Skip to content
2000
Volume 25, Issue 9
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

This analytical mini-review focuses on the effects of trace elements, which includes Cu, Mn, Zn, and Se, as well as some rarer microelements, on the regulation of oxidative stress in the body and of certain diseases associated with it. Synergism and competition between certain microelements have been considered a hot topic in the applied molecular pharmacology of these specific bio-effects. Some ideas for further possible directions of research are expressed. Noteworthy, metal coordinating catalytical sites of certain enzymes function as pharmacophore-forming and connecting nanostructures. These sites can be regarded as targets for various effectors, making them pharmacologically significant contributors to biocatalysis.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575333766240912162252
2024-09-25
2025-10-09
Loading full text...

Full text loading...

References

  1. JomovaK. MakovaM. AlomarS.Y. AlwaselS.H. NepovimovaE. KucaK. RhodesC.J. ValkoM. Essential metals in health and disease.Chem. Biol. Interact.202236711017310.1016/j.cbi.2022.110173 36152810
    [Google Scholar]
  2. RuizL.M. LibedinskyA. ElorzaA.A. Role of copper on mitochondrial function and metabolism.Front. Mol. Biosci.2021871122710.3389/fmolb.2021.711227 34504870
    [Google Scholar]
  3. AschnerM. SkalnyA.V. MartinsA.C. SinitskiiA.I. FarinaM. LuR. BarbosaF.Jr GluhchevaY.G. SantamariaA. TinkovA.A. Ferroptosis as a mechanism of non-ferrous metal toxicity.Arch. Toxicol.20229692391241710.1007/s00204‑022‑03317‑y 35727353
    [Google Scholar]
  4. SahooK. SharmaA. Understanding the mechanistic roles of environmental heavy metal stressors in regulating ferroptosis: Adding new paradigms to the links with diseases.Apoptosis2023283-427729210.1007/s10495‑022‑01806‑0 36611106
    [Google Scholar]
  5. ShangY. LuoM. YaoF. WangS. YuanZ. YangY. Ceruloplasmin suppresses ferroptosis by regulating iron homeostasis in hepatocellular carcinoma cells.Cell. Signal.20207210963310.1016/j.cellsig.2020.109633 32283255
    [Google Scholar]
  6. YangM. WuX. HuJ. WangY. WangY. ZhangL. HuangW. WangX. LiN. LiaoL. ChenM. XiaoN. DaiY. LiangH. HuangW. YuanL. PanH. LiL. ChenL. LiuL. LiangL. GuanJ. COMMD10 inhibits HIF1α/CP loop to enhance ferroptosis and radiosensitivity by disrupting Cu-Fe balance in hepatocellular carcinoma.J. Hepatol.20227651138115010.1016/j.jhep.2022.01.009 35101526
    [Google Scholar]
  7. IseiM.O. StevensD. KamundeC. Copper modulates heart mitochondrial H2O2 emission differently during fatty acid and pyruvate oxidation.Comp. Biochem. Physiol. C Toxicol. Pharmacol.202225410926710.1016/j.cbpc.2022.109267 35026399
    [Google Scholar]
  8. SchmidtK. RalleM. SchafferT. JayakanthanS. BariB. MuchenditsiA. LutsenkoS. ATP7A and ATP7B copper transporters have distinct functions in the regulation of neuronal dopamine-β-hydroxylase.J. Biol. Chem.201829352200852009810.1074/jbc.RA118.004889 30341172
    [Google Scholar]
  9. ConcilliM. IacobacciS. ChesiG. CarissimoA. PolishchukR. A systems biology approach reveals new endoplasmic reticulum-associated targets for the correction of the ATP7B mutant causing Wilson disease.Metallomics20168992093010.1039/C6MT00148C 27714068
    [Google Scholar]
  10. Hilário-SouzaE. CuillelM. MintzE. CharbonnierP. VieyraA. CassioD. LoweJ. Modulation of hepatic copper-ATPase activity by insulin and glucagon involves protein kinase A (PKA) signaling pathway.Biochim. Biophys. Acta Mol. Basis Dis.20161862112086209710.1016/j.bbadis.2016.08.008 27523629
    [Google Scholar]
  11. TsaiC.Y. LiebigJ.K. TsigelnyI.F. HowellS.B. The copper transporter 1 (CTR1) is required to maintain the stability of copper transporter 2 (CTR2).Metallomics20157111477148710.1039/C5MT00131E 26205368
    [Google Scholar]
  12. SantiniC. PelleiM. GandinV. PorchiaM. TisatoF. MarzanoC. Advances in copper complexes as anticancer agents.Chem. Rev.2014114181586210.1021/cr400135x 24102434
    [Google Scholar]
  13. TabtiR. TounsiN. GaiddonC. BentouhamiE. DesaubryL. Progress in copper complexes as anticancer agents.Med. Chem. (Los Angeles)20177587587910.4172/2161‑0444.1000445
    [Google Scholar]
  14. LeeY.M. LinY.F. LimC. Factors controlling the role of Zn and reactivity of Zn-bound cysteines in proteins: Application to drug target discovery.J. Chin. Chem. Soc. (Taipei)201461114215010.1002/jccs.201300392
    [Google Scholar]
  15. Saporito-MagriñaC. FacioM.L. Lopez-MontañanaL. PaganoG. RepettoM.G. Copper-induced aggregation of IgG: A potential driving force for the formation of circulating protein aggregates.Metallomics2023152mfad00510.1093/mtomcs/mfad005 36722151
    [Google Scholar]
  16. KardosJ. HéjaL. SimonÁ. JablonkaiI. KovácsR. JemnitzK. Copper signalling: Causes and consequences.Cell Commun. Signal.20181617110.1186/s12964‑018‑0277‑3 30348177
    [Google Scholar]
  17. SaleemU. SabirS. NiaziS.G. NaeemM. AhmadB. Role of oxidative stress and antioxidant defense biomarkers in neurodegenerative diseases.Crit. Rev. Eukaryot. Gene Expr.202030431132210.1615/CritRevEukaryotGeneExpr.2020029202 32894661
    [Google Scholar]
  18. NiedzielskaE. SmagaI. GawlikM. MoniczewskiA. StankowiczP. PeraJ. FilipM. Oxidative stress in neurodegenerative diseases.Mol. Neurobiol.20165364094412510.1007/s12035‑015‑9337‑5 26198567
    [Google Scholar]
  19. PoytonM.F. SendeckiA.M. CongX. CremerP.S. Cu(2+) binds to phosphatidylethanolamine and increases oxidation in lipid membranes.J. Am. Chem. Soc.201613851584159010.1021/jacs.5b11561 26820910
    [Google Scholar]
  20. ZhangB. BurkeR. Copper homeostasis and the ubiquitin proteasome system.Metallomics2023153mfad01010.1093/mtomcs/mfad010 36822629
    [Google Scholar]
  21. MaretW. The quintessence of metallomics: A harbinger of a different life science based on the periodic table of the bioelements.Metallomics2022148mfac05110.1093/mtomcs/mfac051 35820043
    [Google Scholar]
  22. OrlovA.P. OrlovaM.A. TrofimovaT.P. KalmykovS.N. KuznetsovD.A. The role of zinc and its compounds in leukemia.J. Biol. Inorg. Chem.201823334736210.1007/s00775‑018‑1545‑9 29492645
    [Google Scholar]
  23. GuiJ.Y. RaoS. HuangX. LiuX. ChengS. XuF. Interaction between selenium and essential micronutrient elements in plants: A systematic review.Sci. Total Environ.202285315867310.1016/j.scitotenv.2022.158673 36096215
    [Google Scholar]
  24. TrofimovaT.P. TafeenkoV.A. BorodkovA.S. ProshinA.N. OrlovaM.A. New copper complexes with N-(5,6-dihydro-4H-1,3-thiazin-2-yl)benzamide ligand.Mendeleev Commun.202131455255410.1016/j.mencom.2021.07.039
    [Google Scholar]
  25. FrijaL.M.T. PombeiroA.J.L. KopylovichM.N. Coordination chemistry of thiazoles, isothiazoles and thiadiazoles.Coord. Chem. Rev.2016308325510.1016/j.ccr.2015.10.003
    [Google Scholar]
  26. OrlovaM.A. TrofimovaT.P. NikulinS.V. OrlovA.P. The relationship between NO-synthase inhibitory activity of N,S-containing heterocycles and their radioprotective and antileukemic properties.Moscow Univ. Chem. Bull.201671425826210.3103/S0027131416040052
    [Google Scholar]
  27. DenoyerD. MasaldanS. La FontaineS. CaterM.A. Targeting copper in cancer therapy: Copper that cancer.Metallomics20157111459147610.1039/C5MT00149H 26313539
    [Google Scholar]
  28. OrlovaM.A. TrofimovaT.P. ZolotovaN.S. IvanovI.A. SpiridonovV.V. ProshinA.N. BorodkovA.S. YaroslavovA.A. OrlovA.P. Copper complexes: Cytotoxicity and transport possibilities.Russ. Chem. Bull.201968101933193910.1007/s11172‑019‑2649‑2
    [Google Scholar]
  29. MahendiranD. AmuthakalaS. BhuvaneshN.S.P. KumarR.S. RahimanA.K. Copper complexes as prospective anticancer agents: in vitro and in vivo evaluation, selective targeting of cancer cells by DNA damage and S phase arrest.RSC Adv.2018830169731699010.1039/C8RA00954F 35540520
    [Google Scholar]
  30. SchaierM. FalconeE. PrstekT. VilenoB. HagerS. KepplerB.K. HeffeterP. KoellenspergerG. FallerP. KowolC.R. Human serum albumin as a copper source for anticancer thiosemicarbazones.Metallomics2023158mfad04610.1093/mtomcs/mfad046 37505477
    [Google Scholar]
  31. PatelK.S. PatelJ.C. DholariyaH.R. PatelV.K. PatelK.D. Synthesis of Cu(II), Ni(II), Co(II), and Mn(II) complexes with ciprofloxacin and their evaluation of antimicrobial, antioxidant and anti-tubercular activity.Open J. Met.201223495910.4236/ojmetal.2012.23008
    [Google Scholar]
  32. BaldariS. Di RoccoG. ToiettaG. Current biomedical use of copper chelation therapy.Int. J. Mol. Sci.2020213106910.3390/ijms21031069 32041110
    [Google Scholar]
  33. WeyhC. KrügerK. PeelingP. CastellL. The role of minerals in the optimal functioning of the immune system.Nutrients202214364410.3390/nu14030644 35277003
    [Google Scholar]
  34. RahaS. MallickR. BasakS. DuttaroyA.K. Is copper beneficial for COVID-19 patients?Med. Hypotheses202014210981410.1016/j.mehy.2020.109814 32388476
    [Google Scholar]
  35. CantielloF. GangemiV. CasciniG.L. CalabriaF. MoschiniM. FerroM. MusiG. ButticèS. SaloniaA. BrigantiA. DamianoR. Diagnostic accuracy of 64 copper prostate-specific membrane antigen positron emission tomography/computed tomography for primary lymph node staging of intermediate- to high-risk prostate cancer: Our preliminary experience.Urology201710613914510.1016/j.urology.2017.04.019 28438628
    [Google Scholar]
  36. EgorovaB.V. FedorovaO.A. KalmykovS.N. Cationic radionuclides and ligands for targeted therapeutic radiopharmaceuticals.Russ. Chem. Rev.201988990192410.1070/RCR4890
    [Google Scholar]
  37. GordonS.J.V. FenkerD.E. VestK.E. Padilla-BenavidesT. Manganese influx and expression of ZIP8 is essential in primary myoblasts and contributes to activation of SOD2.Metallomics20191161140115310.1039/c8mt00348c 31086870
    [Google Scholar]
  38. AzadmaneshJ. LutzW.E. CoatesL. WeissK.L. BorgstahlG.E.O. Direct detection of coupled proton and electron transfers in human manganese superoxide dismutase.Nat. Commun.2021121207910.1038/s41467‑021‑22290‑1 33824320
    [Google Scholar]
  39. Bonetta ValentinoR. The structure–function relationships and physiological roles of MnSOD mutants.Biosci. Rep.2022426BSR2022020210.1042/BSR20220202 35662317
    [Google Scholar]
  40. DongJ. XuM. ZhangW. CheX. Effects of sevoflurane pretreatment on myocardial ischemia-reperfusion injury through the Akt/hypoxia-inducible Factor 1-alpha (HIF-1α)/Vascular Endothelial Growth Factor (VEGF) signaling pathway.Med. Sci. Monit.2019253100310710.12659/MSM.914265 31028241
    [Google Scholar]
  41. SmethurstD.G.J. KovalevN. McKenzieE.R. PestovD.G. ShcherbikN. Iron-mediated degradation of ribosomes under oxidative stress is attenuated by manganese.J. Biol. Chem.202029550172001721410.1074/jbc.RA120.015025 33040024
    [Google Scholar]
  42. RozenbergJ.M. KamyninaM. SorokinM. ZolotovskaiaM. KorolevaE. KremenchutckayaK. GudkovA. BuzdinA. BorisovN. The role of the metabolism of zinc and manganese ions in human cancerogenesis.Biomedicines2022105107210.3390/biomedicines10051072 35625809
    [Google Scholar]
  43. LvM. ChenM. ZhangR. ZhangW. WangC. ZhangY. WeiX. GuanY. LiuJ. FengK. JingM. WangX. LiuY.C. MeiQ. HanW. JiangZ. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy.Cell Res.2020301196697910.1038/s41422‑020‑00395‑4 32839553
    [Google Scholar]
  44. WangC. GuanY. LvM. ZhangR. GuoZ. WeiX. DuX. YangJ. LiT. WanY. SuX. HuangX. JiangZ. Manganese increases the sensitivity of the cGAS-STING pathway for double-stranded DNA and is required for the host defense against DNA viruses.Immunity2018484675687.e710.1016/j.immuni.2018.03.017 29653696
    [Google Scholar]
  45. XieW. LamaL. AduraC. TomitaD. GlickmanJ.F. TuschlT. PatelD.J. Human cGAS catalytic domain has an additional DNA-binding interface that enhances enzymatic activity and liquid-phase condensation.Proc. Natl. Acad. Sci. USA201911624119461195510.1073/pnas.1905013116 31142647
    [Google Scholar]
  46. LevyM. ElkoshiN. Barber-ZuckerS. HochE. ZarivachR. HershfinkelM. SeklerI. Zinc transporter 10 (ZnT10)-dependent extrusion of cellular Mn2+ is driven by an active Ca2+-coupled exchange.J. Biol. Chem.2019294155879588910.1074/jbc.RA118.006816 30755481
    [Google Scholar]
  47. MadejczykM.S. BallatoriN. The iron transporter ferroportin can also function as a manganese exporter.Biochim. Biophys. Acta Biomembr.20121818365165710.1016/j.bbamem.2011.12.002 22178646
    [Google Scholar]
  48. AlateyahN. GuptaI. RusyniakR.S. OuhtitA. SOD2, a potential transcriptional target underpinning CD44-promoted breast cancer progression.Molecules202227381110.3390/molecules27030811 35164076
    [Google Scholar]
  49. LiuM. SunX. ChenB. DaiR. XiZ. XuH. Insights into manganese superoxide dismutase and human diseases.Int. J. Mol. Sci.202223241589310.3390/ijms232415893 36555531
    [Google Scholar]
  50. KimD.S. JinH. AnantharamV. GordonR. KanthasamyA. KanthasamyA.G. P73 gene in dopaminergic neurons is highly susceptible to manganese neurotoxicity.Neurotoxicology20175923123910.1016/j.neuro.2016.04.012 27107493
    [Google Scholar]
  51. StellingM.P. SoaresM.A. CardosoS.C. MottaJ.M. de AbreuJ.C. AntunesM.J.M. de FreitasV.G. MoraesJ.A. Castelo-BrancoM.T.L. PérezC.A. PavãoM.S.G. Manganese systemic distribution is modulated in vivo during tumor progression and affects tumor cell migration and invasion in vitro.Sci. Rep.20211111583310.1038/s41598‑021‑95190‑5 34349175
    [Google Scholar]
  52. WangH. LiuB. YinX. GuoL. JiangW. BiH. GuoD. Excessive zinc chloride induces murine photoreceptor cell death via reactive oxygen species and mitochondrial signaling pathway.J. Inorg. Biochem.2018187253210.1016/j.jinorgbio.2018.07.004 30041155
    [Google Scholar]
  53. SharmaA. GaidamakovaE.K. GrichenkoO. MatrosovaV.Y. HoekeV. KlimenkovaP. ConzeI.H. VolpeR.P. TkavcR. GostinčarC. Gunde-CimermanN. DiRuggieroJ. ShuryakI. OzarowskiA. HoffmanB.M. DalyM.J. Across the tree of life, radiation resistance is governed by antioxidant Mn 2+, gauged by paramagnetic resonance.Proc. Natl. Acad. Sci. USA201711444E9253E926010.1073/pnas.1713608114 29042516
    [Google Scholar]
  54. MortierJ. PrévostJ.R.C. SydowD. TeuchertS. OmieczynskiC. BermudezM. FrédérickR. WolberG. Arginase structure and inhibition: Catalytic site plasticity reveals new modulation possibilities.Sci. Rep.2017711361610.1038/s41598‑017‑13366‑4 29051526
    [Google Scholar]
  55. PudloM. DemougeotC. Girard-ThernierC. Arginase inhibitors: A rational approach over one century.Med. Res. Rev.201737347551310.1002/med.21419 27862081
    [Google Scholar]
  56. AmmendolaS. CiavardelliD. ConsalvoA. BattistoniA. Cobalt can fully recover the phenotypes related to zinc deficiency in Salmonella typhimurium.Metallomics202012122021203110.1039/d0mt00145g 33165471
    [Google Scholar]
  57. ReedJ.H. ShiY. ZhuQ. ChakrabortyS. MirtsE.N. PetrikI.D. Bhagi-DamodaranA. RossM. Moënne-LoccozP. ZhangY. LuY. Manganese and cobalt in the nonheme-metal-binding site of a biosynthetic model of heme-copper oxidase superfamily confer oxidase activity through redox-inactive mechanism.J. Am. Chem. Soc.201713935122091221810.1021/jacs.7b05800 28768416
    [Google Scholar]
  58. CzarnekK. TerpiłowskaS. SiwickiA.K. Selected aspects of the action of cobalt ions in the human body.Cent. Eur. J. Immunol.20152223624210.5114/ceji.2015.52837 26557039
    [Google Scholar]
  59. HuangX.Y. HuD.W. ZhaoF.J. Molybdenum: More than an essential element.J. Exp. Bot.20227361766177410.1093/jxb/erab534 34864981
    [Google Scholar]
  60. PushieM.J. CotelesageJ.J. GeorgeG.N. Molybdenum and tungsten oxygen transferases – Structural and functional diversity within a common active site motif.Metallomics201461152410.1039/C3MT00177F 24068390
    [Google Scholar]
  61. LeimkühlerS. WuebbensM.M. RajagopalanK.V. The history of the discovery of the molybdenum cofactor and novel aspects of its biosynthesis in bacteria.Coord. Chem. Rev.20112559-101129114410.1016/j.ccr.2010.12.003 21528011
    [Google Scholar]
  62. RotheryR.A. SteinB. SolomonsonM. KirkM.L. WeinerJ.H. Pyranopterin conformation defines the function of molybdenum and tungsten enzymes.Proc. Natl. Acad. Sci. USA201210937147731477810.1073/pnas.1200671109 22927383
    [Google Scholar]
  63. Schoepp-CothenetB. van LisR. PhilippotP. MagalonA. RussellM.J. NitschkeW. The ineluctable requirement for the trans-iron elements molybdenum and/or tungsten in the origin of life.Sci. Rep.20122126310.1038/srep00263 22355775
    [Google Scholar]
  64. ThorndykeM.P. GuimaraesO. KistnerM.J. WagnerJ.J. EngleT.E. Influence of molybdenum in drinking water or feed on copper metabolism in cattle-A Review.Animals (Basel)2021117208310.3390/ani11072083 34359210
    [Google Scholar]
  65. FangT. ChenW. ShengY. YuanS. TangQ. LiG. HuangG. SuJ. ZhangX. ZangJ. LiuY. Tetrathiomolybdate induces dimerization of the metal-binding domain of ATPase and inhibits platination of the protein.Nat. Commun.201910118610.1038/s41467‑018‑08102‑z 30643139
    [Google Scholar]
  66. PoonkothaiM. VijayavathiS. Nickel as an essential element and a toxicant.Int. J. Environ. Sci. Technol.201214285288
    [Google Scholar]
  67. ExpósitoN. CarafaR. KumarV. SierraJ. SchuhmacherM. Papiol, GG linking measured endpoints and mechanisms. performance of Chlorella vulgaris exposed to heavy metal mixtures.Int. J. Environ. Res. Public Health202118103710.3390/ijerph18031037 33503904
    [Google Scholar]
  68. BasakP. CabelliD.E. ChiversP.T. FarquharE.R. MaroneyM.J. In vitro maturation of NiSOD reveals a role for cytoplasmic histidine in processing and metalation.Metallomics20231511mfad05410.1093/mtomcs/mfad054 37723610
    [Google Scholar]
  69. TroshinaE.A. SenyushkinaE.S. TerekhovaM.A. The role of selenium in the pathogenesis of thyroid disease.Clin. Exp. Thyroidol.201914419220510.14341/ket10157
    [Google Scholar]
  70. ZhangJ. SaadR. TaylorE.W. RaymanM.P. Selenium and selenoproteins in viral infection with potential relevance to COVID-19.Redox Biol.20203710171510.1016/j.redox.2020.101715 32992282
    [Google Scholar]
  71. GammohN. RinkL. Zinc in infection and inflammation.Nutrients20179662410.3390/nu9060624 28629136
    [Google Scholar]
  72. LiuzziJ.P. LichtenL.A. RiveraS. BlanchardR.K. AydemirT.B. KnutsonM.D. GanzT. CousinsR.J. Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response.Proc. Natl. Acad. Sci. USA2005102196843684810.1073/pnas.0502257102 15863613
    [Google Scholar]
  73. ZhangY. CuiJ. LuY. HuangC. LiuH. XuS. Selenium deficiency induces inflammation via the iNOS/NF-κB pathway in the brain of pigs.Biol. Trace Elem. Res.2020196110310910.1007/s12011‑019‑01908‑y 31749063
    [Google Scholar]
  74. QiC. WangH. LiuZ. YangH. Oxidative stress and trace elements in pulmonary tuberculosis patients during 6 months anti-tuberculosis treatment.Biol. Trace Elem. Res.202119941259126710.1007/s12011‑020‑02254‑0 32583224
    [Google Scholar]
  75. Regan-SmithS. FritzenR. HieronsS.J. AjjanR.A. BlindauerC.A. StewartA.J. Strategies for therapeutic amelioration of aberrant plasma Zn2+ handling in thrombotic disease: Targeting fatty acid/serum albumin-mediated effects.Int. J. Mol. Sci.202223181030210.3390/ijms231810302 36142215
    [Google Scholar]
  76. SobczakA.I.S. KatunduK.G.H. PhoenixF.A. KhazaipoulS. YuR. LampiaoF. StefanowiczF. BlindauerC.A. PittS.J. SmithT.K. AjjanR.A. StewartA.J. Albumin-mediated alteration of plasma zinc speciation by fatty acids modulates blood clotting in type-2 diabetes.Chem. Sci. (Camb.)202112114079409310.1039/D0SC06605B 34163679
    [Google Scholar]
  77. OrlovaM. OrlovA.P. Role of zinc in an organism and its influence on processes leading to apoptosis.Br. J. Med. Med. Res.20111423930510.9734/BJMMR/2011/488
    [Google Scholar]
  78. TuneB.X.J. SimM.S. PohC.L. GuadR.M. WoonC.K. HazarikaI. DasA. GopinathS.C.B. RajanM. SekarM. SubramaniyanV. FuloriaN.K. FuloriaS. BatumalaieK. WuY.S. Matrix metalloproteinases in chemoresistance: Regulatory roles, molecular interactions, and potential inhibitors.J. Oncol.2022202212510.1155/2022/3249766 35586209
    [Google Scholar]
  79. YeR. TanC. ChenB. LiR. MaoZ. Zinc-containing metalloenzymes: Inhibition by metal-based anticancer agents.Front Chem.2020840210.3389/fchem.2020.00402 32509730
    [Google Scholar]
  80. LiuX. AliM.K. DuaK. XuR. The role of zinc in the pathogenesis of lung disease.Nutrients20221410211510.3390/nu14102115 35631256
    [Google Scholar]
  81. NishikawaH. AsaiA. FukunishiS. The significance of zinc in patients with chronic liver disease.Nutrients20221422485510.3390/nu14224855 36432541
    [Google Scholar]
  82. BaarzB.R. RinkL. Rebalancing the unbalanced aged immune system – A special focus on zinc.Ageing Res. Rev.20227410154110.1016/j.arr.2021.101541 34915196
    [Google Scholar]
  83. BanikS. GhoshA. Zinc status and coronary artery disease: A systematic review and meta-analysis.J. Trace Elem. Med. Biol.20227312701810.1016/j.jtemb.2022.127018 35709561
    [Google Scholar]
  84. HellerR.A. SunQ. HacklerJ. SeeligJ. SeibertL. CherkezovA. MinichW.B. SeemannP. DiegmannJ. PilzM. BachmannM. RanjbarA. MoghaddamA. SchomburgL. Prediction of survival odds in COVID-19 by zinc, age and selenoprotein P as composite biomarker.Redox Biol.20213810176410.1016/j.redox.2020.101764 33126054
    [Google Scholar]
  85. ThomsM. BuschauerR. AmeismeierM. KoepkeL. DenkT. HirschenbergerM. KratzatH. HaynM. Mackens-KianiT. ChengJ. StraubJ.H. StürzelC.M. FröhlichT. BerninghausenO. BeckerT. KirchhoffF. SparrerK.M.J. BeckmannR. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2.Science202036965081249125510.1126/science.abc8665 32680882
    [Google Scholar]
  86. CalderP.C. OrtegaE.F. MeydaniS.N. AdkinsY. StephensenC.B. ThompsonB. ZwickeyH. Nutrition, immunosenescence, and infectious disease: An overview of the scientific evidence on micronutrients and on modulation of the gut microbiota.Adv. Nutr.2022135S1S2610.1093/advances/nmac052 36183242
    [Google Scholar]
  87. KanekoM. NoguchiT. IkegamiS. SakuraiT. KakitaA. ToyoshimaY. KambeT. YamadaM. IndenM. HaraH. OyanagiK. InuzukaT. TakahashiH. HozumiI. Zinc transporters ZnT3 and ZnT6 are downregulated in the spinal cords of patients with sporadic amyotrophic lateral sclerosis.J. Neurosci. Res.201593237037910.1002/jnr.23491 25284286
    [Google Scholar]
  88. MorM. BeharierO. CookD.I. CampbellC.R. GheberL.A. KatzA. MoranA. EtzionY. ZnT1 induces a crosstalk between T-type and L-type calcium channels through interactions with Raf-1 kinase and the calcium channel β2 subunit.Metallomics2023156mfad03110.1093/mtomcs/mfad031 37193665
    [Google Scholar]
  89. HaraT. YoshigaiE. OhashiT. FukadaT. Zinc transporters as potential therapeutic targets: An updated review.J. Pharmacol. Sci.2022148222122810.1016/j.jphs.2021.11.007 35063137
    [Google Scholar]
  90. WeissA. MurdochC.C. EdmondsK.A. JordanM.R. MonteithA.J. PereraY.R. Rodríguez NassifA.M. PetolettiA.M. BeaversW.N. MunnekeM.J. DruryS.L. KrystofiakE.S. ThalluriK. WuH. KruseA.R.S. DiMarchiR.D. CaprioliR.M. SpragginsJ.M. ChazinW.J. GiedrocD.P. SkaarE.P. Zn-regulated GTPase metalloprotein activator 1 modulates vertebrate zinc homeostasis.Cell20221851221482163.e2710.1016/j.cell.2022.04.011 35584702
    [Google Scholar]
  91. StrenkertD. SchmollingerS. HuY. HofmannC. HolbrookK. LiuH.W. PurvineS.O. NicoraC.D. ChenS. LiptonM.S. NorthenT.R. ClemensS. MerchantS.S. Zn deficiency disrupts Cu and S homeostasis in Chlamydomonas resulting in over accumulation of Cu and cysteine.Metallomics2023157mfad04310.1093/mtomcs/mfad043 37422438
    [Google Scholar]
  92. SravaniA.B. GhateV. LewisS. Human papillomavirus infection, cervical cancer and the less explored role of trace elements.Biol. Trace Elem. Res.202320131026105010.1007/s12011‑022‑03226‑2 35467267
    [Google Scholar]
  93. BuchachenkoA.L. KouznetsovD.A. BreslavskayaN.N. OrlovaM.A. Magnesium isotope effects in enzymatic phosphorylation.J. Phys. Chem. B200811282548255610.1021/jp710989d 18247604
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575333766240912162252
Loading
/content/journals/mrmc/10.2174/0113895575333766240912162252
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test