Skip to content
2000
Volume 25, Issue 9
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Considerable advancements have been made in breast cancer therapeutics in the past few decades. However, the advent of chemo-resistance and adverse drug reactions coupled with tumor metastasis and recurrence posed a serious threat to combat this lethal disease. Novel anti-cancer agents, as well as new therapeutic strategies, are needed to complement conventional breast cancer therapies. The quest for developing novel anti-cancer drugs caused an upsurge in exploring and harnessing natural compounds, especially phytochemicals. Various research groups have explored and documented the anti-cancer potential of wide variety of phytochemical groups including flavonoids (curcumin, kaempferol, myricetin, quercetin, naringenin, apigenin, genistein epigallocatechin gallate), stilbenes (resveratrol), carotenoids (crocin, lycopene, lutein), and anthraquinone (Emodin). However, low chemical stability, poor water solubility, and short systemic half-life impede their clinical utility. The implication of nano-technological approaches to decode the pharmacokinetic challenges associated with phytochemical usage, as well as selective drug targeting, have markedly enhanced the pre-clinical anti-cancer activity, thus aiding in their clinical translation. This review documented the recent advances in utilizing phytochemicals for breast cancer prevention and lipid-based nanotechnological approaches for circumventing their pharmacokinetic concerns to enhance their systemic availability, cytotoxicity, and targeted delivery against breast cancer alone as well as in combination with conventional therapeutic agents.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575297312240903055926
2024-09-13
2025-10-10
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. XuH. XuB. Breast cancer: Epidemiology, risk factors and screening.Chin. J. Cancer Res.202335656558310.21147/j.issn.1000‑9604.2023.06.02 38204449
    [Google Scholar]
  3. ShafiS. KhanS. HodaF. FayazF. SinghA. KhanM.A. AliR. PottooF.H. TariqS. NajmiA.K. Decoding novel mechanisms and emerging therapeutic strategies in breast cancer resistance.Curr. Drug Metab.202021319921010.2174/1389200221666200303124946 32124694
    [Google Scholar]
  4. CaoJ. ZhangM. WangB. ZhangL. ZhouF. FangM. Chemoresistance and metastasis in breast cancer molecular mechanisms and novel clinical strategies.Front. Oncol.20211165855210.3389/fonc.2021.658552 34277408
    [Google Scholar]
  5. ChoudhariA.S. MandaveP.C. DeshpandeM. RanjekarP. PrakashO. Phytochemicals in cancer treatment: From preclinical studies to clinical practice.Front. Pharmacol.202010161410.3389/fphar.2019.01614 32116665
    [Google Scholar]
  6. CraggG.M. PezzutoJ.M. Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents.Med. Princ. Pract.201625Suppl. 2415910.1159/000443404 26679767
    [Google Scholar]
  7. YounasM. HanoC. Giglioli-Guivarc’hN. AbbasiB.H. Mechanistic evaluation of phytochemicals in breast cancer remedy: Current understanding and future perspectives.RSC Adv.2018852297142974410.1039/C8RA04879G 35547279
    [Google Scholar]
  8. IslamM.R. IslamF. NafadyM.H. AkterM. MitraS. DasR. UrmeeH. ShohagS. AkterA. ChidambaramK. AlhumaydhiF.A. EmranT.B. CavaluS. Natural small molecules in breast cancer treatment: Understandings from a therapeutic viewpoint.Molecules2022277216510.3390/molecules27072165 35408561
    [Google Scholar]
  9. KapinovaA. KubatkaP. GolubnitschajaO. KelloM. ZuborP. SolarP. PecM. Dietary phytochemicals in breast cancer research: Anticancer effects and potential utility for effective chemoprevention.Environ. Health Prev. Med.20182313610.1186/s12199‑018‑0724‑1 30092754
    [Google Scholar]
  10. IsraelB. TilghmanS. Parker-LemieuxK. Payton-StewartF. Phytochemicals: Current strategies for treating breast cancer. [Review]Oncol. Lett.20181557471747810.3892/ol.2018.8304 29755596
    [Google Scholar]
  11. BonaccorsiP.M. LabbozzettaM. BarattucciA. SalernoT.M.G. PomaP. NotarbartoloM. Synthesis of curcumin derivatives and analysis of their antitumor effects in triple negative breast cancer (TNBC) cell lines.Pharmaceuticals201912416110.3390/ph12040161 31717764
    [Google Scholar]
  12. SzakácsG. PatersonJ.K. LudwigJ.A. Booth-GentheC. GottesmanM.M. Targeting multidrug resistance in cancer.Nat. Rev. Drug Discov.20065321923410.1038/nrd1984 16518375
    [Google Scholar]
  13. HafezD.A. ElkhodairyK.A. TelebM. ElzoghbyA.O. Nanomedicine-based approaches for improved delivery of phyto-therapeutics for cancer therapy.Expert Opin. Drug Deliv.202017327928510.1080/17425247.2020.1723542 31997666
    [Google Scholar]
  14. AqilF. MunagalaR. JeyabalanJ. VadhanamM.V. Bioavailability of phytochemicals and its enhancement by drug delivery systems.Cancer Lett.2013334113314110.1016/j.canlet.2013.02.032 23435377
    [Google Scholar]
  15. HussainZ. KhanJ.A. MurtazaS. Nanotechnology: An emerging therapeutic option for breast cancer.Crit. Rev. Eukaryot. Gene Expr.201828216317510.1615/CritRevEukaryotGeneExpr.2018022771 30055543
    [Google Scholar]
  16. PottooF.H. SharmaS. JavedM.N. BarkatM.A. Harshita; Alam, M.S.; Naim, M.J.; Alam, O.; Ansari, M.A.; Barreto, G.E.; Ashraf, G.M. Lipid-based nanoformulations in the treatment of neurological disorders.Drug Metab. Rev.202052118520410.1080/03602532.2020.1726942 32116044
    [Google Scholar]
  17. CaoX. YangC. ZhuX. ZhaoM. YanY. HuangZ. CaiJ. ZhuangJ. LiS. LiW. ShenB. Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM.Chin. Chem. Lett.202435810919910.1016/j.cclet.2023.109199
    [Google Scholar]
  18. YaoY. ZhouY. LiuL. XuY. ChenQ. WangY. WuS. DengY. ZhangJ. ShaoA. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance.Front. Mol. Biosci.2020719310.3389/fmolb.2020.00193 32974385
    [Google Scholar]
  19. Harshita; Barkat, M. A.; Rizwanullah, M.; Beg, S.; Pottoo, F. H.; Siddiqui, S.; Ahmad, F. J. Paclitaxel-loaded nanolipidic carriers with improved oral bioavailability and anticancer activity against human liver carcinoma.AAPS PharmSciTech20192028710.1208/s12249‑019‑1304‑4
    [Google Scholar]
  20. TalluriS.V. KuppusamyG. KarriV.V.S.R. TummalaS. MadhunapantulaS.V. Lipid-based nanocarriers for breast cancer treatment – Comprehensive review.Drug Deliv.20162341291130510.3109/10717544.2015.1092183 26430913
    [Google Scholar]
  21. PaliwalS.R. PaliwalR. AgrawalG.P. VyasS.P. Liposomal nanomedicine for breast cancer therapy.Nanomedicine 2011661085110010.2217/nnm.11.72 21955078
    [Google Scholar]
  22. SinghA. NeupaneY.R. PandaB.P. KohliK. Lipid Based nanoformulation of lycopene improves oral delivery: Formulation optimization, ex vivo assessment and its efficacy against breast cancer.J. Microencapsul.201734441642910.1080/02652048.2017.1340355 28595495
    [Google Scholar]
  23. El-TananiM. Al KhatibA.O. Al-NajjarB.O. ShakyaA.K. El-TananiY. LeeY.F. Serrano-ArocaÁ. MishraV. MishraY. AljabaliA.A. GoyalR. NegiP. FaraniM.R. BinabajM.M. GholamiA. CharbeN.B. TambuwalaM.M. TambuwalaM.M. Cellular and molecular basis of therapeutic approaches to breast cancer.Cell. Signal.202310111049210.1016/j.cellsig.2022.110492 36241056
    [Google Scholar]
  24. TagdeP. NajdaA. NagpalK. KulkarniG.T. ShahM. UllahO. BalantS. RahmanM.H. Nanomedicine-based delivery strategies for breast cancer treatment and management.Int. J. Mol. Sci.2022235285610.3390/ijms23052856 35269998
    [Google Scholar]
  25. HillsN. LeslieM. DavisR. CrowellM. KameyamaH. RuiH. ChervonevaI. DooleyW. TanakaT. Prolonged time from diagnosis to breast-conserving surgery is associated with upstaging in hormone receptor-positive invasive ductal breast carcinoma.Ann. Surg. Oncol.202128115895590510.1245/s10434‑021‑09747‑9 33748899
    [Google Scholar]
  26. CominettiM.R. AlteiW.F. Selistre-de-AraujoH.S. Metastasis inhibition in breast cancer by targeting cancer cell extravasation.Breast Cancer20191116517810.2147/BCTT.S166725 31114313
    [Google Scholar]
  27. FranciniF-P. SpinellaP. CalòL.A. Potential role of phytochemicals in metabolic syndrome prevention and therapy.Diabetes Metab. Syndr. Obes.2019121987200210.2147/DMSO.S214550 31632110
    [Google Scholar]
  28. PopR.M. PopoloA. TrifaA.P. StanciuL.A. Phytochemicals in cardiovascular and respiratory diseases: Evidence in oxidative stress and inflammation.Oxid. Med. Cell. Longev.201820181310.1155/2018/1603872 30159110
    [Google Scholar]
  29. VelmuruganB.K. RathinasamyB. LohanathanB.P. ThiyagarajanV. WengC-F. Neuroprotective role of phytochemicals.Molecules20182310248510.3390/molecules23102485
    [Google Scholar]
  30. LiC.H. ChenX. LandisR.F. GengY. MakabentaJ.M. LemniosW. GuptaA. RotelloV.M. Phytochemical-based nanocomposites for the treatment of bacterial biofilms.ACS Infect. Dis.2019591590159610.1021/acsinfecdis.9b00134 31251554
    [Google Scholar]
  31. RudzińskaA. JuchaniukP. OberdaJ. WiśniewskaJ. WojdanW. SzklenerK. MańdziukS. Phytochemicals in cancer treatment and cancer prevention-Review on epidemiological data and clinical trials.Nutrients2023158189610.3390/nu15081896 37111115
    [Google Scholar]
  32. Mohi-ud-dinR. MirR.H. SabreenS. JanR. PottooF.H. SinghI.P. Recent insights into therapeutic potential of plant-derived flavonoids against cancer.Anticancer. Agents Med. Chem.202222203343336910.2174/1871520622666220421094055 35593353
    [Google Scholar]
  33. ZhangH.W. HuJ.J. FuR.Q. LiuX. ZhangY.H. LiJ. LiuL. LiY.N. DengQ. LuoQ.S. OuyangQ. GaoN. Flavonoids inhibit cell proliferation and induce apoptosis and autophagy through downregulation of PI3Kγ mediated PI3K/AKT/mTOR/p70S6K/ULK signaling pathway in human breast cancer cells.Sci. Rep.2018811125510.1038/s41598‑018‑29308‑7 30050147
    [Google Scholar]
  34. GangulyS. AroraI. TollefsbolT.O. Impact of stilbenes as epigenetic modulators of breast cancer risk and associated biomarkers.Int. J. Mol. Sci.202122181003310.3390/ijms221810033 34576196
    [Google Scholar]
  35. HuiC. QiX. QianyongZ. XiaoliP. JundongZ. MantianM. Flavonoids, flavonoid subclasses and breast cancer risk: A meta-analysis of epidemiologic studies.PLoS One201381e5431810.1371/journal.pone.0054318 23349849
    [Google Scholar]
  36. ŞöhretoğluD. ArrooR. SarıS. HuangS. Flavonoids as inducers of apoptosis and autophagy in breast cancer. In: Discovery and Development of Anti-Breast Cancer Agents from Natural Products.Elsevier202114719610.1016/B978‑0‑12‑821277‑6.00007‑6
    [Google Scholar]
  37. BrusselmansK. VrolixR. VerhoevenG. SwinnenJ.V. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity.J. Biol. Chem.200528075636564510.1074/jbc.M408177200 15533929
    [Google Scholar]
  38. WangY. YuJ. CuiR. LinJ. DingX. Curcumin in treating breast cancer: A review.SLAS Technol.201621672373110.1177/2211068216655524 27325106
    [Google Scholar]
  39. Khazaei KoohparZ. EntezariM. MovafaghA. HashemiM. Anticancer activity of curcumin on human breast adenocarcinoma: Role of Mcl-1 gene.Iran. J. Cancer Prev.201583e233110.17795/ijcp2331 26413251
    [Google Scholar]
  40. WangX. HangY. LiuJ. HouY. WangN. WangM. Anticancer effect of curcumin inhibits cell growth through miR-21/PTEN/Akt pathway in breast cancer cell.Oncol. Lett.20171364825483110.3892/ol.2017.6053 28599484
    [Google Scholar]
  41. HuS. XuY. MengL. HuangL. SunH. Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells.Exp. Ther. Med.20181621266127210.3892/etm.2018.6345 30116377
    [Google Scholar]
  42. FanH. LiangY. JiangB. LiX. XunH. SunJ. HeW. LauH.T. MaX. Curcumin inhibits intracellular fatty acid synthase and induces apoptosis in human breast cancer MDA-MB-231 cells.Oncol. Rep.20163552651265610.3892/or.2016.4682 26985864
    [Google Scholar]
  43. MohammedF. Rashid-DoubellF. TahaS. CassidyS. FredericksS. Effects of curcumin complexes on MDA MB 231 breast cancer cell proliferation.Int. J. Oncol.202057244545510.3892/ijo.2020.5065 32626932
    [Google Scholar]
  44. HuC. LiM. GuoT. WangS. HuangW. YangK. LiaoZ. WangJ. ZhangF. WangH. Anti-metastasis activity of curcumin against breast cancer via the inhibition of stem cell-like properties and EMT.Phytomedicine20195815274010.1016/j.phymed.2018.11.001 31005718
    [Google Scholar]
  45. CaiJ. SunH. ZhengB. XieM. XuC. ZhangG. HuangX. ZhuangJ. Curcumin attenuates lncRNA H19 induced epithelial mesenchymal transition in tamoxifen resistant breast cancer cells.Mol. Med. Rep.2020231110.3892/mmr.2020.11651 33179087
    [Google Scholar]
  46. Güney EskilerG. Deveci ÖzkanA. KaleliS. BilirC. Inhibition of TLR4/TRIF/IRF3 signaling pathway by curcumin in breast cancer cells.J. Pharm. Pharm. Sci.201922128129110.18433/jpps30493 31287789
    [Google Scholar]
  47. LiY. YaoJ. HanC. YangJ. ChaudhryM. WangS. LiuH. YinY. Quercetin, inflammation and immunity.Nutrients20168316710.3390/nu8030167 26999194
    [Google Scholar]
  48. ZhangL. YingG-G. WangG-W. ZhangL. Quercetin inhibits human breast cancer cell proliferation and induces apoptosis via Bcl-2 and Bax regulation.Mol. Med. Rep.2012561453145610.3892/mmr.2012.845 22447039
    [Google Scholar]
  49. MaugeriA. CalderaroA. PatanèG.T. NavarraM. BarrecaD. CirmiS. FeliceM.R. Targets involved in the anti-cancer activity of quercetin in breast, colorectal and liver neoplasms.Int. J. Mol. Sci.2023243295210.3390/ijms24032952 36769274
    [Google Scholar]
  50. DengX.H. SongH.Y. ZhouY.F. YuanG.Y. ZhengF.J. Effects of quercetin on the proliferation of breast cancer cells and expression of survivin in vitro.Exp. Ther. Med.2013651155115810.3892/etm.2013.1285 24223637
    [Google Scholar]
  51. RanganathanS. HalagowderD. SivasithambaramN.D. Quercetin suppresses twist to induce apoptosis in MCF-7 breast cancer cells.PLoS One20151010e014137010.1371/journal.pone.0141370 26491966
    [Google Scholar]
  52. LiX. ZhouN. WangJ. LiuZ. WangX. ZhangQ. LiuQ. GaoL. WangR. Quercetin suppresses breast cancer stem cells (CD44 +/CD24 −) by inhibiting the PI3K/Akt/mTOR-signaling pathway.Life Sci.2018196566210.1016/j.lfs.2018.01.014 29355544
    [Google Scholar]
  53. JiaL. HuangS. YinX. ZanY. GuoY. HanL. Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction.Life Sci.201820812313010.1016/j.lfs.2018.07.027 30025823
    [Google Scholar]
  54. WangR. YangL. LiS. YeD. YangL. LiuQ. ZhaoZ. CaiQ. TanJ. LiX. Quercetin inhibits breast cancer stem cells via downregulation of aldehyde dehydrogenase 1A1 (ALDH1A1), chemokine receptor type 4 (CXCR4), Mucin 1 (MUC1), and epithelial cell adhesion molecule (EpCAM).Med. Sci. Monit.20182441242010.12659/MSM.908022 29353288
    [Google Scholar]
  55. KundurS. PrayagA. SelvakumarP. NguyenH. McKeeL. CruzC. SrinivasanA. ShoyeleS. LakshmikuttyammaA. Synergistic anticancer action of quercetin and curcumin against triple‐negative breast cancer cell lines.J. Cell. Physiol.20192347111031111810.1002/jcp.27761 30478904
    [Google Scholar]
  56. ZhaoZ. JinG. GeY. GuoZ. Naringenin inhibits migration of breast cancer cells via inflammatory and apoptosis cell signaling pathways.Inflammopharmacology20192751021103610.1007/s10787‑018‑00556‑3 30941613
    [Google Scholar]
  57. WangR. WangJ. DongT. ShenJ. GaoX. ZhouJ. Naringenin has a chemoprotective effect in MDA MB 231 breast cancer cells via inhibition of caspase 3 and 9 activities.Oncol. Lett.20181711217122210.3892/ol.2018.9704 30655887
    [Google Scholar]
  58. NooriS. Rezaei TaviraniM. DeraviN. Mahboobi RabbaniM.I. ZarghiA. Naringenin enhances the anti-cancer effect of cyclophosphamide against MDA-MB-231 breast cancer cells via targeting the STAT3 signaling pathway.Iran. J. Pharm. Res.202019312213310.22037/ijpr.2020.113103.14112 33680016
    [Google Scholar]
  59. PateliyaB. BuradeV. GoswamiS. Combining naringenin and metformin with doxorubicin enhances anticancer activity against triple-negative breast cancer in vitro and in vivo.Eur. J. Pharmacol.202189117372510.1016/j.ejphar.2020.173725 33157041
    [Google Scholar]
  60. Vrhovac MadunićI. MadunićJ. AntunovićM. ParadžikM. Garaj-VrhovacV. BreljakD. MarijanovićI. GajskiG. Apigenin, a dietary flavonoid, induces apoptosis, DNA damage, and oxidative stress in human breast cancer MCF-7 and MDA MB-231 cells.Naunyn Schmiedebergs Arch. Pharmacol.2018391553755010.1007/s00210‑018‑1486‑4 29541820
    [Google Scholar]
  61. LongX. FanM. BigsbyR.M. NephewK.P. Apigenin inhibits antiestrogen-resistant breast cancer cell growth through estrogen receptor-α-dependent and estrogen receptor-α-independent mechanisms.Mol. Cancer Ther.2008772096210810.1158/1535‑7163.MCT‑07‑2350 18645020
    [Google Scholar]
  62. LiY.W. XuJ. ZhuG.Y. HuangZ.J. LuY. LiX.Q. WangN. ZhangF.X. Apigenin suppresses the stem cell-like properties of triple-negative breast cancer cells by inhibiting YAP/TAZ activity.Cell Death Discov.20184110510.1038/s41420‑018‑0124‑8 30479839
    [Google Scholar]
  63. SudhakaranM. ParraM.R. StoubH. GalloK.A. DoseffA.I. Apigenin by targeting hnRNPA2 sensitizes triple-negative breast cancer spheroids to doxorubicin-induced apoptosis and regulates expression of ABCC4 and ABCG2 drug efflux transporters.Biochem. Pharmacol.202018211425910.1016/j.bcp.2020.114259 33011162
    [Google Scholar]
  64. PhamT.H. PageY.L. PercevaultF. FerrièreF. FlouriotG. PakdelF. Apigenin, a partial antagonist of the estrogen receptor (ER), inhibits ER-positive breast cancer cell proliferation through Akt/FOXM1 signaling.Int. J. Mol. Sci.202122147010.3390/ijms22010470 33466512
    [Google Scholar]
  65. BimonteS. CascellaM. BarbieriA. ArraC. CuomoA. Current shreds of evidence on the anticancer role of EGCG in triple negative breast cancer: An update of the current state of knowledge.Infect. Agent. Cancer2020151210.1186/s13027‑020‑0270‑5 31938038
    [Google Scholar]
  66. HuangC.Y. HanZ. LiX. XieH.H. ZhuS.S. Mechanism of EGCG promoting apoptosis of MCF-7 cell line in human breast cancer.Oncol. Lett.20171433623362710.3892/ol.2017.6641 28927122
    [Google Scholar]
  67. HongO.Y. NohE.M. JangH.Y. LeeY.R. LeeB.K. JungS.H. KimJ.S. YounH.J. Epigallocatechin gallate inhibits the growth of MDA-MB-231 breast cancer cells via inactivation of the β-catenin signaling pathway.Oncol. Lett.201714144144610.3892/ol.2017.6108 28693189
    [Google Scholar]
  68. WeiR. MaoL. XuP. ZhengX. HackmanR.M. MackenzieG.G. WangY. Suppressing glucose metabolism with epigallocatechin-3-gallate (EGCG) reduces breast cancer cell growth in preclinical models.Food Funct.20189115682569610.1039/C8FO01397G 30310905
    [Google Scholar]
  69. ZanL. ChenQ. ZhangL. LiX. Epigallocatechin gallate (EGCG) suppresses growth and tumorigenicity in breast cancer cells by downregulation of miR-25.Bioengineered201910137438210.1080/21655979.2019.1657327 31431131
    [Google Scholar]
  70. WangX. YangY. AnY. FangG. The mechanism of anticancer action and potential clinical use of kaempferol in the treatment of breast cancer.Biomed. Pharmacother.201911710908610.1016/j.biopha.2019.109086 31200254
    [Google Scholar]
  71. HungH. Inhibition of estrogen receptor alpha expression and function in MCF‐7 cells by kaempferol.J. Cell. Physiol.2004198219720810.1002/jcp.10398 14603522
    [Google Scholar]
  72. ZhuL. XueL. Kaempferol suppresses proliferation and induces cell cycle arrest, apoptosis, and DNA damage in breast cancer cells.Oncol. Res.201927662963410.3727/096504018X15228018559434 29739490
    [Google Scholar]
  73. LiS. YanT. DengR. JiangX. XiongH. WangY. YuQ. WangX. ChenC. ZhuY. Low dose of kaempferol suppresses the migration and invasion of triple-negative breast cancer cells by downregulating the activities of RhoA and Rac1.OncoTargets Ther.2017104809481910.2147/OTT.S140886 29042792
    [Google Scholar]
  74. SongX. TanL. WangM. RenC. GuoC. YangB. RenY. CaoZ. LiY. PeiJ. Myricetin: A review of the most recent research.Biomed. Pharmacother.202113411101710.1016/j.biopha.2020.111017 33338751
    [Google Scholar]
  75. KnickleA. FernandoW. GreenshieldsA.L. RupasingheH.P.V. HoskinD.W. Myricetin-induced apoptosis of triple-negative breast cancer cells is mediated by the iron-dependent generation of reactive oxygen species from hydrogen peroxide.Food Chem. Toxicol.201811815416710.1016/j.fct.2018.05.005 29742465
    [Google Scholar]
  76. CiY. ZhangY. LiuY. LuS. CaoJ. LiH. ZhangJ. HuangZ. ZhuX. GaoJ. HanM. Myricetin suppresses breast cancer metastasis through down‐regulating the activity of matrix metalloproteinase (MMP)‐2/9.Phytother. Res.20183271373138110.1002/ptr.6071 29532526
    [Google Scholar]
  77. SoleimaniM. SajediN. Myricetin apoptotic effects on T47D breast cancer cells is a P53-independent approach.Asian Pac. J. Cancer Prev.202021123697370410.31557/APJCP.2020.21.12.3697 33369470
    [Google Scholar]
  78. ZhouZ. MaoW. LiY. QiC. HeY. Myricetin inhibits breast tumor growth and angiogenesis by regulating VEGF/VEGFR2 and p38MAPK signaling pathways.Anat. Rec. 2019302122186219210.1002/ar.24222
    [Google Scholar]
  79. BhatS.S. PrasadS.K. ShivamalluC. PrasadK.S. SyedA. ReddyP. CullC.A. AmachawadiR.G. Genistein: A potent anti-breast cancer agent.Curr. Issues Mol. Biol.20214331502151710.3390/cimb43030106 34698063
    [Google Scholar]
  80. ChoiE.J. JungJ.Y. KimG.H. Genistein inhibits the proliferation and differentiation of MCF-7 and 3T3-L1 cells via the regulation of ERα expression and induction of apoptosis.Exp. Ther. Med.20148245445810.3892/etm.2014.1771 25009600
    [Google Scholar]
  81. LiY. MeeranS.M. PatelS.N. ChenH. HardyT.M. TollefsbolT.O. Epigenetic reactivation of estrogen receptor-α (ERα) by genistein enhances hormonal therapy sensitivity in ERα-negative breast cancer.Mol. Cancer2013121910.1186/1476‑4598‑12‑9 23379261
    [Google Scholar]
  82. ZhaoQ. ZhaoM. ParrisA.B. XingY. YangX. Genistein targets the cancerous inhibitor of PP2A to induce growth inhibition and apoptosis in breast cancer cells.Int. J. Oncol.20164931203121010.3892/ijo.2016.3588 27574003
    [Google Scholar]
  83. AvciC.B. SusluerS.Y. CaglarH.O. BalciT. AygunesD. DodurgaY. GunduzC. Genistein-induced mir-23b expression inhibits the growth of breast cancer cells.Contemp. Oncol.201511323510.5114/wo.2014.44121 26199568
    [Google Scholar]
  84. O’CroininC. Garcia GuerraA. DoschakM.R. LöbenbergR. DaviesN.M. Therapeutic potential and predictive pharmaceutical modeling of stilbenes in Cannabis sativa.Pharmaceutics2023157194110.3390/pharmaceutics15071941 37514127
    [Google Scholar]
  85. FrémontL. Biological effects of resveratrol.Life Sci.200066866367310.1016/S0024‑3205(99)00410‑5 10680575
    [Google Scholar]
  86. CarterL.G. D’OrazioJ.A. PearsonK.J. Resveratrol and cancer: Focus on in vivo evidence.Endocr. Relat. Cancer2014213R209R22510.1530/ERC‑13‑0171 24500760
    [Google Scholar]
  87. HuminieckiL. HorbańczukJ. The functional genomic studies of resveratrol in respect to its anti-cancer effects.Biotechnol. Adv.20183661699170810.1016/j.biotechadv.2018.02.011 29476886
    [Google Scholar]
  88. SinhaD. SarkarN. BiswasJ. BishayeeA. Resveratrol for breast cancer prevention and therapy: Preclinical evidence and molecular mechanisms.Semin. Cancer Biol.201640-4120923210.1016/j.semcancer.2015.11.001 26774195
    [Google Scholar]
  89. LiangZ.J. WanY. ZhuD.D. WangM.X. JiangH.M. HuangD.L. LuoL.F. ChenM.J. YangW.P. LiH.M. WeiC.Y. Resveratrol mediates the apoptosis of triple negative breast cancer cells by reducing POLD1 expression.Front. Oncol.20211156929510.3389/fonc.2021.569295 33747905
    [Google Scholar]
  90. FuY. ChangH. PengX. BaiQ. YiL. ZhouY. ZhuJ. MiM. Resveratrol inhibits breast cancer stem-like cells and induces autophagy via suppressing Wnt/β-catenin signaling pathway.PLoS One201497e10253510.1371/journal.pone.0102535 25068516
    [Google Scholar]
  91. ChinY.T. HsiehM.T. YangS.H. TsaiP.W. WangS.H. WangC.C. LeeY.S. ChengG.Y. HuangFu, W.C.; London, D.; Tang, H.Y.; Fu, E.; Yen, Y.; Liu, L.F.; Lin, H.Y.; Davis, P.J. Anti-proliferative and gene expression actions of resveratrol in breast cancer cells in vitro.Oncotarget2014524128911290710.18632/oncotarget.2632 25436977
    [Google Scholar]
  92. LeeJ.E. SafeS. Involvement of a post-transcriptional mechanism in the inhibition of CYP1A1 expression by resveratrol in breast cancer cells11Abbreviations: AhR, aryl hydrocarbon receptor; CAT, chloramphenicol acetyltransferase; DHEA, dehydroepiandrosterone; DIM, diindolylmethane; DME F-12, Dulbecco’s modified Eagle’s medium nutrient mixture F-12 Ham; DRE, dioxin responsive element; DTT, dithiothreitol; EROD, ethoxyresorufin O-deethylase; FBS, fetal bovine serum; MEM, minimum essential medium, and TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin.Biochem. Pharmacol.20016281113112410.1016/S0006‑2952(01)00763‑8 11597580
    [Google Scholar]
  93. KimY.N. ChoeS.R. ChoK.H. ChoD.Y. KangJ. ParkC.G. LeeH.Y. Resveratrol suppresses breast cancer cell invasion by inactivating a RhoA/YAP signaling axis.Exp. Mol. Med.2017492e296e29610.1038/emm.2016.151 28232662
    [Google Scholar]
  94. WakimotoR. OnoM. TakeshimaM. HiguchiT. NakanoS. Differential anticancer activity of pterostilbene against three subtypes of human breast cancer cells.Anticancer Res.201737116153615910.21873/anticanres.12064 29061796
    [Google Scholar]
  95. ChenR.J. KuoH.C. ChengL.H. LeeY.H. ChangW.T. WangB.J. WangY.J. ChengH.C. Apoptotic and nonapoptotic activities of pterostilbene against cancer.Int. J. Mol. Sci.201819128710.3390/ijms19010287 29346311
    [Google Scholar]
  96. KrinskyN.I. JohnsonE.J. Carotenoid actions and their relation to health and disease.Mol. Aspects Med.200526645951610.1016/j.mam.2005.10.001 16309738
    [Google Scholar]
  97. Peraita-CostaI. Carrillo GarciaP. Morales-Suárez-VarelaM. Is there an association between β-carotene and breast cancer? A systematic review on breast cancer risk.Nutr. Cancer2022741395410.1080/01635581.2020.1865422 33356587
    [Google Scholar]
  98. PanS.Y. ZhouJ. GibbonsL. MorrisonH. WenS.W. Antioxidants and breast cancer risk- A population-based case-control study in Canada.BMC Cancer201111137210.1186/1471‑2407‑11‑372 21864361
    [Google Scholar]
  99. ZareM. Norouzi RoshanZ. AssadpourE. JafariS.M. Improving the cancer prevention/treatment role of carotenoids through various nano-delivery systems.Crit. Rev. Food Sci. Nutr.202161352253410.1080/10408398.2020.1738999 32180434
    [Google Scholar]
  100. TeodoroA. OliveiraF. MartinsN. MaiaG. MartucciR. BorojevicR. Effect of lycopene on cell viability and cell cycle progression in human cancer cell lines.Cancer Cell Int.20121213610.1186/1475‑2867‑12‑36 22866768
    [Google Scholar]
  101. HormoziM. GhoreishiS. BaharvandP. Astaxanthin induces apoptosis and increases activity of antioxidant enzymes in LS-180 cells.Artif. Cells Nanomed. Biotechnol.201947189189510.1080/21691401.2019.1580286 30873887
    [Google Scholar]
  102. MokhtarianR. RajabiS. ZahedianS. Jafarinejad-FarsangiS. HadizadehM. SadeghinejadM. The effect of saffron and its extracts on the treatment of breast cancer: A narrative review.Ann. Pharm. Fr.202482462964010.1016/j.pharma.2024.02.011
    [Google Scholar]
  103. ValiF. ChangiziV. SafaM. Synergistic apoptotic effect of crocin and paclitaxel or crocin and radiation on MCF-7 cells, a type of breast cancer cell line.Int. J. Breast Cancer201520151710.1155/2015/139349 26693354
    [Google Scholar]
  104. TakeshimaM. OnoM. HiguchiT. ChenC. HaraT. NakanoS. Anti‐proliferative and apoptosis‐inducing activity of lycopene against three subtypes of human breast cancer cell lines.Cancer Sci.2014105325225710.1111/cas.12349 24397737
    [Google Scholar]
  105. NahumA. HirschK. DanilenkoM. WattsC.K.W. PrallO.W.J. LevyJ. SharoniY. Lycopene inhibition of cell cycle progression in breast and endometrial cancer cells is associated with reduction in cyclin D levels and retention of p27Kip1 in the cyclin E–cdk2 complexes.Oncogene200120263428343610.1038/sj.onc.1204452 11423993
    [Google Scholar]
  106. LiJ. Abdel-AalE.S.M. Dietary lutein and cognitive function in adults: A meta-analysis of randomized controlled trials.Molecules20212619579410.3390/molecules26195794 34641336
    [Google Scholar]
  107. FengL. NieK. JiangH. FanW. Effects of lutein supplementation in age-related macular degeneration.PLoS One20191412e022704810.1371/journal.pone.0227048 31887124
    [Google Scholar]
  108. RafiM.M. KanakasabaiS. GokarnS.V. KruegerE.G. BrightJ.J. Dietary lutein modulates growth and survival genes in prostate cancer cells.J. Med. Food201518217318110.1089/jmf.2014.0003 25162762
    [Google Scholar]
  109. LeermakersE.T.M. DarweeshS.K.L. BaenaC.P. MoreiraE.M. Melo van LentD. TielemansM.J. MukaT. VitezovaA. ChowdhuryR. BramerW.M. Kiefte-de JongJ.C. FelixJ.F. FrancoO.H. The effects of lutein on cardiometabolic health across the life course: A systematic review and meta-analysis.Am. J. Clin. Nutr.2016103248149410.3945/ajcn.115.120931 26762372
    [Google Scholar]
  110. KavalappaY.P. GopalS.S. PonesakkiG. Lutein inhibits breast cancer cell growth by suppressing antioxidant and cell survival signals and induces apoptosis.J. Cell. Physiol.202123631798180910.1002/jcp.29961 32710479
    [Google Scholar]
  111. ChangJ. ZhangY. LiY. LuK. ShenY. GuoY. QiQ. WangM. ZhangS. NrF2/ARE and NF-κB pathway regulation may be the mechanism for lutein inhibition of human breast cancer cell.Future Oncol.201814871972610.2217/fon‑2017‑0584 29336610
    [Google Scholar]
  112. TakakiI. Bersani-AmadoL.E. VendruscoloA. SartorettoS.M. DinizS.P. Bersani-AmadoC.A. CumanR.K.N. Anti-inflammatory and antinociceptive effects of Rosmarinus officinalis L. essential oil in experimental animal models.J. Med. Food200811474174610.1089/jmf.2007.0524 19053868
    [Google Scholar]
  113. SiddamurthiS. GuttiG. JanaS. KumarA. SinghS.K. Anthraquinone: A promising scaffold for the discovery and development of therapeutic agents in cancer therapy.Future Med. Chem.202012111037106910.4155/fmc‑2019‑0198 32349522
    [Google Scholar]
  114. OsmanC. P. IsmailN. H. Antiplasmodial anthraquinones from medicinal plants: The chemistry and possible mode of actions. Nat. Prod. Commun.,2018 13121934578X180130120710.1177/1934578X1801301207
    [Google Scholar]
  115. HuangP-H. HuangC-Y. ChenM-C. LeeY-T. YueC-H. WangH-Y. LinH. Emodin and aloe-emodin suppress breast cancer cell proliferation through ER α inhibition. Evidence-Based Complement.Altern. Med.2013201337612310.1155/2013/376123
    [Google Scholar]
  116. MaJ.W. HungC.M. LinY.C. HoC.T. KaoJ.Y. WayT.D. Aloe-emodin inhibits HER-2 expression through the downregulation of Y-box binding protein-1 in HER-2-overexpressing human breast cancer cells.Oncotarget2016737589155893010.18632/oncotarget.10410 27391337
    [Google Scholar]
  117. MaJ. LuH. WangS. ChenB. LiuZ. KeX. LiuT. FuJ. The anthraquinone derivative Emodin inhibits angiogenesis and metastasis through downregulating Runx2 activity in breast cancer.Int. J. Oncol.20154641619162810.3892/ijo.2015.2888 25673059
    [Google Scholar]
  118. WangS. YanW-W. HeM. WeiD. LongZ-J. TaoY-M. Aloe emodin inhibits telomerase activity in breast cancer cells: Transcriptional and enzymological mechanism.Pharmacol. Rep.20207251383139610.1007/s43440‑020‑00062‑w
    [Google Scholar]
  119. SinghA. ShafiS. UpadhyayT. NajmiA.K. KohliK. PottooF.H. Insights into nanotherapeutic strategies as an impending approach to liver cancer treatment.Curr. Top. Med. Chem.202020201839185410.2174/1568026620666200624161801 32579503
    [Google Scholar]
  120. ThilakarathnaS. RupasingheH. Flavonoid bioavailability and attempts for bioavailability enhancement.Nutrients2013593367338710.3390/nu5093367 23989753
    [Google Scholar]
  121. GaoS. HuM. Bioavailability challenges associated with development of anti-cancer phenolics.Mini Rev. Med. Chem.201010655056710.2174/138955710791384081 20370701
    [Google Scholar]
  122. XieJ. YangZ. ZhouC. ZhuJ. LeeR.J. TengL. Nanotechnology for the delivery of phytochemicals in cancer therapy.Biotechnol. Adv.201634434335310.1016/j.biotechadv.2016.04.002 27071534
    [Google Scholar]
  123. AhmadR. SrivastavaS. GhoshS. KhareS.K. Phytochemical delivery through nanocarriers: A review.Colloids Surf. B Biointerfaces202119711138910.1016/j.colsurfb.2020.111389 33075659
    [Google Scholar]
  124. Harshita; Barkat, M. A.; Das, S. S.; Pottoo, F. H.; Beg, S.; Rahman, Z. Lipid-based nanosystem as intelligent carriers for versatile drug delivery applications.Curr. Pharm. Des.202026111167118010.2174/1381612826666200206094529
    [Google Scholar]
  125. XiaoW. WangF. GuY. HeX. FanN. ZhengQ. QinS. HeZ. WeiY. SongX. PEG400-mediated nanocarriers improve the delivery and therapeutic efficiency of mRNA tumor vaccines.Chin. Chem. Lett.202435510875510.1016/j.cclet.2023.108755
    [Google Scholar]
  126. SinghA. NeupaneY.R. ShafiS. ManglaB. KohliK. PEGylated liposomes as an emerging therapeutic platform for oral nanomedicine in cancer therapy: in vitro and in vivo assessment.J. Mol. Liq.202030311264910.1016/j.molliq.2020.112649
    [Google Scholar]
  127. OlusanyaT. Haj AhmadR. IbegbuD. SmithJ. ElkordyA. Liposomal drug delivery systems and anticancer drugs.Molecules201823490710.3390/molecules23040907 29662019
    [Google Scholar]
  128. Abri AghdamM. BagheriR. MosaferJ. BaradaranB. HashemzaeiM. BaghbanzadehA. de la GuardiaM. MokhtarzadehA. Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release.J. Control. Release201931512210.1016/j.jconrel.2019.09.018 31647978
    [Google Scholar]
  129. JainS. DeoreS.V. GhadiR. ChaudhariD. KucheK. KatiyarS.S. Tumor microenvironment responsive VEGF-antibody functionalized pH sensitive liposomes of docetaxel for augmented breast cancer therapy.Mater. Sci. Eng. C202112111183210.1016/j.msec.2020.111832 33579470
    [Google Scholar]
  130. HewlingsS. KalmanD. Curcumin: A review of its effects on human health.Foods20176109210.3390/foods6100092 29065496
    [Google Scholar]
  131. Mohi-ud-dinR. MirR.H. WaniT.U. ShahA.J. Mohi-Ud-DinI. DarM.A. PottooF.H. Novel drug delivery system for curcumin: Implementation to improve therapeutic efficacy against neurological disorders.Comb. Chem. High Throughput Screen.202225460761510.2174/1386207324666210705114058 34225614
    [Google Scholar]
  132. TomehM.A. HadianamreiR. ZhaoX. A review of curcumin and its derivatives as anticancer agents.Int. J. Mol. Sci.2019205103310.3390/ijms20051033 30818786
    [Google Scholar]
  133. AnandP. KunnumakkaraA.B. NewmanR.A. AggarwalB.B. Bioavailability of curcumin: Problems and promises.Mol. Pharm.20074680781810.1021/mp700113r 17999464
    [Google Scholar]
  134. HasanM. ElkhouryK. BelhajN. KahnC. TamayolA. Barberi-HeyobM. Arab-TehranyE. LinderM. Growth-inhibitory effect of chitosan-coated liposomes encapsulating curcumin on MCF-7 breast cancer cells.Mar. Drugs202018421710.3390/md18040217 32316578
    [Google Scholar]
  135. ZhouS. LiJ. YuJ. WangY. LiuH. LinG. HeZ. WangY. Unique flower-like Cur-metal complexes loaded liposomes for primary and metastatic breast cancer therapy.Mater. Sci. Eng. C202112111183510.1016/j.msec.2020.111835 33579473
    [Google Scholar]
  136. Moballegh-NaseryM. MandegaryA. EslaminejadT. ZeinaliM. PardakhtiA. BehnamB. MohammadiM. Cytotoxicity evaluation of curcumin-loaded affibody-decorated liposomes against breast cancerous cell lines.J. Liposome Res.202131218919410.1080/08982104.2020.1755981 32292087
    [Google Scholar]
  137. MahmoudiR. HassandokhtF. ArdakaniM.T. KarimiB. RoustazadehA. TarvirdipourS. BarmakM.J. NiksereshtM. BaneshiM. MousavizadehA. ShiraziM.S. AlipourM. BardaniaH. Intercalation of curcumin into liposomal chemotherapeutic agent augments apoptosis in breast cancer cells.J. Biomater. Appl.20213581005101810.1177/0885328220976331 33283585
    [Google Scholar]
  138. MahmoudiR. Ashraf Mirahmadi-BabaheidriS. DelavizH. FouaniM.H. AlipourM. Jafari BarmakM. ChristiansenG. BardaniaH. RGD peptide-mediated liposomal curcumin targeted delivery to breast cancer cells.J. Biomater. Appl.202135774375310.1177/0885328220949367 32807016
    [Google Scholar]
  139. LiR. LinZ. ZhangQ. ZhangY. LiuY. LyuY. LiX. ZhouC. WuG. AoN. LiL. Injectable and in situ -formable thiolated chitosan-coated liposomal hydrogels as curcumin carriers for prevention of in vivo breast cancer recurrence.ACS Appl. Mater. Interfaces20201215179361794810.1021/acsami.9b21528 32208630
    [Google Scholar]
  140. ZhouS. LiJ. XuH. ZhangS. ChenX. ChenW. YangS. ZhongS. ZhaoJ. TangJ. Liposomal curcumin alters chemosensitivity of breast cancer cells to Adriamycin via regulating microRNA expression.Gene201762211210.1016/j.gene.2017.04.026 28431975
    [Google Scholar]
  141. WongM.Y. ChiuG.N.C. Simultaneous liposomal delivery of quercetin and vincristine for enhanced estrogen-receptor-negative breast cancer treatment.Anticancer Drugs201021440141010.1097/CAD.0b013e328336e940 20110806
    [Google Scholar]
  142. WongM.Y. ChiuG.N.C. Liposome formulation of co-encapsulated vincristine and quercetin enhanced antitumor activity in a trastuzumab-insensitive breast tumor xenograft model.Nanomedicine 20117683484010.1016/j.nano.2011.02.001 21371568
    [Google Scholar]
  143. ZhaoY.N. CaoY.N. SunJ. LiangZ. WuQ. CuiS.H. ZhiD.F. GuoS.T. ZhenY.H. ZhangS.B. Anti-breast cancer activity of resveratrol encapsulated in liposomes.J. Mater. Chem. B Mater. Biol. Med.202081273710.1039/C9TB02051A 31746932
    [Google Scholar]
  144. MengJ. GuoF. XuH. LiangW. WangC. YangX.D. Combination therapy using co-encapsulated resveratrol and paclitaxel in liposomes for drug resistance reversal in breast cancer cells in vivo.Sci. Rep.2016612239010.1038/srep22390 26947928
    [Google Scholar]
  145. Moratalla-LópezN. BagurM.J. LorenzoC. Martínez-NavarroM.E. SalinasM.R. AlonsoG.L. Bioactivity and bioavailability of the major metabolites of Crocus sativus L.Flower. Molecules20192415282710.3390/molecules24152827 31382514
    [Google Scholar]
  146. MousaviS.H. MoallemS.A. MehriS. ShahsavandS. NassirliH. Malaekeh-NikoueiB. Improvement of cytotoxic and apoptogenic properties of crocin in cancer cell lines by its nanoliposomal form.Pharm. Biol.201149101039104510.3109/13880209.2011.563315 21936628
    [Google Scholar]
  147. MukherjeeS. RayS. ThakurR.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system.Indian J. Pharm. Sci.200971434935810.4103/0250‑474X.57282 20502539
    [Google Scholar]
  148. JeetahR. Bhaw-LuximonA. JhurryD. Nanopharmaceutics: Phytochemical-based controlled or sustained drug-delivery systems for cancer treatment.J. Biomed. Nanotechnol.20141091810184010.1166/jbn.2014.1884 25992442
    [Google Scholar]
  149. WangW. ChenT. XuH. RenB. ChengX. QiR. LiuH. WangY. YanL. ChenS. YangQ. ChenC. Curcumin-loaded solid lipid nanoparticles enhanced anticancer efficiency in breast cancer.Molecules2018237157810.3390/molecules23071578 29966245
    [Google Scholar]
  150. BhattH. RompicharlaS.V.K. KomanduriN. AashmaS. ParadkarS. GhoshB. BiswasS. Development of curcumin-loaded solid lipid nanoparticles utilizing glyceryl monostearate as single lipid using QbD approach: Characterization and evaluation of anticancer activity against human breast cancer cell line.Curr. Drug Deliv.20181591271128310.2174/1567201815666180503120113 29732970
    [Google Scholar]
  151. RompicharlaS.V.K. BhattH. ShahA. KomanduriN. VijayasarathyD. GhoshB. BiswasS. Formulation optimization, characterization, and evaluation of in vitro cytotoxic potential of curcumin loaded solid lipid nanoparticles for improved anticancer activity.Chem. Phys. Lipids2017208101810.1016/j.chemphyslip.2017.08.009 28842128
    [Google Scholar]
  152. NiazvandF. OrazizadehM. KhorsandiL. AbbaspourM. MansouriE. KhodadadiA. Effects of quercetin-loaded nanoparticles on MCF-7 human breast cancer cells.Medicina 201955411410.3390/medicina55040114 31013662
    [Google Scholar]
  153. HatamiM. KouchakM. KheirollahA. KhorsandiL. RashidiM. Quercetin-loaded solid lipid nanoparticles exhibit antitumor activity and suppress the proliferation of triple-negative MDA-MB 231 breast cancer cells: Implications for invasive breast cancer treatment.Mol. Biol. Rep.202350119417943010.1007/s11033‑023‑08848‑w 37831347
    [Google Scholar]
  154. WangW. ZhangL. ChenT. GuoW. BaoX. WangD. RenB. WangH. LiY. WangY. ChenS. TangB. YangQ. ChenC. Anticancer effects of resveratrol-loaded solid lipid nanoparticles on human breast cancer cells.Molecules20172211181410.3390/molecules22111814 29068422
    [Google Scholar]
  155. WangS. ChenT. ChenR. HuY. ChenM. WangY. Emodin loaded solid lipid nanoparticles: Preparation, characterization and antitumor activity studies.Int. J. Pharm.20124301-223824610.1016/j.ijpharm.2012.03.027 22465546
    [Google Scholar]
  156. ChenR. WangS. ZhangJ. ChenM. WangY. Aloe-emodin loaded solid lipid nanoparticles: Formulation design and in vitro anti-cancer study.Drug Deliv.201522566667410.3109/10717544.2014.882446 24512431
    [Google Scholar]
  157. RadhakrishnanR. PoojaD. KulhariH. GudemS. RavuriH.G. BhargavaS. RamakrishnaS. Bombesin conjugated solid lipid nanoparticles for improved delivery of epigallocatechin gallate for breast cancer treatment.Chem. Phys. Lipids201922410477010.1016/j.chemphyslip.2019.04.005 30965023
    [Google Scholar]
  158. SalviV.R. PawarP. Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier.J. Drug Deliv. Sci. Technol.20195125526710.1016/j.jddst.2019.02.017
    [Google Scholar]
  159. TrevaskisN.L. CharmanW.N. PorterC.J.H. Lipid-based delivery systems and intestinal lymphatic drug transport: A mechanistic update.Adv. Drug Deliv. Rev.200860670271610.1016/j.addr.2007.09.007 18155316
    [Google Scholar]
  160. KamelA.E. FadelM. LouisD. Curcumin-loaded nanostructured lipid carriers prepared using Peceol™ and olive oil in photodynamic therapy: Development and application in breast cancer cell line.Int. J. Nanomedicine2019145073508510.2147/IJN.S210484 31371948
    [Google Scholar]
  161. LinM. TengL. WangY. ZhangJ. SunX. Curcumin-guided nanotherapy: A lipid-based nanomedicine for targeted drug delivery in breast cancer therapy.Drug Deliv.20162341420142510.3109/10717544.2015.1066902 26203688
    [Google Scholar]
  162. SunM. NieS. PanX. ZhangR. FanZ. WangS. Quercetin-nanostructured lipid carriers: Characteristics and anti-breast cancer activities in vitro.Colloids Surf. B Biointerfaces2014113152410.1016/j.colsurfb.2013.08.032 24060926
    [Google Scholar]
  163. PooniaN. Kaur NarangJ. LatherV. BegS. SharmaT. SinghB. PanditaD. Resveratrol loaded functionalized nanostructured lipid carriers for breast cancer targeting: Systematic development, characterization and pharmacokinetic evaluation.Colloids Surf. B Biointerfaces201918175676610.1016/j.colsurfb.2019.06.004 31234063
    [Google Scholar]
  164. MaroufiN.F. VahedianV. MazrakhondiS.A.M. KootiW. KhiavyH.A. BazzazR. RamezaniF. PirouzpanahS.M. GhorbaniM. AkbarzadehM. HajipourH. GhanbarzadehS. SabzichiM. Sensitization of MDA-MBA231 breast cancer cell to docetaxel by myricetin loaded into biocompatible lipid nanoparticles via sub-G1 cell cycle arrest mechanism.Naunyn Schmiedebergs Arch. Pharmacol.2020393111110.1007/s00210‑019‑01692‑5 31372697
    [Google Scholar]
  165. AghazadehT. BakhtiaryN. Formulation of kaempferol in nanostructured lipid carriers (NLCs): A delivery platform to sensitization of MDA-MB468 breast cancer cells to paclitaxel.Biointerface Res. Appl. Chem.2021116145911460110.33263/BRIAC116.1459114601
    [Google Scholar]
  166. HuynhN.T. PassiraniC. SaulnierP. BenoitJ.P. Lipid nanocapsules: A new platform for nanomedicine.Int. J. Pharm.2009379220120910.1016/j.ijpharm.2009.04.026 19409468
    [Google Scholar]
  167. MouzouviC.R.A. UmerskaA. BigotA.K. SaulnierP. Surface active properties of lipid nanocapsules.PLoS One2017128e017921110.1371/journal.pone.0179211 28796777
    [Google Scholar]
  168. IdlasP. LepeltierE. JaouenG. PassiraniC. Ferrocifen loaded lipid nanocapsules: A promising anticancer medication against multidrug resistant tumors.Cancers 20211310229110.3390/cancers13102291 34064748
    [Google Scholar]
  169. KatiyarS.S. GhadiR. KushwahV. DoraC.P. JainS. Lipid and biosurfactant based core–shell-type nanocapsules having high drug loading of paclitaxel for improved breast cancer therapy.ACS Biomater. Sci. Eng.20206126760676910.1021/acsbiomaterials.0c01290 33320604
    [Google Scholar]
  170. ElzoghbyA.O. El-LakanyS.A. HelmyM.W. Abu-SerieM.M. ElgindyN.A. Shell-crosslinked zein nanocapsules for oral codelivery of exemestane and resveratrol in breast cancer therapy.Nanomedicine 201712242785280510.2217/nnm‑2017‑0247 29094642
    [Google Scholar]
  171. SolimanD.S. Nanomedicine: Advantages and disadvantages of nanomedicine.J. Nanomed. Nanotechnol.20231431210.35248/2157‑7439.23.14.666
    [Google Scholar]
  172. HeH. LiuL. MorinE.E. LiuM. SchwendemanA. Survey of clinical translation of cancer nanomedicines—lessons learned from successes and failures.Acc. Chem. Res.20195292445246110.1021/acs.accounts.9b00228 31424909
    [Google Scholar]
  173. LiuJ. LiuZ. PangY. ZhouH. The interaction between nanoparticles and immune system: Application in the treatment of inflammatory diseases.J. Nanobiotechnology202220112710.1186/s12951‑022‑01343‑7 35279135
    [Google Scholar]
  174. HalwaniA.A. Development of pharmaceutical nanomedicines: From the bench to the market.Pharmaceutics202214110610.3390/pharmaceutics14010106 35057002
    [Google Scholar]
  175. HuP. WangW. ShaJ. XingY. WangY. WuC. LiJ. GaoK. DongH. ZhengS. Tumor microenvironment responsive-multifunctional nanocomposites knotted injectable hydrogels for enhanced synergistic chemodynamic and chemo-photothermal therapies.Mater. Des.202322511142910.1016/j.matdes.2022.111429
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575297312240903055926
Loading
/content/journals/mrmc/10.2174/0113895575297312240903055926
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test