences.J. Med. Chem.201659198771878610.1021/acs.jmedchem.6b01066 27636002
    [Google Scholar]
  46. EzeF. OkoroU. UkohaP. UgwuD. OkaforS. New antioxidant agents bearing carboxamide moiety: Synthesis molecular docking and in vitro studies of new benzenesulfonamide derivatives.Iran. J. Chem. Chem. Eng.202140385386510.30492/ijcce.2020.37980
    [Google Scholar]
  47. EgbujorM.C. OkoroU.C. OkaforS.N. EguS.A. AmasiatuI.S. EgwuatuP.I. UmehO.R. IboE.M. Design, synthesis, and molecular docking of cysteine-based sulphonamide derivatives as antimicrobial agents.Res. Pharm. Sci.20221719911010.4103/1735‑5362.329930 34909048
    [Google Scholar]
  48. AwakawaT. BarraL. AbeI. Biosynthesis of sulfonamide and sulfamate antibiotics in actinomycete.J. Ind. Microbiol. Biotechnol.2021483-4kuab00110.1093/jimb/kuab001 33928358
    [Google Scholar]
  49. UgwuD.I. EzeF.U. OgbooB.C. OkoroV.N. UgwuM.C. OkaforS.N. AyoguJ.I. AttahS.I. Synthesis of multi-target benzene-sulphonamide derivatives for the treatment of trypanosomiasis.Med. Chem.201998392
    [Google Scholar]
  50. TirgirF. SoleimaniM. MoghadamG. KhorshidiM. Synthesis, characterization and dehydrogenase activity of novel biodegradable nanostructure spherical shape poly(urethane-imide-sulfonamide) as pseudo-poly (amino acid) s from l-tyrosine.Polym. Bull.20187531055107310.1007/s00289‑017‑2074‑3
    [Google Scholar]
  51. EgbujorM. OkoroU. OkaforS. NwankwoN. Design, synthesis and molecular docking of novel serine-based sulphonamide bioactive compounds as potential antioxidant and antimicrobial agents. Indo. Am. JP.Sci.201961223212240
    [Google Scholar]
  52. AronimoB.S. OkoroU.C. AliR. IbejiC.U. EzugwuJ.A. UgwuD.I. Synthesis, molecular docking and antimalarial activity of phenylalanine-glycine dipeptide bearing sulphonamide moiety.J. Mol. Struct.2021124613120110.1016/j.molstruc.2021.131201
    [Google Scholar]
  53. DanishM. RazaM.A. RaniH. AkhtarA. ArshadM.N. AsiriA.M. Enzyme inhibition and antioxidant potential of new synthesized sulfonamides; synthesis, single crystal and molecular docking.J. Mol. Struct.2021124113060810.1016/j.molstruc.2021.130608
    [Google Scholar]
  54. DeviK. AwasthiP. Sulfonamide phenylalanine (SPA) series of analogues as an antibacterial, antifungal, anticancer agents along with p53 tumor suppressor-DNA complex inhibitor: Part 1.J. Biomol. Struct. Dyn.202038144081409710.1080/07391102.2019.1671229 31547774
    [Google Scholar]
  55. HanessianS. SailesH. TherrienE. Synthesis of functionally diverse bicyclic sulfonamides as constrained proline analogues and application to the design of potential thrombin inhibitors.Tetrahedron200359357047705610.1016/S0040‑4020(03)00919‑0
    [Google Scholar]
  56. BerkesselA. KochB. LexJ. Proline‐Derived N‐Sulfonylcarboxamides: Readily Available, Highly Enantioselective And Versatile Catalysts For Direct Aldol Reactions.Adv. Synth. Catal.20043469-101141114610.1002/adsc.200404126
    [Google Scholar]
  57. Xiao-huaS. CunL. ZhaoJ. Cai-rongZ. Deng-gaoJ. New chiral sulfonamide ligands derived from L-proline for catalytic enantioselective cyclopropanation.J. Chem. Res.2011351058258410.3184/174751911X13171474996075
    [Google Scholar]
  58. EgbujorM.C. Synthesis and biological evaluation of proline derived sulphonamides. J. Res Pharm Sci.,20231926
    [Google Scholar]
  59. LiuH. ZhangB. ZhaoW. YuX. ZhuW. XiaC. ZhouY. Base-mediated coupling reactions of benzenesulfonyl azides with proline: Synthesis of proline-derived benzenesulfonamides.ACS Omega2021650347963480410.1021/acsomega.1c05331 34963962
    [Google Scholar]
  60. ZajdelP. SubraG. BojarskiA.J. DuszyńskaB. PawłowskiM. MartinezJ. Parallel solid-phase synthesis and characterization of new sulfonamide and carboxamide proline derivatives as potential CNS agents.Bioorg. Med. Chem.20051383029303510.1016/j.bmc.2005.01.060 15781412
    [Google Scholar]
  61. ForbesI.T. DabbsS. DuckworthD.M. JenningsA.J. KingF.D. LovellP.J. BrownA.M. CollinL. HaganJ.J. MiddlemissD.N. RileyG.J. ThomasD.R. UptonN. (R)-3, N -Dimethyl- N -[1-methyl-3-(4-methylpiperidin-1-yl)propyl]benzen-esulfonamide: The first selective 5-HT7 receptor antagonist.J. Med. Chem.199841565565710.1021/jm970519e 9513592
    [Google Scholar]
  62. LovellP.J. BromidgeS.M. DabbsS. DuckworthD.M. ForbesI.T. JenningsA.J. KingF.D. MiddlemissD.N. RahmanS.K. SaundersD.V. CollinL.L. HaganJ.J. RileyG.J. ThomasD.R. A novel, potent, and selective 5-HT 7 antagonist: (R)-3-(2-(2-(4-Methylpiperidin-1-yl)ethyl)pyrrolidine-1-sulfonyl)phenol (SB-269970).J. Med. Chem.200043334234510.1021/jm991151j 10669560
    [Google Scholar]
  63. EzeF.U. OkoroU.C. UgwuD.I. OkaforS.N. New carboxamides bearing benzenesulphonamides: Synthesis, molecular docking and pharmacological properties.Bioorg. Chem.20199210326510.1016/j.bioorg.2019.103265 31525524
    [Google Scholar]
  64. UgwuD.I. OkoroU.C. UkohaP.O. OkaforS. IbezimA. KumarN.M. Synthesis, characterization, molecular docking and in vitro antimalarial properties of new carboxamides bearing sulphonamide.Eur. J. Med. Chem.201713534936910.1016/j.ejmech.2017.04.029 28460310
    [Google Scholar]
  65. EzugwuJ.A. OkoroU.C. EzeokonkwoM.A. BhimapakaC.R. OkaforS.N. UgwuD.I. EkohO.C. AttahS.I. Novel leu-val based dipeptide as antimicrobial and antimalarial agents: Synthesis and molecular docking.Front Chem.2020858392610.3389/fchem.2020.583926 33330372
    [Google Scholar]
  66. PatelT.S. BhattJ.D. DixitR.B. ChudasamaC.J. PatelB.D. DixitB.C. Design and synthesis of leucine‐linked quinazoline‐4(3 H)‐one‐sulphonamide molecules distorting malarial reductase activity in the folate pathway.Arch. Pharm. (Weinheim)20193529190009910.1002/ardp.201900099 31381192
    [Google Scholar]
  67. OnyeijeU.C. OnughaC.F. EgbujorM.C. EmeruwaC.N. AmasiatuI.S. Synthesis, characterisation and antimicrobial activities of sulphonamides from branched chain amino acids.IRE Journals20236297302
    [Google Scholar]
  68. ThompsonJ.C. DaoW.T. KuA. Rodriguez-BeltranS.L. AmezcuaM. PalominoA.Y. LienT. SalzamedaN.T. Synthesis and activity of isoleucine sulfonamide derivatives as novel botulinum neurotoxin serotype A light chain inhibitors.Bioorg. Med. Chem.2020281811565910.1016/j.bmc.2020.115659 32828426
    [Google Scholar]
  69. Abdul QadirM. AhmedM. IqbalM. Synthesis, characterization, and antibacterial activities of novel sulfonamides derived through condensation of amino group containing drugs, amino acids, and their analogs.BioMed Res. Int.201520151710.1155/2015/938486 25802872
    [Google Scholar]
  70. EzeF.U. EzeorahC.J. OgbooB.C. OkparekeO.C. RhymanL. RamasamiP. OkaforS.N. TaniaG. AtigaS. EjiyiT.U. UgwuM.C. UzoewuluC.P. AyoguJ.I. EkohO.C. UgwuD.I. Structure and computational studies of new sulfonamide compound: (4-nitrophenyl) sulfonyltryptophan.Molecules20222721740010.3390/molecules27217400 36364227
    [Google Scholar]
  71. SharmaP. AwasthiP. Synthesis, characterization, in vivo molecular docking, ADMET and Homo-Lumo study of juvenile hormone analogues having sulfonamide feature as an insect growth regulators.J. Mol. Struct.2021123112994510.1016/j.molstruc.2021.129945
    [Google Scholar]
  72. EgbujorM.C. OkoroU.C. New methionine-based P-toluenesulphonamoyl carboxamide derivatives as antimicrobial and antioxidant agents: Design, synthesis and molecular docking.J. Pharm. Res. Int.201928111210.9734/jpri/2019/v28i130192
    [Google Scholar]
  73. EgbujorM.C. OkoroU.C. NwobodoD.C. EzeaguC.U. AmadiU.B. Okenwa-AniC.G. UgwuJ.I. OkoyeI.G. AbuI.P. EgwuatuP.I. Design, synthesis, antimicrobial and antioxidant activities of novel threonine-based sulfonamide derivatives.J. Pharm. Res. Int.2020516110.9734/jpri/2020/v32i830470
    [Google Scholar]
  74. CerusoM. BragagniM. AlOthmanZ. OsmanS.M. SupuranC.T. New series of sulfonamides containing amino acid moiety act as effective and selective inhibitors of tumor-associated carbonic anhydrase XII.J. Enzyme Inhib. Med. Chem.201530343043410.3109/14756366.2014.942659 25089707
    [Google Scholar]
  75. IzuchukwuU.D. ChrisO.U. IzuchukwuU.D. Synthesis of N-aryl substituted p-toluenesulphonamides via nickel catalyzed amidation reaction and their antibacterial, antifungal and antioxidant activities evaluation.Pak. J. Pharm. Sci.201831412091216 30033403
    [Google Scholar]
  76. AhmedA. UgwuD.I. SimonO.G. OluwasolaH.O. Synthesis and in vitro antibacterial activity of morpholine derived benzenesulphonamides.J. Chem. Soc. Niger.202146510.46602/jcsn.v46i5.670
    [Google Scholar]
  77. EzugwuJ.A. OkoroU.C. EzeokonkwoM.A. BhimapakaC. OkaforS.N. UgwuD.I. UgwujaD.I. Synthesis and biological evaluation of Val–Val dipeptide–sulfonamide conjugates.Arch. Pharm. (Weinheim)20203537200007410.1002/ardp.202000074 32390214
    [Google Scholar]
  78. EgbujorM.C. EguS.A. OkonkwoV.I. JacobA.D. EgwuatuP.I. AmasiatuI.S. Antioxidant drug design: Historical and recent developments.J. Pharm. Res. Int.20213241365610.9734/jpri/2020/v32i4131042
    [Google Scholar]
  79. EzeC.C. EzeokonkwoM.A. EzemaB.E. OnoabedjeA.E. UgwuD.I. Synthesis and biological properties of some new lead sulphonamide and carboxamide scaffolds bearing coumarin moieties.Mini Rev. Med. Chem.202121111270128710.2174/1389557520666200730154458 32744970
    [Google Scholar]
  80. SolimanA.M. GhorabW.M. LotfyD.M. KaramH.M. GhorabM.M. RamadanL.A. Novel iodoquinazolinones bearing sulfonamide moiety as potential antioxidants and neuroprotectors.Sci. Rep.20231311554610.1038/s41598‑023‑42239‑2 37730974
    [Google Scholar]
  81. UgwuD.I. OkoroU.C. UkohaP.O. GuptaA. OkaforS.N. Novel anti-inflammatory and analgesic agents: synthesis, molecular docking and in vivo studies.J. Enzyme Inhib. Med. Chem.201833140541510.1080/14756366.2018.1426573 29372659
    [Google Scholar]
  82. AttahS.I. OkoroU.C. OnoadbedjeE. UgwuD. SinghS.P. EzeC.E. IbejiC.U. OkonkwoV.I. AkorJ. Novel dipeptides incorporating sulphonamide functionality: Synthesis, biological and computational studies.SSRN2023
    [Google Scholar]
  83. OnoabedjeE.A. IbezimA. OkoroU.C. BatraS. New sulphonamide pyrolidine carboxamide derivatives: Synthesis, molecular docking, antiplasmodial and antioxidant activities.PLoS One2021162e024330510.1371/journal.pone.0243305 33626047
    [Google Scholar]
  84. EkohO.C. TimothyR.A. AsogwaF.C. GberT.E. IkeubaA.I. UgwuD.I. LouisH. Modeling of dipeptide sulfonamides as anti-plasmodial drugs: Synthesis, characterization, DFT and in silico studies.Chemistry Africa2024752369238110.1007/s42250‑024‑00908‑3
    [Google Scholar]
  85. AsogwaF.C. OgechiE.C. LouisH. IzuchukwuU.D. ApebendeC.G. FlorenceE.U. EkelemeM.C. JamesE.A. IkenyirimbaO.J. IkeubaA.I. OwenA.E. ChrisO.U. Synthesis, characterization, DFT studies and molecular docking investigation of 2-oxo-ethyl piperidine pentanamide-derived sulfonamides as anti-diabetic agents.Results Chem.2022410067210.1016/j.rechem.2022.100672
    [Google Scholar]
  86. AttahS.I. OkoroU.C. SinghS.P. EzeC.C. IbejiC.U. EzugwuJ.A. OkenyekaO.U. EkohO. UgwuD.I. EzeF.U. Pro-Gly based dipeptide containing sulphonamide functionality, their antidiabetic, antioxidant, and anti-inflammatory activities. Synthesis, characterization and computational studies.J. Mol. Struct.2022126413328010.1016/j.molstruc.2022.133280
    [Google Scholar]
  87. UgwuD.I. AsogwaF.C. OlisaelokaS.G. EzugwuJ.A. OgbukeS.C. BenjaminI. LouisH. GberT.E. UgwuM.C. EzeF.U. ManicumA-L.E. Anti-hypertensive properties of 2-[N-(4-methylbenzenesulfonyl)-1-phenylformamido]-n-(4-nitrophenyl)-3-phenylpropenamide: Experimental and theoretical studies.Chemical Physics Impact2023610015810.1016/j.chphi.2022.100158
    [Google Scholar]
  88. UgwuD. OkoroU. MishraN. Synthesis, characterization and anthelmintic activity evaluation of pyrimidine derivatives bearing carboxamide and sulphonamide moieties.J. Serb. Chem. Soc.201883440140910.2298/JSC170127109U
    [Google Scholar]
  89. IbezimA. OnoabedjeE.A. AdakaI.C. OmejeK.O. OnoabedjeU.S. ObiB.C. Carboxamides bearing sulfonamide functionality as potential novel phospholipase A2 inhibitors.ChemistrySelect2020545144161442110.1002/slct.202003784
    [Google Scholar]
  90. IzuchiA. OnoabedjeE.A. EkohC. OkaforO. OkoroU. Synthesis of medicinally relevant phenyl sulphonylamino alkanamides and N-Aryl P-toluenesulphonamides.J. Med. Chem. Sci.20192415116110.26655/jmchemsci.2019.8.5
    [Google Scholar]
  91. UgwuD.I. OkoroU.C. MishraN.K. Synthesis, characterization and in vitro antitrypanosomal activities of new carboxamides bearing quinoline moiety.PLoS One2018131e019123410.1371/journal.pone.0191234 29324817
    [Google Scholar]
  92. UgwuD.I. OkoroU.C. AhmadH. New carboxamide derivatives bearing benzenesulphonamide as a selective COX-II inhibitor: Design, synthesis and structure-activity relationship.PLoS One2017129e018380710.1371/journal.pone.0183807 28922386
    [Google Scholar]
  93. AnandN. Sulfonamides and sulfones.In: Mechanism of Action of Antimicrobial and Antitumor Agents. CorcoranJ.W. HahnF.E. SnellJ.F. AroraK.L. Berlin, HeidelbergSpringer Berlin Heidelberg197566869810.1007/978‑3‑642‑46304‑4_45
    [Google Scholar]
  94. AronsonJ.K. Sulfonamides.In: Meyler’s Side Effects of Drugs.Elsevier2016555559
    [Google Scholar]
  95. ScholarE. Sulfanilamide In: xPharm: The Comprehensive Pharmacology Reference;; Elsevier,200715
    [Google Scholar]
  96. El-QalieiM. El-GabyM. AmmarA. Sulfonamides: Synthesis and the recent applications in medicinal chemistry.Egypt. J. Chem.20206312528910.21608/ejchem.2020.33860.2707
    [Google Scholar]
  97. MacleanK. NjamoF.O.J.P. Serepa-DlaminiM.H. KondiahK. GreenE. Antimicrobial susceptibility profiles among Pseudomonas aeruginosa isolated from professional SCUBA divers with otitis externa, swimming pools and the ocean at a diving operation in South Africa.Pathogens20221119110.3390/pathogens11010091 35056039
    [Google Scholar]
  98. JanssenF.J. DengH. BaggelaarM.P. AllaràM. van der WelT. den DulkH. LigrestiA. van EsbroeckA.C.M. McGuireR. Di MarzoV. OverkleeftH.S. van der SteltM. Discovery of glycine sulfonamides as dual inhibitors of sn-1-diacylglycerol lipase α and α/β-hydrolase domain 6.J. Med. Chem.201457156610662210.1021/jm500681z 24988361
    [Google Scholar]
  99. ChupakL.S. ZhengX. HuS. HuangY. DingM. LewisM.A. WestphalR.S. BlatY. McClureA. GentlesR.G. Structure activity relationship studies on chemically non-reactive glycine sulfonamide inhibitors of diacylglycerol lipase.Bioorg. Med. Chem.20162471455146810.1016/j.bmc.2016.02.006 26917221
    [Google Scholar]
  100. BurnettJ.C. SchmidtJ.J. McGrathC.F. NguyenT.L. HermoneA.R. PanchalR.G. VennerstromJ.L. KodukulaK. ZaharevitzD.W. GussioR. BavariS. Conformational sampling of the botulinum neurotoxin serotype a light chain: Implications for inhibitor binding.Bioorg. Med. Chem.200513233334110.1016/j.bmc.2004.10.026 15598556
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575353663241129064820
Loading
/content/journals/mrmc/10.2174/0113895575353663241129064820
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test