Skip to content
2000
Volume 25, Issue 10
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Sleep disorders and the resultant sleep deprivation (SD) are very common nowadays, resulting in depressed mood, poor memory and concentration, and various important changes in health, performance and safety. They may provoke further impairment of the cell lining of the blood vessels, as acting as a risk factor for cardiovascular disease (CVD) onset and progression. SD may lead to low neuronal regaining and plasticity, drastically affecting brain function. Thus, SD is a known risk factor for mental, behavioral and developmental disorders. Due to the inflammatory and oxidative stressful nature of SD, immune response modulation and antioxidants could be another therapeutic approach, apart from the already known symptomatic treatment with sedatives. Additionally, many drugs approved for other indications and under investigation, have been revisited due to their wide array of pharmacological activities. This review summarizes the main aspects of SD pathology and SD interrelated comorbidities and presents direct and indirect antioxidant molecules and drugs with multi-targeting potential that could assist in the prevention or management of these factors. A number of research groups have investigated well-known antioxidant compounds with multi-targeting cores, combining structural characteristics with properties including anti-inflammatory, metal chelatory, gene transcription and immune modulatory that may add towards the effective SD and its associated comorbidities treatment.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575360959250117073046
2025-02-14
2025-09-14
Loading full text...

Full text loading...

References

  1. MeerloP. HavekesR. SteigerA. Chronically restricted or disrupted sleep as a causal factor in the development of depression.Curr. Top. Behav. Neurosci.20152545948110.1007/7854_2015_36725646723
    [Google Scholar]
  2. Institute of medicine (US) committee on sleep medicine and research. Colten, H.R.; Altevogt, B.M., Eds.; Sleep Disorders and Sleep Deprivation: An Unmet Public Health Problem.Washington, DCNational Academies Press (US)2006
    [Google Scholar]
  3. MonkT.H. Shift work: Basic principles. Principles and Practice of Sleep Medicine.4th ed KrygerM.H. RothT. DementW.C. PhiladelphiaElsevier/Saunders200567367910.1016/B0‑72‑160797‑7/50063‑X
    [Google Scholar]
  4. DrakeC.L. RoehrsT. RichardsonG. WalshJ.K. RothT. Shift work sleep disorder: Prevalence and consequences beyond that of symptomatic day workers.Sleep20042781453146210.1093/sleep/27.8.145315683134
    [Google Scholar]
  5. HafnerM. StepanekM. TaylorJ. TroxelW.M. Stolkv.C. Why sleep matters-the economic costs of insufficient sleep: A cross-country comparative analysis.Rand Health Q.2017641128983434
    [Google Scholar]
  6. BornJ. FeldG.B. Sleep to upscale, sleep to downscale: Balancing homeostasis and plasticity.Neuron201275693393510.1016/j.neuron.2012.09.00722998858
    [Google Scholar]
  7. RamarK. MalhotraR.K. CardenK.A. MartinJ.L. FeinbergA.F. AuroraR.N. KapurV.K. OlsonE.J. RosenC.L. RowleyJ.A. ShelgikarA.V. TrottiL.M. Sleep is essential to health: An American academy of sleep medicine position statement.J. Clin. Sleep Med.202117102115211910.5664/jcsm.947634170250
    [Google Scholar]
  8. JiaX. GaoZ. HuH. Microglia in depression: Current perspectives.Sci. China Life Sci.202164691192510.1007/s11427‑020‑1815‑633068286
    [Google Scholar]
  9. ZhangJ. RongP. ZhangL. HeH. ZhouT. FanY. MoL. ZhaoQ. HanY. LiS. WangY. YanW. ChenH. YouZ. YouZ. IL4-driven microglia modulate stress resilience through BDNF-dependent neurogenesis.Sci. Adv.2021712eabb988810.1126/sciadv.abb988833731342
    [Google Scholar]
  10. PanY. ZhouY. ShiX. HeS. LaiW. The association between sleep deprivation and the risk of cardiovascular diseases: A systematic meta‑analysis.Biomed. Rep.20231957810.3892/br.2023.166037829258
    [Google Scholar]
  11. CovassinN. SinghP. Sleep duration and cardiovascular disease risk: Epidemiologic and experimental evidence.Sleep Med. Clin.2016111818910.1016/j.jsmc.2015.10.00726972035
    [Google Scholar]
  12. JavaheriS. RedlineS. Insomnia and risk of cardiovascular disease.Chest2017152243544410.1016/j.chest.2017.01.02628153671
    [Google Scholar]
  13. IrwinM.R. OlmsteadR. CarrollJ.E. Sleep disturbance, sleep duration, and inflammation: A systematic review and meta-analysis of cohort studies and experimental sleep deprivation.Biol. Psychiatry2016801405210.1016/j.biopsych.2015.05.01426140821
    [Google Scholar]
  14. BjurströmM.F. OlmsteadR. IrwinM.R. Reciprocal relationship between sleep macrostructure and evening and morning cellular inflammation in rheumatoid arthritis.Psychosom. Med.2017791243310.1097/PSY.000000000000036327428854
    [Google Scholar]
  15. DzierzewskiJ.M. DonovanE.K. KayD.B. SannesT.S. BradbrookK.E. Sleep inconsistency and markers of inflammation.Front. Neurol.202011104210.3389/fneur.2020.0104233041983
    [Google Scholar]
  16. OkunM.L. ReynoldsC.F.III BuysseD.J. MonkT.H. MazumdarS. BegleyA. HallM. Sleep variability, health-related practices, and inflammatory markers in a community dwelling sample of older adults.Psychosom. Med.201173214215010.1097/PSY.0b013e3182020d0821097658
    [Google Scholar]
  17. RaschB. DodtC. MölleM. BornJ. Sleep-stage-specific regulation of plasma catecholamine concentration.Psychoneuroendocrinol.2007328-1088489110.1016/j.psyneuen.2007.06.00717651907
    [Google Scholar]
  18. VgontzasA.N. PapanicolaouD.A. BixlerE.O. LotsikasA. ZachmanK. KalesA. ProloP. WongM.L. LicinioJ. GoldP.W. HermidaR.C. MastorakosG. ChrousosG.P. Circadian interleukin-6 secretion and quantity and depth of sleep.J. Clin. Endocrinol. Metab.19998482603260710.1210/jcem.84.8.589410443646
    [Google Scholar]
  19. IrwinM.R. ColeS.W. Reciprocal regulation of the neural and innate immune systems.Nat. Rev. Immunol.201111962563210.1038/nri304221818124
    [Google Scholar]
  20. IrwinM.R. Sleep and inflammation: Partners in sickness and in health.Nat. Rev. Immunol.2019191170271510.1038/s41577‑019‑0190‑z31289370
    [Google Scholar]
  21. HongS. MillsP.J. LoredoJ.S. AdlerK.A. DimsdaleJ.E. The association between interleukin-6, sleep, and demographic characteristics.Brain Behav. Immun.200519216517210.1016/j.bbi.2004.07.00815664789
    [Google Scholar]
  22. ChennaouiM. MerinoG.D. DrogouC. GeoffroyH. DispersynG. LangrumeC. CiretS. GallopinT. SauvetF. Effects of exercise on brain and peripheral inflammatory biomarkers induced by total sleep deprivation in rats.J. Inflamm.20151215610.1186/s12950‑015‑0102‑326425116
    [Google Scholar]
  23. TancrediV. D’AntuonoM. CafèC. GiovedìS. BuèM.C. D’ArcangeloG. OnofriF. BenfenatiF. The inhibitory effects of interleukin-6 on synaptic plasticity in the rat hippocampus are associated with an inhibition of mitogen-activated protein kinase ERK.J. Neurochem.200075263464310.1046/j.1471‑4159.2000.0750634.x10899938
    [Google Scholar]
  24. WebsterJ.C. OakleyR.H. JewellC.M. CidlowskiJ.A. Proinflammatory cytokines regulate human glucocorticoid receptor gene expression and lead to the accumulation of the dominant negative β isoform: A mechanism for the generation of glucocorticoid resistance.Proc. Natl. Acad. Sci.200198126865687010.1073/pnas.12145509811381138
    [Google Scholar]
  25. PaughS.W. BontenE.J. EvansW.E. Inflammasome-mediated glucocorticoid resistance: The receptor rheostat.Mol. Cell. Oncol.201631e106594710.1080/23723556.2015.106594727308575
    [Google Scholar]
  26. DantzerR. O’ConnorJ.C. FreundG.G. JohnsonR.W. KelleyK.W. From inflammation to sickness and depression: When the immune system subjugates the brain.Nat. Rev. Neurosci.200891465610.1038/nrn229718073775
    [Google Scholar]
  27. ZielinskiM.R. DunbraskyD.L. TaishiP. SouzaG. KruegerJ.M. Vagotomy attenuates brain cytokines and sleep induced by peripherally administered tumor necrosis factor-α and lipopolysaccharide in mice.Sleep201336812271238, 1238A10.5665/sleep.289223904683
    [Google Scholar]
  28. D’MelloC. LeT. SwainM.G. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoral pha signaling during peripheral organ inflammation.J. Neurosci.20092972089210210.1523/JNEUROSCI.3567‑08.200919228962
    [Google Scholar]
  29. PanW. KastinA.J. The blood- brain barrier: Regulatory roles in wakefulness and sleep.Neuroscientist201723212413610.1177/107385841663900526969345
    [Google Scholar]
  30. EversonC.A. LaatschC.D. HoggN. Antioxidant defense responses to sleep loss and sleep recovery.Am. J. Physiol. Regul. Integr. Comp. Physiol.20052882R374R38310.1152/ajpregu.00565.200415472007
    [Google Scholar]
  31. AtroozF. SalimS. Sleep deprivation, oxidative stress and inflammation.Adv. Protein Chem. Struct. Biol.202011930933610.1016/bs.apcsb.2019.03.00131997771
    [Google Scholar]
  32. GozalD. GozalK.L. Cardiovascular morbidity in obstructive sleep apnea: Oxidative stress, inflammation, and much more.Am. J. Respir. Crit. Care Med.2008177436937510.1164/rccm.200608‑1190PP17975198
    [Google Scholar]
  33. VillafuerteG. PugaM.A. RodríguezM.E. MachadoS. ManjarrezE. CarriónA.O. Sleep deprivation and oxidative stress in animal models: A systematic review.Oxid. Med. Cell. Longev.2015201511510.1155/2015/23495225945148
    [Google Scholar]
  34. RamanathanL. HuS. FrautschyS.A. SiegelJ.M. Short-term total sleep deprivation in the rat increases antioxidant responses in multiple brain regions without impairing spontaneous alternation behavior.Behav. Brain Res.2010207230530910.1016/j.bbr.2009.10.01419850085
    [Google Scholar]
  35. SolankiN. AtroozF. AsgharS. SalimS. Tempol protects sleep-deprivation induced behavioral deficits in aggressive male Long–Evans rats.Neurosci. Lett.201661224525010.1016/j.neulet.2015.12.03226724222
    [Google Scholar]
  36. NahirnyjA. BarL.I. GuoX. SivakJ.M. ROS detoxification and proinflammatory cytokines are linked by p38 MAPK signaling in a model of mature astrocyte activation.PLoS One2013812e8304910.1371/journal.pone.008304924376630
    [Google Scholar]
  37. CollinsL.M. DownerE.J. ToulouseA. NolanY.M. Mitogen-activated protein kinase phosphatase (MKP)-1 in nervous system development and disease.Mol. Neurobiol.20155131158116710.1007/s12035‑014‑8786‑624957007
    [Google Scholar]
  38. LiuX. YuanQ. LiG. JiaC. LiuJ. YangY. WangX. HouY. WangB. Regulation of superoxide by BAP31 through its effect on p22(phox) and Keap1/Nrf2/HO-1 signaling pathway in microglia.Oxid. Med. Cell. Longev.202120211145708910.1155/2021/145708933777312
    [Google Scholar]
  39. SuzukiT. YamamotoM. Molecular basis of the Keap1-Nrf2 system.Free Rad. Biol. Med.2015889310010.1016/j.freeradbiomed.2015.06.006
    [Google Scholar]
  40. WibleR.S. RamanathanC. SutterC.H. OlesenK.M. KenslerT.W. LiuA.C. SutterT.R. NRF2 regulates core and stabilizing circadian clock loops, coupling redox and timekeeping in Mus musculus. eLife20187e3165610.7554/eLife.3165629481323
    [Google Scholar]
  41. IslasS.C.A. MaldonadoP.D. Canonical and non-canonical mechanisms of Nrf2 activation.Pharmacol. Res.2018134929910.1016/j.phrs.2018.06.01329913224
    [Google Scholar]
  42. WilliamsM.J. PerlandE. ErikssonM.M. CarlssonJ. ErlandssonD. LaanL. MahebaliT. PotterE. FredikssonR. BenedictC. SchiöthH.B. Recurrent sleep fragmentation induces insulin and neuroprotective mechanisms in middle-aged flies.Front. Aging Neurosci.2016818010.3389/fnagi.2016.0018027531979
    [Google Scholar]
  43. VaccaroA. DorK.Y. NambaraK. PollinaE.A. LinC. GreenbergM.E. RoguljaD. Sleep loss can cause death through accumulation of reactive oxygen species in the gut.Cell2020181613071328.e1510.1016/j.cell.2020.04.04932502393
    [Google Scholar]
  44. NobelosT.P. RekkaE.A. Efforts towards repurposing of antioxidant drugs and active compounds for multiple sclerosis control.Neurochem. Res.202348372574410.1007/s11064‑022‑03821‑836385213
    [Google Scholar]
  45. ShahR. ShahV.K. EminM. GaoS. SampognaR.V. AggarwalB. ChangA. OngeS.M.P. MalikV. WangJ. WeiY. JelicS. Mild sleep restriction increases endothelial oxidative stress in female persons.Sci. Rep.20231311536010.1038/s41598‑023‑42758‑y37717072
    [Google Scholar]
  46. TanS.M. SharmaA. StefanovicN. YuenD.Y.C. KaragiannisT.C. MeyerC. WardK.W. CooperM.E. HaanD.J.B. Derivative of bardoxolone methyl, dh404, in an inverse dose-dependent manner lessens diabetes-associated atherosclerosis and improves diabetic kidney disease.Diabetes20146393091310310.2337/db13‑174324740568
    [Google Scholar]
  47. HorC.N. YeungJ. JanM. EmmeneggerY. HubbardJ. XenariosI. NaefF. FrankenP. Sleep–wake-driven and circadian contributions to daily rhythms in gene expression and chromatin accessibility in the murine cortex.Proc. Natl. Acad. Sci.201911651257732578310.1073/pnas.191059011631776259
    [Google Scholar]
  48. SpiegelK. LeproultR. CauterV.E. Impact of sleep debt on metabolic and endocrine function.Lancet199935491881435143910.1016/S0140‑6736(99)01376‑810543671
    [Google Scholar]
  49. SchallerM.N. ChouY.C. SumaraI. MartinD.D.O. KurzT. KathederN. HofmannK. BerthiaumeL.G. SicheriF. PeterM. The human Dcn1-like protein DCNL3 promotes Cul3 neddylation at membranes.Proc. Natl. Acad. Sci.200910630123651237010.1073/pnas.081252810619617556
    [Google Scholar]
  50. BaydaşG. ErçelE. CanatanH. DönderE. AkyolA. Effect of melatonin on oxidative status of rat brain, liver and kidney tissues under constant light exposure.Cell Biochem. Funct.2001191374110.1002/cbf.89711223869
    [Google Scholar]
  51. BhattiP. MirickD.K. RandolphT.W. GongJ. BuchananD.T. ZhangJ.J. DavisS. Oxidative DNA damage during night shift work.Occup. Environ. Med.201774968068310.1136/oemed‑2017‑10441428652381
    [Google Scholar]
  52. BuyukhatipogluH. KirhanI. DagO.F. TuranM.N. VuralM. TaskinA. AksoyN. SezenY. Oxidative stress increased in healthcare workers working 24-hour on-call shifts.Am. J. Med. Sci.2010340646246710.1097/MAJ.0b013e3181ef3c0920811270
    [Google Scholar]
  53. RahalA. KumarA. SinghV. YadavB. TiwariR. ChakrabortyS. DhamaK. Oxidative stress, prooxidants, and antioxidants: The interplay.BioMed Res. Int.2014201411910.1155/2014/76126424587990
    [Google Scholar]
  54. RainsJ.L. JainS.K. Oxidative stress, insulin signaling, and diabetes.Free Radic. Biol. Med.201150556757510.1016/j.freeradbiomed.2010.12.00621163346
    [Google Scholar]
  55. TanD.X. ManchesterL.C. TerronM.P. FloresL.J. ReiterR.J. One molecule, many derivatives: A never‐ending interaction of melatonin with reactive oxygen and nitrogen species?J. Pineal Res.2007421284210.1111/j.1600‑079X.2006.00407.x17198536
    [Google Scholar]
  56. FredrichM. HampelM. SeidelK. ChristE. KorfH.W. Impact of melatonin receptor‐signaling on Zeitgeber time‐dependent changes in cell proliferation and apoptosis in the adult murine hippocampus.Hippocampus201727549550610.1002/hipo.2270628100031
    [Google Scholar]
  57. SowaA.M. PierzchalaK. SowaP. MuchaS. BartoszS.I. AdamczykJ. HartelM. Melatonin acts as antioxidant and improves sleep in MS patients.Neurochem. Res.20143981585159310.1007/s11064‑014‑1347‑624974099
    [Google Scholar]
  58. SpongJ. KennedyG.A. TsengJ. BrownD.J. ArmstrongS. BerlowitzD.J. Sleep disruption in tetraplegia: A randomised, double-blind, placebo-controlled crossover trial of 3 mg melatonin.Spinal Cord201452862963410.1038/sc.2014.8424891007
    [Google Scholar]
  59. PalmieriG. VadalàM. CorazzariV. PalmieriB. Insomnia treatment: A new multitasking natural compound based on melatonin and cannabis extracts.Clin. Ter.20221731919635147654
    [Google Scholar]
  60. OkoshiY. TanumaN. MiyataR. HayashiM. Melatonin alterations and brain acetylcholine lesions in sleep disorders in Cockayne syndrome.Brain Dev.2014361090791310.1016/j.braindev.2014.01.00424503446
    [Google Scholar]
  61. CarusoG.I. KordeD.S. HumpelC. Melatonin supports the survival of cholinergic neurons in organotypic brain slices of the basal nucleus of meynert.Pharmacology2023108220421210.1159/00052788736724742
    [Google Scholar]
  62. ZhangL. ZhangH.Q. LiangX.Y. ZhangH.F. ZhangT. LiuF.E. Melatonin ameliorates cognitive impairment induced by sleep deprivation in rats: Role of oxidative stress, BDNF and CaMKII.Behav. Brain Res.2013256728110.1016/j.bbr.2013.07.05123933144
    [Google Scholar]
  63. WangX. WangZ. CaoJ. DongY. ChenY. Melatonin ameliorates anxiety-like behaviors induced by sleep deprivation in mice: Role of oxidative stress, neuroinflammation, autophagy and apoptosis.Brain Res. Bull.202117416117210.1016/j.brainresbull.2021.06.01034144202
    [Google Scholar]
  64. KhanijowV. PrakashP. EmsellemH.A. BorumM.L. DomanD.B. Sleep dysfunction and gastrointestinal diseases.Gastroenterol. Hepatol.2015111281782527134599
    [Google Scholar]
  65. WuJ. ZhangB. ZhouS. HuangZ. XuY. LuX. ZhengX. OuyangD. Associations between gut microbiota and sleep: A two-sample, bidirectional Mendelian randomization study.Front. Microbiol.202314123684710.3389/fmicb.2023.123684737645227
    [Google Scholar]
  66. RahmanM.M. IslamF. -Or-RashidM.H. MamunA.A. RahamanM.S. IslamM.M. MeemA.F.K. SutradharP.R. MitraS. MimiA.A. EmranT.B. Fatimawali IdroesR. TalleiT.E. AhmedM. CavaluS. The Gut microbiota (microbiome) in cardiovascular disease and its therapeutic regulation.Front. Cell. Infect. Microbiol.20221290357010.3389/fcimb.2022.90357035795187
    [Google Scholar]
  67. GaoT. WangZ. CaoJ. DongY. ChenY. Melatonin attenuates microbiota dysbiosis of jejunum in short-term sleep deprived mice.J. Microbiol.202058758859710.1007/s12275‑020‑0094‑432424577
    [Google Scholar]
  68. GaoT. WangZ. CaoJ. DongY. ChenY. Melatonin ameliorates corticosterone-mediated oxidative stress-induced colitis in sleep-deprived mice involving gut microbiota.Oxid. Med. Cell. Longev.202120211998148010.1155/2021/998148034257825
    [Google Scholar]
  69. SilvaT.M. ChaarL.J. SilvaR.C. TakakuraA.C. CâmaraN.O. AntunesV.R. MoreiraT.S. Minocycline alters expression of inflammatory markers in autonomic brain areas and ventilatory responses induced by acute hypoxia.Exp. Physiol.2018103688489510.1113/EP08678029528526
    [Google Scholar]
  70. GhalibafE.M.H. RajabianA. ParvizM. AkbarianM. AmirahmadiS. VafaeeF. HosseiniM. Minocycline alleviated scopolamine-induced amnesia by regulating antioxidant and cholinergic function.Heliyon202392e1345210.1016/j.heliyon.2023.e1345236816250
    [Google Scholar]
  71. AhmedA. MisraniA. TabassumS. YangL. LongC. Minocycline inhibits sleep deprivation-induced aberrant microglial activation and Keap1-Nrf2 expression in mouse hippocampus.Brain Res. Bull.2021174415210.1016/j.brainresbull.2021.05.02834087360
    [Google Scholar]
  72. GongY. TongL. YangR. HuW. XuX. WangW. WangP. LuX. GaoM. WuY. XuX. ZhangY. ChenZ. HuangC. Dynamic changes in hippocampal microglia contribute to depressive-like behavior induced by early social isolation.Neuropharmacol.201813522323310.1016/j.neuropharm.2018.03.02329574097
    [Google Scholar]
  73. MageshS. ChenY. HuL. Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents.Med. Res. Rev.201232468772610.1002/med.2125722549716
    [Google Scholar]
  74. CruzM.P. Edaravone (Radicava): A novel neuroprotective agent for the treatment of amyotrophic lateral sclerosis.P&T2018431252829290672
    [Google Scholar]
  75. BakhtiariM. GhasemiN. SalehiH. AmirpourN. KazemiM. MardaniM. Evaluation of Edaravone effects on the differentiation of human adipose derived stem cells into oligodendrocyte cells in multiple sclerosis disease in rats.Life Sci.202128211981210.1016/j.lfs.2021.11981234265362
    [Google Scholar]
  76. MinnelliC. LaudadioE. GaleazziR. RuscianoD. ArmeniT. StipaP. CantariniM. MobbiliG. Synthesis, characterization and antioxidant properties of a new lipophilic derivative of edaravone.Antioxidants20198825810.3390/antiox808025831370225
    [Google Scholar]
  77. AlzoubiK.H. MosabihA.H.S. MahasnehA.F. The protective effect of edaravone on memory impairment induced by chronic sleep deprivation.Psychiatry Res.201928111257710.1016/j.psychres.2019.11257731586841
    [Google Scholar]
  78. KaserM. DeakinJ.B. MichaelA. ZapataC. BansalR. RyanD. CormackF. RoweJ.B. SahakianB.J. Modafinil improves episodic memory and working memory cognition in patients with remitted depression: A double-blind, randomized, placebo-controlled study.Biol. Psychiatry Cogn. Neurosci. Neuroimaging20172211512210.1016/j.bpsc.2016.11.00928299368
    [Google Scholar]
  79. MinzenbergM.J. CarterC.S. Modafinil: A review of neurochemical actions and effects on cognition.Neuropsychopharmacol.20083371477150210.1038/sj.npp.130153417712350
    [Google Scholar]
  80. OrnellF. ValvassoriS.S. SteckertA.V. DerozaP.F. ResendeW.R. VarelaR.B. QuevedoJ. Modafinil effects on behavior and oxidative damage parameters in brain of wistar rats.Behav. Neurol.201420141710.1155/2014/91724625431526
    [Google Scholar]
  81. ZifkoU.A. RuppM. SchwarzS. ZipkoH.T. MaidaE.M. Modafinil in treatment of fatigue in multiple sclerosis.J. Neurol.2002249898398710.1007/s00415‑002‑0765‑612195441
    [Google Scholar]
  82. SantosM.M.C. New agents promote neuroprotection in Parkinson’s disease models.CNS Neurol. Disord. Drug Targets201211441041810.2174/18715271280079282022483311
    [Google Scholar]
  83. RaineriM. PeskinV. GoitiaB. TaraviniI.R.E. GiorgeriS. UrbanoF.J. BisagnoV. Attenuated methamphetamine induced neurotoxicity by modafinil administration in mice.Synapse201165101087109810.1002/syn.2094321590747
    [Google Scholar]
  84. XiongX. ZuoY. ChengL. YinZ. HuT. GuoM. HanZ. GeX. LiW. WangY. WangD. WangC. ZhangL. ZhangY. LiuQ. ChenF. LeiP. Modafinil reduces neuronal pyroptosis and cognitive decline after sleep deprivation.Front. Neurosci.20221681675210.3389/fnins.2022.81675235310096
    [Google Scholar]
  85. TangH. LiK. DouX. ZhaoY. HuangC. ShuF. The neuroprotective effect of osthole against chronic sleep deprivation (CSD)-induced memory impairment in rats.Life Sci.202026311852410.1016/j.lfs.2020.11852433011218
    [Google Scholar]
  86. LuC. WangY. LvJ. JiangN. FanB. QuL. LiY. ChenS. WangF. LiuX. Ginsenoside Rh2 reverses sleep deprivation-induced cognitive deficit in mice.Behav. Brain Res.201834910911510.1016/j.bbr.2018.03.00529544964
    [Google Scholar]
  87. WadhwaM. ChauhanG. RoyK. SahuS. DeepS. JainV. KishoreK. RayK. ThakurL. PanjwaniU. Caffeine and modafinil ameliorate the neuroinflammation and anxious behavior in rats during sleep deprivation by inhibiting the microglia activation.Front. Cell. Neurosci.2018124910.3389/fncel.2018.0004929599709
    [Google Scholar]
  88. NavarroS.A. SerafimK.G.G. MizokamiS.S. HohmannM.S.N. CasagrandeR. VerriW.A.Jr. Analgesic activity of piracetam: Effect on cytokine production and oxidative stress.Pharmacol. Biochem. Behav.201310518319210.1016/j.pbb.2013.02.01823474372
    [Google Scholar]
  89. FengX. XueJ.H. XieK.X. LiuS.P. ZhongH.P. WangC.C. FengX.Q. Beneficial effect of mangiferin against sleep deprivation-induced neurodegeneration and memory impairment in mice.Biomed. Res.2017282769777
    [Google Scholar]
  90. AhmadL. MujahidM. MishraA. RahmanM.A. Protective role of hydroalcoholic extract of Cajanus cajan Linn leaves against memory impairment in sleep deprived experimental rats.J. Ayurveda Integr. Med.202011447147710.1016/j.jaim.2018.08.00330661946
    [Google Scholar]
  91. WangS. SuG. ZhangQ. ZhaoT. LiuY. ZhengL. ZhaoM. Walnut ( Juglans regia ) peptides reverse sleep deprivation-induced memory impairment in rat via alleviating oxidative stress.J. Agric. Food Chem.20186640106171062710.1021/acs.jafc.8b0388430226056
    [Google Scholar]
  92. GarabaduD. VermaJ. Exendin-4 attenuates brain mitochondrial toxicity through PI3K/Akt-dependent pathway in amyloid beta (1–42)-induced cognitive deficit rats.Neurochem. Int.2019128394910.1016/j.neuint.2019.04.00631004737
    [Google Scholar]
  93. HamiltonA. HölscherC. Receptors for the incretin glucagon-like peptide-1 are expressed on neurons in the central nervous system.Neuroreport200920131161116610.1097/WNR.0b013e32832fbf1419617854
    [Google Scholar]
  94. BombaM. GranzottoA. CastelliV. MassettiN. SilvestriE. CanzonieroL.M.T. CiminiA. SensiS.L. Exenatide exerts cognitive effects by modulating the BDNF-TrkB neurotrophic axis in adult mice.Neurobiol. Aging201864334310.1016/j.neurobiolaging.2017.12.00929331730
    [Google Scholar]
  95. TuranI. OzacmakS.H. OzacmakV.H. ErgencM. BayraktaroğluT. The effects of glucagon-like peptide 1 receptor agonist (exenatide) on memory impairment, and anxiety- and depression-like behavior induced by REM sleep deprivation.Brain Res. Bull.202117419420210.1016/j.brainresbull.2021.06.01134146656
    [Google Scholar]
  96. RenC. TongY. LiJ. LuZ. YaoY. The protective effect of alpha 7 nicotinic acetylcholine receptor activation on critical illness and its mechanism.Int. J. Biol. Sci.2017131465610.7150/ijbs.1640428123345
    [Google Scholar]
  97. FucileS. RenziM. LaxP. EusebiF. Fractional Ca 2+ current through human neuronal α7 nicotinic acetylcholine receptors.Cell Calcium200334220520910.1016/S0143‑4160(03)00071‑X12810063
    [Google Scholar]
  98. XueR. WanY. SunX. ZhangX. GaoW. WuW. Nicotinic mitigation of neuroinflammation and oxidative stress after chronic sleep deprivation.Front. Immunol.201910254610.3389/fimmu.2019.0254631736967
    [Google Scholar]
  99. BruggeJ. HungM.C. MillsG.B. A new mutational AKTivation in the PI3K pathway.Cancer Cell200712210410710.1016/j.ccr.2007.07.01417692802
    [Google Scholar]
  100. McCubreyJ.A. SteelmanL.S. BertrandF.E. DavisN.M. SokoloskyM. AbramsS.L. MontaltoG. D’AssoroA.B. LibraM. NicolettiF. MaestroR. BaseckeJ. RakusD. GizakA. DemidenkoZ. CoccoL. MartelliA.M. CervelloM. GSK-3 as potential target for therapeutic intervention in cancer.Oncotarget20145102881291110.18632/oncotarget.203724931005
    [Google Scholar]
  101. RadhakrishnanA. JayakumariN. KumarV.M. GuliaK.K. α-Asarone in management of sleep deprivation induced memory deficits and anxiety in rat model.Sleep Biol. Rhythms2019171374710.1007/s41105‑018‑0181‑7
    [Google Scholar]
  102. SinghN. HallidayA.C. ThomasJ.M. KuznetsovaO.V. BaldwinR. WoonE.C.Y. AleyP.K. AntoniadouI. SharpT. VasudevanS.R. ChurchillG.C. A safe lithium mimetic for bipolar disorder.Nat. Commun.201341133210.1038/ncomms232023299882
    [Google Scholar]
  103. LimónI.D. MendietaL. DíazA. ChamorroG. EspinosaB. ZentenoE. GuevaraJ. Neuroprotective effect of alpha-asarone on spatial memory and nitric oxide levels in rats injected with amyloid-β(25–35).Neurosci. Lett.200945329810310.1016/j.neulet.2009.02.01119356601
    [Google Scholar]
  104. ShangX. JiX. DangJ. WangL. SunC. LiuK. SikA. JinM. α-asarone induces cardiac defects and QT prolongation through mitochondrial apoptosis pathway in zebrafish.Toxicol. Lett.202032411110.1016/j.toxlet.2020.02.00332035120
    [Google Scholar]
  105. RamalingamP. GanesanP. PrabakaranD.S. GuptaP.K. JonnalagaddaS. GovindarajanK. VishnuR. SivalingamK. SodhaS. ChoiD.K. KoY.T. Lipid nanoparticles improve the uptake of α-asarone into the brain parenchyma: Formulation, characterization, in vivo pharmacokinetics, and brain delivery.AAPS Pharm Sci Tech202021829910.1208/s12249‑020‑01832‑833140227
    [Google Scholar]
  106. GalindoC.M. BujaidarM.E. ChamorroG. DíazF. TamarizJ. AguirreE.J.J. In vitro genotoxic evaluation of three α-asarone analogues.Toxicol. In Vitro200519454755210.1016/j.tiv.2005.01.00715826813
    [Google Scholar]
  107. ChamorroG. GardunoL. SanchezA. LabarriosF. SalazarM. MartinezZ. DíazF. TamarizJ. Hypolipidaemic activity of dimethoxy unconjugated propenyl side-chain analogs of α-asarone in mice.Drug Dev. Res.19984310510810.1002/(SICI)1098‑2299(199802)43:2<105::AID‑DDR3>3.0.CO;2‑O
    [Google Scholar]
  108. PagesN. MauroisP. BacP. EyndeV.J.J. TamarizJ. LabarriosF. ChamorroG. VamecqJ. The α-asarone/clofibrate hybrid compound, 2-methoxy-4-(2-propenyl)phenoxyacetic acid (MPPA), is endowed with neuroprotective and anticonvulsant potentialities.Biomed. Aging Pathol.20111421021510.1016/j.biomag.2011.09.005
    [Google Scholar]
  109. LeiQ. PengW.N. YouH. HuZ.P. LuW. Statins in nervous system-associated diseases: Angels or devils?Pharmazie201469644845424974580
    [Google Scholar]
  110. van der MostP.J. DolgaA.M. NijholtI.M. LuitenP.G.M. EiselU.L.M. Statins: Mechanisms of neuroprotection.Prog. Neurobiol.2009881647510.1016/j.pneurobio.2009.02.00219428962
    [Google Scholar]
  111. ParleM. SinghN. Reversal of memory deficits by Atorvastatin and Simvastatin in rats.Yakugaku Zasshi200712771125113710.1248/yakushi.127.112517603272
    [Google Scholar]
  112. DolgaA.M. GranicI. NijholtI.M. NyakasC. van der ZeeE.A. LuitenP.G.M. EiselU.L.M. Pretreatment with lovastatin prevents N-methyl-D-aspartate-induced neurodegeneration in the magnocellular nucleus basalis and behavioral dysfunction.J. Alzheimers Dis.200917232733610.3233/JAD‑2009‑105219363269
    [Google Scholar]
  113. SuraevA.S. MarshallN.S. VandreyR. McCartneyD. BensonM.J. McGregorI.S. GrunsteinR.R. HoyosC.M. Cannabinoid therapies in the management of sleep disorders: A systematic review of preclinical and clinical studies.Sleep Med. Rev.20205310133910.1016/j.smrv.2020.10133932603954
    [Google Scholar]
  114. KaulM. ZeeP.C. SahniA.S. Effects of cannabinoids on sleep and their therapeutic potential for sleep disorders.Neurotherapeutics202118121722710.1007/s13311‑021‑01013‑w33580483
    [Google Scholar]
  115. ArellanoC.J. AlbaC.A. CutlerS.J. LeónF. The polypharmacological effects of cannabidiol.Molecules2023287327110.3390/molecules2807327137050032
    [Google Scholar]
  116. IuvoneT. EspositoG. EspositoR. SantamariaR. RosaD.M. IzzoA.A. Neuroprotective effect of cannabidiol, a non‐psychoactive component from Cannabis sativa, on β‐amyloid‐induced toxicity in PC12 cells.J. Neurochem.200489113414110.1111/j.1471‑4159.2003.02327.x15030397
    [Google Scholar]
  117. ElsaidS. KloiberS. FollL.B. Effects of cannabidiol (CBD) in neuropsychiatric disorders: A review of pre-clinical and clinical findings.Prog. Mol. Biol. Transl. Sci.2019167257510.1016/bs.pmbts.2019.06.00531601406
    [Google Scholar]
  118. EspositoG. ScuderiC. SavaniC. SteardoL.Jr FilippisD.D. CottoneP. IuvoneT. CuomoV. SteardoL. Cannabidiol in vivo blunts β‐amyloid induced neuroinflammation by suppressing IL‐1β and iNOS expression.Br. J. Pharmacol.200715181272127910.1038/sj.bjp.070733717592514
    [Google Scholar]
  119. LaprairieR.B. BagherA.M. KellyM.E.M. WrightD.E.M. Biased type 1 cannabinoid receptor signaling influences neuronal viability in a cell culture model of huntington disease.Mol. Pharmacol.201689336437510.1124/mol.115.10198026700564
    [Google Scholar]
  120. ChengD. LowJ.K. LoggeW. GarnerB. KarlT. Chronic cannabidiol treatment improves social and object recognition in double transgenic APPswe/PS1ΔE9 mice.Psychopharmacology2014231153009301710.1007/s00213‑014‑3478‑524577515
    [Google Scholar]
  121. SagredoO. RamosJ.A. DecioA. MechoulamR. RuizF.J. Cannabidiol reduced the striatal atrophy caused 3‐nitropropionic acid in vivo by mechanisms independent of the activation of cannabinoid, vanilloid TRPV 1 and adenosine A 2A receptors.Eur. J. Neurosci.200726484385110.1111/j.1460‑9568.2007.05717.x17672854
    [Google Scholar]
  122. CelorrioM. BustamanteR.E. SuárezF.D. SáezE. de MendozaE.H.A. MüllerC.E. RamírezM.J. OyarzábalJ. FrancoR. AymerichM.S. GPR55: A therapeutic target for Parkinson’s disease?Neuropharmacology201712531933210.1016/j.neuropharm.2017.08.01728807673
    [Google Scholar]
  123. GuimarãesF.S. ChiarettiT.M. GraeffF.G. ZuardiA.W. Antianxiety effect of cannabidiol in the elevated plus-maze.Psychopharmacology1990100455855910.1007/BF022440121969666
    [Google Scholar]
  124. CamposA.C. GuimarãesF.S. Evidence for a potential role for TRPV1 receptors in the dorsolateral periaqueductal gray in the attenuation of the anxiolytic effects of cannabinoids.Prog. Neuropsychopharmacol. Biol. Psychiatry20093381517152110.1016/j.pnpbp.2009.08.01719735690
    [Google Scholar]
  125. ShovalG. ShbiroL. HershkovitzL. HazutN. ZalsmanG. MechoulamR. WellerA. Prohedonic effect of cannabidiol in a rat model of depression.Neuropsychobiology201673212312910.1159/00044389027010632
    [Google Scholar]
  126. ParrellaN.F. HillA.T. EnticottP.G. BarhounP. BowerI.S. FordT.C. A systematic review of cannabidiol trials in neurodevelopmental disorders.Pharmacol. Biochem. Behav.202323017360710.1016/j.pbb.2023.17360737543051
    [Google Scholar]
  127. WilcoxC.S. Effects of tempol and redox-cycling nitroxides in models of oxidative stress.Pharmacol. Ther.2010126211914510.1016/j.pharmthera.2010.01.00320153367
    [Google Scholar]
  128. LewandowskiM. GwozdzinskiK. Nitroxides as antioxidants and anticancer drugs.Int. J. Mol. Sci.20171811249010.3390/ijms1811249029165366
    [Google Scholar]
  129. AlzoubiK.H. KhabourO.F. AlbawaanaA.S. AlhashimiF.H. AthamnehR.Y. Tempol prevents chronic sleep-deprivation induced memory impairment.Brain Res. Bull.201612014415010.1016/j.brainresbull.2015.11.01726616531
    [Google Scholar]
  130. WaringW.S. Novel acetylcysteine regimens for treatment of paracetamol overdose.Ther. Adv. Drug Saf.20123630531510.1177/204209861246426525083244
    [Google Scholar]
  131. AldiniG. AltomareA. BaronG. VistoliG. CariniM. BorsaniL. SergioF. N-Acetylcysteine as an antioxidant and disulphide breaking agent: The reasons why.Free Radic. Res.201852775176210.1080/10715762.2018.146856429742938
    [Google Scholar]
  132. HoldenP. NairL.S. Deferoxamine: An angiogenic and antioxidant molecule for tissue regeneration.Tissue Eng. Part B Rev.201925646147010.1089/ten.teb.2019.011131184273
    [Google Scholar]
  133. ArentC.O. ValvassoriS.S. SteckertA.V. ResendeW.R. PontD.G.C. BorgesL.J. AmboniR.T. BianchiniG. QuevedoJ. The effects of n-acetylcysteine and/or deferoxamine on manic-like behavior and brain oxidative damage in mice submitted to the paradoxal sleep deprivation model of mania.J. Psychiatr. Res.201565717910.1016/j.jpsychires.2015.04.01125937502
    [Google Scholar]
  134. ChmielewskaK. DzierzbickaK. StępniakI.I. PrzybyłowskaM. Therapeutic potential of carnosine and its derivatives in the treatment of human diseases.Chem. Res. Toxicol.20203371561157810.1021/acs.chemrestox.0c0001032202758
    [Google Scholar]
  135. RegazzoniL. Courtend.B. GarzonD. AltomareA. MarinelloC. JakubovaM. VallovaS. KrumpolecP. CariniM. UkropecJ. UkropcovaB. AldiniG. A carnosine intervention study in overweight human volunteers: Bioavailability and reactive carbonyl species sequestering effect.Sci. Rep.2016612722410.1038/srep2722427265207
    [Google Scholar]
  136. SaberM.Z. KheirouriS. NoorazarS.G. Effects of l ‐carnosine supplementation on sleep disorders and disease severity in autistic children: A randomized, controlled clinical trial.Basic Clin. Pharmacol. Toxicol.20181231727710.1111/bcpt.1297929430839
    [Google Scholar]
  137. ChezM.G. BuchananC.P. AimonovitchM.C. BeckerM. SchaeferK. BlackC. KomenJ. Double-blind, placebo-controlled study of L-carnosine supplementation in children with autistic spectrum disorders.J. Child Neurol.2002171183383710.1177/0883073802017011150112585724
    [Google Scholar]
  138. BlancquaertL. BabaS.P. KwiatkowskiS. StautemasJ. StegenS. BarbaresiS. ChungW. BoakyeA.A. HoetkerJ.D. BhatnagarA. DelangheJ. VanheelB. da-CunhaV.M. DeraveW. EveraertI. Carnosine and anserine homeostasis in skeletal muscle and heart is controlled by β‐alanine transamination.J. Physiol.2016594174849486310.1113/JP27205027062388
    [Google Scholar]
  139. KabthymerR.H. SaadatiS. LeeM. HariharanR. FeehanJ. MousaA. Courtend.B. Carnosine/histidine-containing dipeptide supplementation improves depression and quality of life: Systematic review and meta-analysis of randomized controlled trials.Nutr. Rev.20242024nuae02110.1093/nutrit/nuae02138545720
    [Google Scholar]
  140. PaulB.D. SnyderS.H. The unusual amino acid L-ergothioneine is a physiologic cytoprotectant.Cell Death Differ.20101771134114010.1038/cdd.2009.16319911007
    [Google Scholar]
  141. JennyK.A. MoseG. HauptD.J. HondalR.J. Oxidized forms of ergothioneine are substrates for mammalian thioredoxin reductase.Antioxidants202211218510.3390/antiox1102018535204068
    [Google Scholar]
  142. CheahI.K. HalliwellB. Ergothioneine, recent developments.Redox Biol.20214210186810.1016/j.redox.2021.10186833558182
    [Google Scholar]
  143. IshimotoT. KatoY. Ergothioneine in the brain.FEBS Lett.2022596101290129810.1002/1873‑3468.1427134978075
    [Google Scholar]
  144. NakamichiN. NakaoS. NishiyamaM. TakedaY. IshimotoT. MasuoY. MatsumotoS. SuzukiM. KatoY. Oral administration of the food derived hydrophilic antioxidant ergothioneine enhances object recognition memory in mice.Curr. Mol. Pharmacol.202014222023310.2174/187446721366620021210271032048982
    [Google Scholar]
  145. MatsudaY. OzawaN. ShinozakiT. WakabayashiK. SuzukiK. KawanoY. OhtsuI. TatebayashiY. Ergothioneine, a metabolite of the gut bacterium Lactobacillus reuteri, protects against stress-induced sleep disturbances.Transl. Psychiatry202010117010.1038/s41398‑020‑0855‑132467627
    [Google Scholar]
  146. KatsubeM. WatanabeH. SuzukiK. IshimotoT. TatebayashiY. KatoY. MurayamaN. Food-derived antioxidant ergothioneine improves sleep difficulties in humans.J. Funct. Foods20229510516510.1016/j.jff.2022.105165
    [Google Scholar]
  147. SateiaM.J. International classification of sleep disorders-third edition: Highlights and modifications.Chest201414651387139410.1378/chest.14‑097025367475
    [Google Scholar]
  148. KanagasabaiT. ArdernC.I. Contribution of inflammation, oxidative stress, and antioxidants to the relationship between sleep duration and cardiometabolic health.Sleep201538121905191210.5665/sleep.523826237775
    [Google Scholar]
  149. GrandnerM.A. JacksonN. GerstnerJ.R. KnutsonK.L. Sleep symptoms associated with intake of specific dietary nutrients.J. Sleep Res.2014231223410.1111/jsr.1208423992533
    [Google Scholar]
  150. BeydounM.A. GamaldoA.A. CanasJ.A. BeydounH.A. ShahM.T. McNeelyJ.M. ZondermanA.B. Serum nutritional biomarkers and their associations with sleep among US adults in recent national surveys.PLoS One201498e10349010.1371/journal.pone.010349025137304
    [Google Scholar]
  151. MannJ. TruswellA.S. Essentials of human nutrition.2nd Ed.New York, NY, USAOxford University Press2002
    [Google Scholar]
  152. MoritzB. SchmitzA.E. RodriguesA.L.S. DafreA.L. CunhaM.P. The role of vitamin C in stress-related disorders.J. Nutr. Biochem.20208510845910.1016/j.jnutbio.2020.10845932745879
    [Google Scholar]
  153. YeomC.H. JungG.C. SongK.J. Changes of terminal cancer patients’ health-related quality of life after high dose vitamin C administration.J. Korean Med. Sci.200722171110.3346/jkms.2007.22.1.717297243
    [Google Scholar]
  154. KmiecikO.A. KrólA. The role of vitamin C in two distinct physiological states: Physical activity and sleep.Nutrients20201212390810.3390/nu1212390833371359
    [Google Scholar]
  155. MhaidatN.M. AlzoubiK.H. KhabourO.F. TashtoushN.H. BanihaniS.A. razzakA.K.K. Exploring the effect of vitamin C on sleep deprivation induced memory impairment.Brain Res. Bull.2015113414710.1016/j.brainresbull.2015.02.00225724146
    [Google Scholar]
  156. KaraY. DogucD.K. KulacE. GultekinF. Acetylsalicylic acid and ascorbic acid combination improves cognition; Via antioxidant effect or increased expression of NMDARs and nAChRs?Environ. Toxicol. Pharmacol.201437391692710.1016/j.etap.2014.02.01924699240
    [Google Scholar]
  157. JettiR. RaghuveerC.V. MallikarjunaR.C. Protective effect of ascorbic acid and Ginkgo biloba against learning and memory deficits caused by fluoride.Toxicol. Ind. Health201632118318710.1177/074823371349846024081631
    [Google Scholar]
  158. ZamaniM. SoleimaniM. GolabF. MohamadzadehF. MehdizadehM. KatebiM. NeuroProtective effects of adenosine receptor agonist coadministration with ascorbic acid on CA1 hippocampus in a mouse model of ischemia reperfusion injury.Metab. Brain Dis.201328336737410.1007/s11011‑013‑9408‑023640013
    [Google Scholar]
  159. SpeddingS. Vitamin D and depression: A systematic review and meta-analysis comparing studies with and without biological flaws.Nutrients2014641501151810.3390/nu604150124732019
    [Google Scholar]
  160. JamilianH. AmiraniE. MilajerdiA. KolahdoozF. MirzaeiH. ZaroudiM. GhaderiA. AsemiZ. The effects of vitamin D supplementation on mental health, and biomarkers of inflammation and oxidative stress in patients with psychiatric disorders: A systematic review and meta-analysis of randomized controlled trials.Prog. Neuropsychopharmacol. Biol. Psychiatry20199410965110.1016/j.pnpbp.2019.10965131095994
    [Google Scholar]
  161. PatrickR.P. AmesB.N. Vitamin D hormone regulates serotonin synthesis. Part 1: Relevance for autism.FASEB J.20142862398241310.1096/fj.13‑24654624558199
    [Google Scholar]
  162. BerridgeM.J. Vitamin D and depression: Cellular and regulatory mechanisms.Pharmacol. Rev.2017692809210.1124/pr.116.01322728202503
    [Google Scholar]
  163. SepidarkishM. FarsiF. FakhrabadiA.M. NamaziN. HashianiA.A. HagiaghaM.A. HeshmatiJ. The effect of vitamin D supplementation on oxidative stress parameters: A systematic review and meta-analysis of clinical trials.Pharmacol. Res.201913914115210.1016/j.phrs.2018.11.01130447293
    [Google Scholar]
  164. BrownA.J. SlatopolskyE. Vitamin D analogs: Therapeutic applications and mechanisms for selectivity.Mol. Aspects Med.200829643345210.1016/j.mam.2008.04.00118554710
    [Google Scholar]
  165. ShayP.K. MoreauR.F. SmithE.J. HagenT.M. Is α‐lipoic acid a scavenger of reactive oxygen species in vivo? Evidence for its initiation of stress signaling pathways that promote endogenous antioxidant capacity.IUBMB Life200860636236710.1002/iub.4018409172
    [Google Scholar]
  166. NobelosT.P. PapagiouvannisG. TzionaP. RekkaE.A. Lipoic acid. Kinetics and pluripotent biological properties and derivatives.Mol. Biol. Rep.20214896539655010.1007/s11033‑021‑06643‑z34420148
    [Google Scholar]
  167. Sousad.C.N.S. MenesesL.N. VasconcelosG.S. MedeirosS.I. SilvaM.C.C. MouaffakF. KebirO. LeiteS.C.M.G. PatrocinioM.C.A. MacedoD. VasconcelosS.M.M. Neuroprotective evidence of alpha-lipoic acid and desvenlafaxine on memory deficit in a neuroendocrine model of depression.Naunyn Schmiedebergs Arch. Pharmacol.2018391880381710.1007/s00210‑018‑1509‑129732526
    [Google Scholar]
  168. VasconcelosG.S. XimenesN.C. Sousad.C.N.S. OliveiraT.Q. LimaL.L.L. Lucenad.D.F. GamaC.S. MacêdoD. VasconcelosS.M.M. Alpha-lipoic acid alone and combined with clozapine reverses schizophrenia-like symptoms induced by ketamine in mice: Participation of antioxidant, nitrergic and neurotrophic mechanisms.Schizophr. Res.20151652-316317010.1016/j.schres.2015.04.01725937462
    [Google Scholar]
  169. RezaieM. NasehiM. VaseghiS. HasaniM.M.M.H. ZarrindastM.R. KhaliliN.M.A. The protective effect of alpha lipoic acid (ALA) on social interaction memory, but not passive avoidance in sleep-deprived rats.Naunyn Schmiedebergs Arch. Pharmacol.2020393112081209110.1007/s00210‑020‑01916‑z32583046
    [Google Scholar]
  170. MahdaviM.S. NasehiM. VaseghiS. MousaviZ. ZarrindastM.R. The effect of alpha lipoic acid on passive avoidance and social interaction memory, pain perception, and locomotor activity in REM sleep-deprived rats.Pharmacol. Rep.202173110211010.1007/s43440‑020‑00161‑833000413
    [Google Scholar]
  171. FarhatD. GhayadS.E. IcardP. RomancerL.M. HusseinN. LincetH. Lipoic acid-induced oxidative stress abrogates IGF-1R maturation by inhibiting the CREB/furin axis in breast cancer cell lines.Oncogene202039173604361010.1038/s41388‑020‑1211‑x32060422
    [Google Scholar]
  172. FarrS.A. PriceT.O. BanksW.A. ErcalN. MorleyJ.E. Effect of alpha-lipoic acid on memory, oxidation, and lifespan in SAMP8 mice.J. Alzheimers Dis.201232244745510.3233/JAD‑2012‑12013022785389
    [Google Scholar]
  173. MahboobA. FarhatS.M. IqbalG. BabarM.M. ZaidiN.S.S. NabaviS.M. AhmedT. Alpha-lipoic acid-mediated activation of muscarinic receptors improves hippocampus- and amygdala-dependent memory.Brain Res. Bull.2016122192810.1016/j.brainresbull.2016.02.01426912408
    [Google Scholar]
  174. SakaiC. IshidaM. OhbaH. YamashitaH. UchidaH. YoshizumiM. IshidaT. Fish oil omega-3 polyunsaturated fatty acids attenuate oxidative stress-induced DNA damage in vascular endothelial cells.PLoS One20171211e018793410.1371/journal.pone.018793429121093
    [Google Scholar]
  175. OhD.Y. TalukdarS. BaeE.J. ImamuraT. MorinagaH. FanW. LiP. LuW.J. WatkinsS.M. OlefskyJ.M. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects.Cell2010142568769810.1016/j.cell.2010.07.04120813258
    [Google Scholar]
  176. MorrisM.C. EvansD.A. BieniasJ.L. TangneyC.C. BennettD.A. WilsonR.S. AggarwalN. SchneiderJ. Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease.Arch. Neurol.200360794094610.1001/archneur.60.7.94012873849
    [Google Scholar]
  177. MorrisM.C. EvansD.A. TangneyC.C. BieniasJ.L. WilsonR.S. Fish consumption and cognitive decline with age in a large community study.Arch. Neurol.200562121849185310.1001/archneur.62.12.noc5016116216930
    [Google Scholar]
  178. AlzoubiK.H. KhabourO.F. RashidB.A. DamajI.M. SalahH.A. The neuroprotective effect of vitamin E on chronic sleep deprivation-induced memory impairment: The role of oxidative stress.Behav. Brain Res.2012226120521010.1016/j.bbr.2011.09.01721944940
    [Google Scholar]
  179. ParnhamM.J. SiesH. The early research and development of ebselen.Biochem. Pharmacol.20138691248125310.1016/j.bcp.2013.08.02824012716
    [Google Scholar]
  180. SantiC. ScimmiC. SancinetoL. Ebselen and analogues: Pharmacological properties and synthetic strategies for their preparation.Molecules20212614423010.3390/molecules2614423034299505
    [Google Scholar]
  181. SinghN. SharpleyA.L. EmirU.E. MasakiC. HerzallahM.M. GluckM.A. SharpT. HarmerC.J. VasudevanS.R. CowenP.J. ChurchillG.C. Effect of the putative lithium mimetic ebselen on brain Myo-inositol, sleep, and emotional processing in humans.Neuropsychopharmacology20164171768177810.1038/npp.2015.34326593266
    [Google Scholar]
  182. LynchE. KilJ. Development of ebselen, a glutathione peroxidase mimic, for the prevention and treatment of noise-induced hearing loss.Semin Hear200930104705510.1055/s‑0028‑1111106
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575360959250117073046
Loading
/content/journals/mrmc/10.2174/0113895575360959250117073046
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test