Skip to content
2000
Volume 25, Issue 12
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Sigma receptors (σRs), comprising σ1 and σ2 subtypes, are versatile pharmacological targets with significant roles in cancer, neurodegeneration, and psychiatric disorders. The tetrahydroisoquinoline (THIQ) scaffold, a core structure in many biologically active compounds, has garnered attention as a versatile platform for designing σRs ligands. THIQ-based compounds exhibit potent σRs binding affinity, leading to therapeutic effects ranging from neuroprotection to antitumor activity. This mini-review explores the structural features of THIQ ligands, their interaction with σRs, and their therapeutic implications. Challenges and future prospects for THIQ derivatives in σRs research are also discussed.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575379843250711134106
2025-07-22
2025-11-03
Loading full text...

Full text loading...

References

  1. LinkensK. SchmidtH.R. SahnJ.J. KruseA.C. MartinS.F. Investigating isoindoline, tetrahydroisoquinoline, and tetrahydrobenzazepine scaffolds for their sigma receptor binding properties.Eur. J. Med. Chem.201815155756710.1016/j.ejmech.2018.02.024 29656199
    [Google Scholar]
  2. FallicaA.N. PittalàV. ModicaM.N. SalernoL. RomeoG. MarrazzoA. HelalM.A. IntagliataS. Recent advances in the development of sigma receptor ligands as cytotoxic agents: A medicinal chemistry perspective.J. Med. Chem.202164127926796210.1021/acs.jmedchem.0c02265 34076441
    [Google Scholar]
  3. MartinW.R. EadesC.G. ThompsonJ.A. HupplerR.E. GilbertP.E. The effects of morphine- and nalorphine- like drugs in the nondependent and morphine-dependent chronic spinal dog.J. Pharmacol. Exp. Ther.1976197351753210.1016/S0022‑3565(25)30536‑7 945347
    [Google Scholar]
  4. SuT.P. Psychotomimetic opioid binding: specific binding of [3H]SKF-10047 to etorphine-inaccessible sites in guinea-pig brain.Eur. J. Pharmacol.1981751818210.1016/0014‑2999(81)90352‑6 6274661
    [Google Scholar]
  5. CHEBI:228223 - (+)-SKF-10,047.Available from: https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:228223
    [Google Scholar]
  6. HayashiT. SuT.P. Sigma-1 receptors (sigma(1) binding sites) form raft-like microdomains and target lipid droplets on the endoplasmic reticulum: roles in endoplasmic reticulum lipid compartmentalization and export.J. Pharmacol. Exp. Ther.2003306271872510.1124/jpet.103.051284 12730355
    [Google Scholar]
  7. NavarroJ.F. BeltránD. CavasM. Effects of (+) SKF 10,047, a sigma-1 receptor agonist, on anxiety, tested in two laboratory models in mice.Psicothema2012243427430 22748735
    [Google Scholar]
  8. TamS.W. CookL. Sigma opiates and certain antipsychotic drugs mutually inhibit (+)-[3H] SKF 10,047 and [3H]haloperidol binding in guinea pig brain membranes.Proc. Natl. Acad. Sci. USA198481175618562110.1073/pnas.81.17.5618 6147851
    [Google Scholar]
  9. KhazanN. YoungG.A. El-FakanyE.E. HongO. CalligaroD. Sigma receptors mediate the psychotomimetic effects of N-allylnormetazocine (SKF-10,047), but not its opioid agonistic-antagonistic properties.Neuropharmacology198423898398710.1016/0028‑3908(84)90015‑7 6090969
    [Google Scholar]
  10. HalberstadtA.L. HyunJ. RudermanM.A. PowellS.B. Effects of the psychotomimetic benzomorphan N-allylnormetazocine (SKF 10,047) on prepulse inhibition of startle in mice.Pharmacol. Biochem. Behav.2016148697510.1016/j.pbb.2016.05.009 27236030
    [Google Scholar]
  11. ChaudharyV. ChaturvediS. WadhwaA. ChaudharyR. GautamD. SharmaD. KumarR. MishraA.K. Design, development and bio-evaluation of a novel radio-ligand 99mTc-THQ-DTPA as a sigma 2 receptor specific breast tumor imaging agent.Bioorg. Med. Chem.20249711751510.1016/j.bmc.2023.117515 38043245
    [Google Scholar]
  12. HannerM. MoebiusF.F. FlandorferA. KnausH.G. StriessnigJ. KempnerE. GlossmannH. Purification, molecular cloning, and expression of the mammalian sigma1-binding site.Proc. Natl. Acad. Sci. USA199693158072807710.1073/pnas.93.15.8072 8755605
    [Google Scholar]
  13. WengT.Y. TsaiS.Y.A. SuT.P. Roles of sigma-1 receptors on mitochondrial functions relevant to neurodegenerative diseases.J. Biomed. Sci.20172417410.1186/s12929‑017‑0380‑6 28917260
    [Google Scholar]
  14. DichiaraM. AmbrosioF.A. LeeS.M. Ruiz-CanteroM.C. LombinoJ. CoricelloA. CostaG. ShahD. CostanzoG. PasquinucciL. SonK.N. CosentinoG. González-CanoR. MarrazzoA. AakaluV.K. CobosE.J. AlcaroS. AmataE. Discovery of AD258 as a sigma receptor ligand with potent antiallodynic activity.J. Med. Chem.20236616114471146310.1021/acs.jmedchem.3c00959 37535861
    [Google Scholar]
  15. MorenoE. Moreno-DelgadoD. NavarroG. HoffmannH.M. FuentesS. Rosell-VilarS. GasperiniP. Rodríguez-RuizM. MedranoM. MallolJ. CortésA. CasadóV. LluísC. FerréS. OrtizJ. CanelaE. McCormickP.J. Cocaine disrupts histamine H3 receptor modulation of dopamine D1 receptor signaling: σ1-D1-H3 receptor complexes as key targets for reducing cocaine’s effects.J. Neurosci.201434103545355810.1523/JNEUROSCI.4147‑13.2014 24599455
    [Google Scholar]
  16. KimF.J. KovalyshynI. BurgmanM. NeilanC. ChienC.C. PasternakG.W. σ 1 receptor modulation of G-protein-coupled receptor signaling: potentiation of opioid transduction independent from receptor binding.Mol. Pharmacol.201077469570310.1124/mol.109.057083 20089882
    [Google Scholar]
  17. AydarE. PalmerC.P. KlyachkoV.A. JacksonM.B. The sigma receptor as a ligand-regulated auxiliary potassium channel subunit.Neuron200234339941010.1016/S0896‑6273(02)00677‑3 11988171
    [Google Scholar]
  18. NavarroG. MorenoE. BonaventuraJ. BrugarolasM. FarréD. AguinagaD. MallolJ. CortésA. CasadóV. LluísC. FerreS. FrancoR. CanelaE. McCormickP.J. Cocaine inhibits dopamine D2 receptor signaling via sigma-1-D2 receptor heteromers.PLoS One201384e6124510.1371/journal.pone.0061245 23637801
    [Google Scholar]
  19. HayashiT. SuT.P. Regulating ankyrin dynamics: Roles of sigma-1 receptors.Proc. Natl. Acad. Sci. USA200198249149610.1073/pnas.98.2.491 11149946
    [Google Scholar]
  20. JiaJ. ChengJ. WangC. ZhenX. Sigma-1 receptor-modulated neuroinflammation in neurological diseases.Front. Cell. Neurosci.20181231410.3389/fncel.2018.00314 30294261
    [Google Scholar]
  21. HuangY.S. LuH.L. ZhangL.J. WuZ. Sigma-2 receptor ligands and their perspectives in cancer diagnosis and therapy.Med. Res. Rev.201434353256610.1002/med.21297 23922215
    [Google Scholar]
  22. XuJ. ZengC. ChuW. PanF. RothfussJ.M. ZhangF. TuZ. ZhouD. ZengD. VangveravongS. JohnstonF. SpitzerD. ChangK.C. HotchkissR.S. HawkinsW.G. WheelerK.T. MachR.H. Identification of the PGRMC1 protein complex as the putative sigma-2 receptor binding site.Nat. Commun.20112138010.1038/ncomms1386 21730960
    [Google Scholar]
  23. PatiM.L. GrozaD. RigantiC. KopeckaJ. NisoM. BerardiF. HagerS. HeffeterP. HiraiM. TsugawaH. KabeY. SuematsuM. AbateC. Sigma-2 receptor and progesterone receptor membrane component 1 (PGRMC1) are two different proteins: Proofs by fluorescent labeling and binding of sigma-2 receptor ligands to PGRMC1.Pharmacol. Res.2017117677410.1016/j.phrs.2016.12.023 28007569
    [Google Scholar]
  24. AlonA. SchmidtH.R. WoodM.D. SahnJ.J. MartinS.F. KruseA.C. Identification of the gene that codes for the σ2 receptor.Proc. Natl. Acad. Sci. USA2017114277160716510.1073/pnas.1705154114 28559337
    [Google Scholar]
  25. NguyenN.T. Jaramillo-MartinezV. MathewM. SureshV.V. SivaprakasamS. BhutiaY.D. GanapathyV. Sigma receptors: Novel regulators of iron/heme homeostasis and ferroptosis.Int. J. Mol. Sci.202324191467210.3390/ijms241914672 37834119
    [Google Scholar]
  26. YangK. ZengC. WangC. SunM. YinD. SunT. Sigma-2 receptor: A potential target for cancer/alzheimer’s disease treatment via its regulation of cholesterol homeostasis.Molecules20202522543910.3390/molecules25225439 33233619
    [Google Scholar]
  27. RousseauxC.G. GreeneS.F. Sigma receptors [ σ Rs]: Biology in normal and diseased states.J. Recept. Signal Transduct. Res.201536416210.3109/10799893.2015.1015737 26056947
    [Google Scholar]
  28. ScottJ.D. WilliamsR.M. Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics.Chem. Rev.200210251669173010.1021/cr010212u 11996547
    [Google Scholar]
  29. Faheem; Karan Kumar, B.; Chandra Sekhar, K.V.G.; Chander, S.; Kunjiappan, S.; Murugesan, S. Medicinal chemistry perspectives of 1,2,3,4-tetrahydroisoquinoline analogs – biological activities and SAR studies.RSC Advances20211120122541228710.1039/D1RA01480C 35423735
    [Google Scholar]
  30. KohnoM. OhtaS. HirobeM. Tetrahydroisoquinoline and 1-methyl-tetrahydroisoquinoline as novel endogenous amines in rat brain.Biochem. Biophys. Res. Commun.1986140144845410.1016/0006‑291X(86)91111‑3 3778459
    [Google Scholar]
  31. Antkiewicz-MichalukL. WąsikA. MichalukJ. 1-Methyl-1,2,3,4-tetrahydroisoquinoline, an endogenous amine with unexpected mechanism of action: new vistas of therapeutic application.Neurotox. Res.201425111210.1007/s12640‑013‑9402‑7 23719903
    [Google Scholar]
  32. BrossiA. PeiX-F. Biological Activity of Unnatural Alkaloid Enantiomers.In: The Alkaloids: Chemistry and Biology.Elsevier199810913910.1016/S1099‑4831(08)60041‑3
    [Google Scholar]
  33. ThangeswaranD. ShamsuddinS. BalakrishnanV. A comprehensive review on the progress and challenges of tetrahydroisoquinoline derivatives as a promising therapeutic agent to treat Alzheimer’s disease.Heliyon20241010e3078810.1016/j.heliyon.2024.e30788 38803973
    [Google Scholar]
  34. TiwariR. SinghD. SinghJ. ChhillarA. ChandraR. VermaA. Synthesis, antibacterial activity and QSAR studies of 1,2-disubstituted-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolines.Eur. J. Med. Chem.2006411404910.1016/j.ejmech.2005.10.010 16356593
    [Google Scholar]
  35. ZhuJ. LuJ. ZhouY. LiY. ChengJ. ZhengC. Design, synthesis, and antifungal activities in vitro of novel tetrahydroisoquinoline compounds based on the structure of lanosterol 14α-demethylase (CYP51) of fungi.Bioorg. Med. Chem. Lett.200616205285528910.1016/j.bmcl.2006.08.001 16905318
    [Google Scholar]
  36. KumarA. KatiyarS. GuptaS. ChauhanP. Syntheses of new substituted triazino tetrahydroisoquinolines and β-carbolines as novel antileishmanial agents1.Eur. J. Med. Chem.200641110611310.1016/j.ejmech.2005.09.007 16356594
    [Google Scholar]
  37. LiuX.H. ZhuJ. ZhouA. SongB.A. ZhuH.L. baiL.S. BhaduryP.S. PanC.X. Synthesis, structure and antibacterial activity of new 2-(1-(2-(substituted-phenyl)-5-methyloxazol-4-yl)-3-(2-substitued-phenyl)-4,5-dihydro-1H-pyrazol-5-yl)-7-substitued-1,2,3,4-tetrahydroisoquinoline derivatives.Bioorg. Med. Chem.20091731207121310.1016/j.bmc.2008.12.034 19147367
    [Google Scholar]
  38. SwidorskiJ.J. LiuZ. YinZ. WangT. CariniD.J. RahematpuraS. ZhengM. JohnsonK. ZhangS. LinP.F. ParkerD.D. LiW. MeanwellN.A. HamannL.G. Regueiro-RenA. Inhibitors of HIV-1 attachment: The discovery and structure–activity relationships of tetrahydroisoquinolines as replacements for the piperazine benzamide in the 3-glyoxylyl 6-azaindole pharmacophore.Bioorg. Med. Chem. Lett.201626116016710.1016/j.bmcl.2015.11.009 26584882
    [Google Scholar]
  39. EfangeN.M. LobeM.M.M. YamtheL.R.T. PekamJ.N.M. TarkangP.A. AyongL. EfangeS.M.N. Spirofused Tetrahydroisoquinoline-Oxindole Hybrids (Spiroquindolones) as potential multitarget antimalarial Agents: Preliminary hit optimization and efficacy evaluation in mice.Antimicrob. Agents Chemother.20226612e00607e0062210.1128/aac.00607‑22 36409128
    [Google Scholar]
  40. YadavP. KumarA. AlthagafiI. NemayshV. RaiR. PratapR. The recent development of tetrahydro-quinoline/isoquinoline based compounds as anticancer agents.Curr. Top. Med. Chem.202121171587162210.2174/1568026621666210526164208 34042035
    [Google Scholar]
  41. SinghI.P. ShahP. Tetrahydroisoquinolines in therapeutics: A patent review (2010-2015).Expert Opin. Ther. Pat.2017271173610.1080/13543776.2017.1236084 27623022
    [Google Scholar]
  42. VilnerB.J. BowenW.D. Modulation of cellular calcium by sigma-2 receptors: Release from intracellular stores in human SK-N-SH neuroblastoma cells.J. Pharmacol. Exp. Ther.2000292390091110.1016/S0022‑3565(24)35369‑8 10688603
    [Google Scholar]
  43. VilnerB.J. JohnC.S. BowenW.D. Sigma-1 and sigma-2 receptors are expressed in a wide variety of human and rodent tumor cell lines.Cancer Res.1995552408413 7812973
    [Google Scholar]
  44. VilnerB.J. de CostaB.R. BowenW.D. Cytotoxic effects of sigma ligands: Sigma receptor-mediated alterations in cellular morphology and viability.J. Neurosci.199515111713410.1523/JNEUROSCI.15‑01‑00117.1995 7823122
    [Google Scholar]
  45. DichiaraM. AmbrosioF.A. BarbaraciC. González-CanoR. CostaG. ParentiC. MarrazzoA. PasquinucciL. CobosE.J. AlcaroS. AmataE. Synthesis, computational insights, and evaluation of novel sigma receptors ligands.ACS Chem. Neurosci.202314101845185810.1021/acschemneuro.3c00074 37155827
    [Google Scholar]
  46. DehdashtiF. LaforestR. GaoF. ShoghiK.I. AftR.L. NussenbaumB. KreiselF.H. BartlettN.L. CashenA. Wagner-JohnsonN. MachR.H. Assessment of cellular proliferation in tumors by PET using 18F-ISO-1.J. Nucl. Med.201354335035710.2967/jnumed.112.111948 23359657
    [Google Scholar]
  47. McDonaldE.S. DootR.K. YoungA.J. SchubertE.K. TchouJ. PrymaD.A. FarwellM.D. NayakA. ZioberA. FeldmanM.D. DeMicheleA. ClarkA.S. ShahP.D. LeeH. CarlinS.D. MachR.H. MankoffD.A. Breast Cancer 18 F-ISO-1 uptake as a marker of proliferation status.J. Nucl. Med.202061566567010.2967/jnumed.119.232363 31836680
    [Google Scholar]
  48. SunY.T. WangG.F. YangY.Q. JinF. WangY. XieX.Y. MachR.H. HuangY.S. Synthesis and pharmacological evaluation of 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline derivatives as sigma-2 receptor ligands.Eur. J. Med. Chem.201814722723710.1016/j.ejmech.2017.11.016 29438891
    [Google Scholar]
  49. MachR.H. SmithC.R. al-NabulsiI. WhirrettB.R. ChildersS.R. WheelerK.T.Σ. Sigma 2 receptors as potential biomarkers of proliferation in breast cancer.Cancer Res.1997571156161 8988058
    [Google Scholar]
  50. WheelerK.T. WangL-M. WallenC.A. ChildersS.R. ClineJ.M. KengP.C. MachR.H. Sigma-2 receptors as a biomarker of proliferation in solid tumours.Br. J. Cancer20008261223123210.1054/bjoc.1999.1067 10735510
    [Google Scholar]
  51. ShoghiK.I. XuJ. SuY. HeJ. RowlandD. YanY. GarbowJ.R. TuZ. JonesL.A. HigashikuboR. WheelerK.T. LubetR.A. MachR.H. YouM. Quantitative receptor-based imaging of tumor proliferation with the sigma-2 ligand [(18)F]ISO-1.PLoS One201389e7418810.1371/journal.pone.0074188 24073202
    [Google Scholar]
  52. XieX.Y. LiY.Y. MaW.H. ChenA.F. SunY.T. LeeJ.Y. RiadA. XuD.H. MachR.H. HuangY.S. Synthesis, binding, and functional properties of tetrahydroisoquinolino-2-alkyl phenones as selective σ2R/TMEM97 ligands.Eur. J. Med. Chem.202120911290610.1016/j.ejmech.2020.112906 33049607
    [Google Scholar]
  53. TuZ. XuJ. JonesL.A. LiS. ZengD. KungM.P. KungH.F. MachR.H. Radiosynthesis and biological evaluation of a promising σ2-receptor ligand radiolabeled with fluorine-18 or iodine-125 as a PET/SPECT probe for imaging breast cancer.Appl. Radiat. Isot.201068122268227310.1016/j.apradiso.2010.06.004 20594864
    [Google Scholar]
  54. MachR.H. ZengC. HawkinsW.G. The σ2 receptor: A novel protein for the imaging and treatment of cancer.J. Med. Chem.201356187137716010.1021/jm301545c 23734634
    [Google Scholar]
  55. GlennonR. Pharmacophore identification for sigma-1 (sigma1) receptor binding: application of the “deconstruction-reconstruction-elaboration” approach.Mini Rev. Med. Chem.200551092794010.2174/138955705774329519 16250835
    [Google Scholar]
  56. GlennonR.A. SmithJ.D. IsmaielA.M. El-AshmawyM. BattagliaG. FischerJ.B. Identification and exploitation of the. sigma.-opiate pharmacophore.J. Med. Chem.19913431094109810.1021/jm00107a033 1848295
    [Google Scholar]
  57. IyamuI.D. LvW. MalikN. MishraR.K. SchiltzG.E. Development of tetrahydroindazole‐based potent and selective sigma‐2 receptor ligands.ChemMedChem201914131248125610.1002/cmdc.201900203 31071238
    [Google Scholar]
  58. KekudaR. PrasadP.D. FeiY.J. LeibachF.H. GanapathyV. Cloning and functional expression of the human type 1 sigma receptor (hSigmaR1).Biochem. Biophys. Res. Commun.1996229255355810.1006/bbrc.1996.1842 8954936
    [Google Scholar]
  59. SchmidtH.R. ZhengS. GurpinarE. KoehlA. ManglikA. KruseA.C. Crystal structure of the human σ1 receptor.Nature2016532760052753010.1038/nature17391 27042935
    [Google Scholar]
  60. MeyerC. SchepmannD. YanagisawaS. YamaguchiJ. Dal ColV. LauriniE. ItamiK. PriclS. WünschB. Pd-catalyzed direct C-H bond functionalization of spirocyclic σ1 ligands: Generation of a pharmacophore model and analysis of the reverse binding mode by docking into a 3D homology model of the σ1 receptor.J. Med. Chem.201255188047806510.1021/jm300894h 22913577
    [Google Scholar]
  61. AbateC. MosierP.D. BerardiF. GlennonR.A.A. A structure-affinity and comparative molecular field analysis of Sigma-2 (Σ2).Receptor Ligands. Cent Nerv Syst. Agents Med. Chem.2009924610.2174/1871524910909030246
    [Google Scholar]
  62. AlonA. LyuJ. BrazJ.M. TumminoT.A. CraikV. O’MearaM.J. WebbC.M. RadchenkoD.S. MorozY.S. HuangX.P. LiuY. RothB.L. IrwinJ.J. BasbaumA.I. ShoichetB.K. KruseA.C. Structures of the σ2 receptor enable docking for bioactive ligand discovery.Nature2021600789075976410.1038/s41586‑021‑04175‑x 34880501
    [Google Scholar]
  63. LauriniE. ZampieriD. MamoloM.G. VioL. ZanetteC. FlorioC. PosoccoP. FermegliaM. PriclS. A 3D-pharmacophore model for σ2 receptors based on a series of substituted benzo[d]oxazol-2(3H)-one derivatives.Bioorg. Med. Chem. Lett.20102092954295710.1016/j.bmcl.2010.03.009 20347592
    [Google Scholar]
  64. BaiS. LiS. XuJ. PengX. SaiK. ChuW. TuZ. ZengC. MachR.H. Synthesis and structure-activity relationship studies of conformationally flexible tetrahydroisoquinolinyl triazole carboxamide and triazole substituted benzamide analogues as σ2 receptor ligands.J. Med. Chem.201457104239425110.1021/jm5001453 24821398
    [Google Scholar]
  65. YangD. ComeauA. BowenW.D. MachR.H. RossB.D. HongH. Van DortM.E. Design and investigation of a [ 18 F]-labeled benzamide derivative as a high affinity dual sigma receptor subtype radioligand for prostate tumor imaging.Mol. Pharm.201714377078010.1021/acs.molpharmaceut.6b01020 28135101
    [Google Scholar]
  66. ChristmannU. DíazJ.L. PascualR. BordasM. ÁlvarezI. MonroyX. PorrasM. YesteS. ReinosoR.F. MerlosM. VelaJ.M. AlmansaC. Discovery of WLB-89462, a new drug-like and highly selective σ 2 receptor ligand with neuroprotective properties.J. Med. Chem.20236617124991251910.1021/acs.jmedchem.3c01060 37607512
    [Google Scholar]
  67. MésangeauC. AmataE. AlsharifW. SeminerioM.J. RobsonM.J. MatsumotoR.R. PoupaertJ.H. McCurdyC.R. Synthesis and pharmacological evaluation of indole-based sigma receptor ligands.Eur. J. Med. Chem.201146105154516110.1016/j.ejmech.2011.08.031 21899931
    [Google Scholar]
  68. NisoM. AbateC. ContinoM. FerorelliS. AzzaritiA. PerroneR. ColabufoN.A. BerardiF. Sigma-2 receptor agonists as possible antitumor agents in resistant tumors: hints for collateral sensitivity.ChemMedChem20138122026203510.1002/cmdc.201300291 24106081
    [Google Scholar]
  69. MachR.H. HuangY. FreemanR.A. WuL. VangveravongS. LuedtkeR.R. Conformationally-flexible benzamide analogues as dopamine D3 and σ2 receptor ligands.Bioorg. Med. Chem. Lett.200414119520210.1016/j.bmcl.2003.09.083 14684327
    [Google Scholar]
  70. ZampieriD. RomanoM. FortunaS. AmataE. DichiaraM. CosentinoG. MarrazzoA. MamoloM.G. Design, synthesis, and cytotoxic assessment of new haloperidol analogues as potential anticancer compounds targeting sigma receptors.Molecules20242911269710.3390/molecules29112697 38893570
    [Google Scholar]
  71. MaedaD.Y. WilliamsW. KimW.E. ThatcherL.N. BowenW.D. CoopA. N-arylalkylpiperidines as high-affinity sigma-1 and sigma-2 receptor ligands: phenylpropylamines as potential leads for selective sigma-2 agents.Bioorg. Med. Chem. Lett.200212349750010.1016/S0960‑894X(01)00788‑0 11814827
    [Google Scholar]
  72. HajipourA.R. GuoL.W. PalA. MavlyutovT. RuohoA.E. Electron-donating para-methoxy converts a benzamide-isoquinoline derivative into a highly Sigma-2 receptor selective ligand.Bioorg. Med. Chem.201119247435744010.1016/j.bmc.2011.10.046 22055714
    [Google Scholar]
  73. AshfordM.E. NguyenV.H. GreguricI. PhamT.Q. KellerP.A. KatsifisA. Synthesis and in vitro evaluation of tetrahydroisoquinolines with pendent aromatics as sigma-2 (σ2) selective ligands.Org. Biomol. Chem.201412578379410.1039/C3OB42254B 24306445
    [Google Scholar]
  74. ZampieriD. FortunaS. CalabrettiA. RomanoM. MenegazziR. SchepmannD. WünschB. CollinaS. ZanonD. MamoloM.G. Discovery of new potent dual sigma receptor/GluN2b ligands with antioxidant property as neuroprotective agents.Eur. J. Med. Chem.201918026828210.1016/j.ejmech.2019.07.012 31319263
    [Google Scholar]
  75. KimH.Y. LeeJ.Y. HsiehC.J. RiadA. IzzoN.J. CatalanoS.M. GrahamT.J.A. MachR.H. Screening of σ 2 receptor ligands and In vivo Evaluation of 11 C-Labeled 6,7-Dimethoxy-2-[4-(4-methoxyphenyl)butan-2-yl]-1,2,3,4-tetrahydroisoquinoline for potential use as a σ 2 receptor brain PET Tracer.J. Med. Chem.20226586261627210.1021/acs.jmedchem.2c00191 35404616
    [Google Scholar]
  76. WangL. YeJ. HeY. Deuther-ConradW. ZhangJ. ZhangX. CuiM. SteinbachJ. HuangY. BrustP. JiaH. 18 F-Labeled indole-based analogs as highly selective radioligands for imaging sigma-2 receptors in the brain.Bioorg. Med. Chem.201725143792380210.1016/j.bmc.2017.05.019 28549890
    [Google Scholar]
  77. XieF. KniessT. NeuberC. Deuther-ConradW. MamatC. LiebermanB.P. LiuB. MachR.H. BrustP. SteinbachJ. PietzschJ. JiaH. Novel indole-based sigma-2 receptor ligands: Synthesis, structure–affinity relationship and antiproliferative activity.MedChemComm2015661093110310.1039/C5MD00079C
    [Google Scholar]
  78. ZampieriD. LauriniE. VioL. FermegliaM. PriclS. WünschB. SchepmannD. MamoloM.G. Improving selectivity preserving affinity: New piperidine-4-carboxamide derivatives as effective sigma-1-ligands.Eur. J. Med. Chem.20159079780810.1016/j.ejmech.2014.12.018 25528334
    [Google Scholar]
  79. BergkemperM. SchepmannD. WünschB. Synthesis of σ Receptor ligands with a spirocyclic system connected with a tetrahydroisoquinoline moiety via different linkers.ChemMedChem20211671184119710.1002/cmdc.202000861 33332704
    [Google Scholar]
  80. WuZ.W. SongS.Y. LiL. LuH.L. LiebermanB. HuangY.S. MachR.H. Synthesis and evaluation of tetrahydroindazole derivatives as sigma-2 receptor ligands.Bioorg. Med. Chem.20152371463147110.1016/j.bmc.2015.02.012 25752422
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575379843250711134106
Loading
/content/journals/mrmc/10.2174/0113895575379843250711134106
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): pharmacophore; SAR; Sigma receptors; tetrahydroisoquinoline; σ1R; σ2R
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test