Skip to content
2000
Volume 25, Issue 9
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Cancer remains a significant global health burden, placing immense pressure on healthcare systems and putting huge pressure on the healthcare system. There are multiple driving forces, and increasing attention has been gained over the past two decades regarding chronic inflammation, which represents a pivotal factor owing to its ability to establish or maintain an environment that is permissive for tumor initiation, growth, and progression. This review details the interplay between inflammation and cancer by highlighting how chronic inflammation fuels oncogenesis by promoting genetic instability, immune evasion, and a setting rich in pro-tumorigenic signaling. This review explains how various inflammatory mediators, including cytokines and transcription factors, can potentially create tumor microenvironments by drawing on case studies and recent research data. Furthermore, this article provides insights into the molecular mechanisms of Nuclear Factor Kappa B (NF-κB)-regulated pathways and inflammasomes and provides essential molecular links between inflammation and tumorigenesis. Furthermore, novel therapeutic approaches using nanotechnology and immunotherapy are also discussed. Nanotechnology offers precise drug delivery with increased targeting to tumor sites, whereas immunotherapy, including immune checkpoint inhibitors, attempts to restore the functionality of the immune system to recognize and destroy cancer cells. Thus, a combination of these approaches represents a promising new frontier in cancer treatment that addresses both the inflammatory and immune dimensions of oncogenesis. This review highlights the importance of integrating molecular insights into novel therapeutic strategies to address the dual challenges associated with chronic inflammation and cancer. Their development could lead to significant improvements in patient outcomes and reduce global cancer burden.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575361098250112085145
2025-02-24
2025-10-10
Loading full text...

Full text loading...

References

  1. KhanI. SteegP.S. A perspective on the metastasis suppressor field.Cancer Metastasis Rev.20234241061106310.1007/s10555‑023‑10131‑0 37581870
    [Google Scholar]
  2. WangB. ChenK. GaoM. SunX. HeW. ChenJ. YangW. YangT. QinH. RuanH. HuangH. LinT. HuangJ. Chitinase 3‐like 1 expression associated with lymphatic metastasis and prognosis in urothelial carcinoma of the bladder.Clin. Transl. Immunology2024134e150510.1002/cti2.1505 38623539
    [Google Scholar]
  3. GuoQ. JinY. ChenX. YeX. ShenX. LinM. ZengC. ZhouT. ZhangJ. NF-κB in biology and targeted therapy: new insights and translational implications.Signal Transduct. Target. Ther.2024915310.1038/s41392‑024‑01757‑9 38433280
    [Google Scholar]
  4. KhanA. ZhangY. MaN. ShiJ. HouY. NF-κB role on tumor proliferation, migration, invasion and immune escape.Cancer Gene Ther.202431111599161010.1038/s41417‑024‑00811‑6 39033218
    [Google Scholar]
  5. YuH. LinL. ZhangZ. ZhangH. HuH. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study.Signal Transduct. Target. Ther.20205120910.1038/s41392‑020‑00312‑6 32958760
    [Google Scholar]
  6. TiwariA. TrivediR. LinS.Y. Tumor microenvironment: barrier or opportunity towards effective cancer therapy.J. Biomed. Sci.20222918310.1186/s12929‑022‑00866‑3 36253762
    [Google Scholar]
  7. XiaoY. YuD. Tumor microenvironment as a therapeutic target in cancer.Pharmacol. Ther.202122110775310.1016/j.pharmthera.2020.107753 33259885
    [Google Scholar]
  8. ZhaoY. ShenM. WuL. YangH. YaoY. YangQ. DuJ. LiuL. LiY. BaiY. Stromal cells in the tumor microenvironment: accomplices of tumor progression?Cell Death Dis.202314958710.1038/s41419‑023‑06110‑6 37666813
    [Google Scholar]
  9. XuM. ZhangT. XiaR. WeiY. WeiX. Targeting the tumor stroma for cancer therapy.Mol. Cancer202221120810.1186/s12943‑022‑01670‑1 36324128
    [Google Scholar]
  10. LeiX. LeiY. LiJ.K. DuW.X. LiR.G. YangJ. LiJ. LiF. TanH.B. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy.Cancer Lett.202047012613310.1016/j.canlet.2019.11.009 31730903
    [Google Scholar]
  11. AljabaliA.A.A. TambuwalaM.M. El-TananiM. HassanS.S. LundstromK. MishraV. MishraY. Hromić-JahjefendićA. RedwanE.M. UverskyV.N. A comprehensive review of PRAME and BAP1 in melanoma: Genomic instability and immunotherapy targets.Cell. Signal.202412411143410.1016/j.cellsig.2024.111434 39326690
    [Google Scholar]
  12. SharmaP. GoswamiS. RaychaudhuriD. SiddiquiB.A. SinghP. NagarajanA. LiuJ. SubudhiS.K. PoonC. GantK.L. HerbrichS.M. AnandhanS. IslamS. AmitM. AnandappaG. AllisonJ.P. Immune checkpoint therapy—current perspectives and future directions.Cell202318681652166910.1016/j.cell.2023.03.006 37059068
    [Google Scholar]
  13. HwangS.Y. KimJ.Y. LeeH.S. LeeS. KimD. KimS. HyunJ.H. ShinJ.I. LeeK.H. HanS.H. SongY.G. Pulmonary tuberculosis and risk of lung cancer: A systematic review and meta-analysis.J. Clin. Med.202211376510.3390/jcm11030765 35160218
    [Google Scholar]
  14. BergerM.F. MardisE.R. The emerging clinical relevance of genomics in cancer medicine.Nat. Rev. Clin. Oncol.201815635336510.1038/s41571‑018‑0002‑6 29599476
    [Google Scholar]
  15. ZhouF. GuoH. XiaY. LeX. TanD.S.W. RamalingamS.S. ZhouC. The changing treatment landscape of EGFR-mutant non-small-cell lung cancer.Nat. Rev. Clin. Oncol.,2024202410.1038/s41571‑024‑00971‑2 39614090
    [Google Scholar]
  16. AljabaliA.A.A. BashatwahR.M. ObeidM.A. MishraV. MishraY. Serrano-ArocaÁ. LundstromK. TambuwalaM.M. Current state of, prospects for, and obstacles to mRNA vaccine development.Drug Discov. Today202328210345810.1016/j.drudis.2022.103458 36427779
    [Google Scholar]
  17. PrieložnáJ. MikušováV. MikušP. Advances in the delivery of anticancer drugs by nanoparticles and chitosan-based nanoparticles.Int. J. Pharm. X2024810028110.1016/j.ijpx.2024.100281 39297017
    [Google Scholar]
  18. PengX. FangJ. LouC. YangL. ShanS. WangZ. ChenY. LiH. LiX. Engineered nanoparticles for precise targeted drug delivery and enhanced therapeutic efficacy in cancer immunotherapy.Acta Pharm. Sin. B20241483432345610.1016/j.apsb.2024.05.010 39220871
    [Google Scholar]
  19. ChehelgerdiM. ChehelgerdiM. AllelaO.Q.B. PechoR.D.C. JayasankarN. RaoD.P. ThamaraikaniT. VasanthanM. ViktorP. LakshmaiyaN. SaadhM.J. AmajdA. Abo-ZaidM.A. Castillo-AcoboR.Y. IsmailA.H. AminA.H. Akhavan-SigariR. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation.Mol. Cancer202322116910.1186/s12943‑023‑01865‑0 37814270
    [Google Scholar]
  20. RashidiN. DavidsonM. ApostolopoulosV. NurgaliK. Nanoparticles in cancer diagnosis and treatment: Progress, challenges, and opportunities.J. Drug Deliv. Sci. Technol.20249510559910.1016/j.jddst.2024.105599
    [Google Scholar]
  21. AshrafizadehM. DaiJ. TorabianP. NabaviN. ArefA.R. AljabaliA.A.A. TambuwalaM. ZhuM. Circular RNAs in EMT-driven metastasis regulation: modulation of cancer cell plasticity, tumorigenesis and therapy resistance.Cell. Mol. Life Sci.202481121410.1007/s00018‑024‑05236‑w 38733529
    [Google Scholar]
  22. SunL. LiuH. YeY. LeiY. IslamR. TanS. TongR. MiaoY.B. CaiL. Smart nanoparticles for cancer therapy.Signal Transduct. Target. Ther.20238141810.1038/s41392‑023‑01642‑x 37919282
    [Google Scholar]
  23. LiG. WangC. JinB. SunT. SunK. WangS. FanZ. Advances in smart nanotechnology-supported photodynamic therapy for cancer.Cell Death Discov.202410146610.1038/s41420‑024‑02236‑4 39528439
    [Google Scholar]
  24. Al-HaideriM. TondokS.B. SafaS.H. maleki, A.H.; Rostami, S.; Jalil, A.T.; Al-Gazally, M.E.; Alsaikhan, F.; Rizaev, J.A.; Mohammad, T.A.M.; Tahmasebi, S. CAR-T cell combination therapy: the next revolution in cancer treatment.Cancer Cell Int.202222136510.1186/s12935‑022‑02778‑6 36419058
    [Google Scholar]
  25. WaldmanA.D. FritzJ.M. LenardoM.J. A guide to cancer immunotherapy: from T cell basic science to clinical practice.Nat. Rev. Immunol.2020201165166810.1038/s41577‑020‑0306‑5 32433532
    [Google Scholar]
  26. CaoQ. FangH. TianH. mRNA vaccines contribute to innate and adaptive immunity to enhance immune response in vivo.Biomaterials202431012262810.1016/j.biomaterials.2024.122628 38820767
    [Google Scholar]
  27. SayourE.J. BoczkowskiD. MitchellD.A. NairS.K. Cancer mRNA vaccines: clinical advances and future opportunities.Nat. Rev. Clin. Oncol.202421748950010.1038/s41571‑024‑00902‑1 38760500
    [Google Scholar]
  28. AljabaliA.A.A. ObeidM.A. TambuwalaM.M. Fast track vaccine development for COVID-19 and Impact of Emerging Variants. In: SARS-CoV-2 Variants and Global Population Vulnerability.Apple Academic Press202422524710.1201/9781003467939‑8
    [Google Scholar]
  29. AljabaliA.A.A. El-TananiM. BarhD. TambuwalaM.M. Covid-19: Perspectives on innate immune evasion.Front. Immunol.202411580641
    [Google Scholar]
  30. DengZ. TianY. SongJ. AnG. YangP. mRNA vaccines: The dawn of a new era of cancer immunotherapy.Front. Immunol.20221388712510.3389/fimmu.2022.887125 35720301
    [Google Scholar]
  31. AljabaliA.A.A. El-TananiM. TambuwalaM.M. Principles of CRISPR-Cas9 technology: Advancements in genome editing and emerging trends in drug delivery.J. Drug Deliv. Sci. Technol.20249210533810.1016/j.jddst.2024.105338
    [Google Scholar]
  32. LiT. YangY. QiH. CuiW. ZhangL. FuX. HeX. LiuM. LiP. YuT. CRISPR/Cas9 therapeutics: progress and prospects.Signal Transduct. Target. Ther.2023813610.1038/s41392‑023‑01309‑7 36646687
    [Google Scholar]
  33. ChehelgerdiM. ChehelgerdiM. Khorramian-GhahfarokhiM. ShafieizadehM. MahmoudiE. EskandariF. RashidiM. ArshiA. Mokhtari-FarsaniA. Comprehensive review of CRISPR-based gene editing: mechanisms, challenges, and applications in cancer therapy.Mol. Cancer2024231910.1186/s12943‑023‑01925‑5 38195537
    [Google Scholar]
  34. De CastroV. GalaineJ. LoyonR. GodetY. CRISPR-Cas gene knockouts to optimize engineered T cells for cancer immunotherapy.Cancer Gene Ther.20243181124113410.1038/s41417‑024‑00771‑x 38609574
    [Google Scholar]
  35. KondaP. GarinetS. Van AllenE.M. ViswanathanS.R. Genome-guided discovery of cancer therapeutic targets.Cell Rep.202342811297810.1016/j.celrep.2023.112978 37572322
    [Google Scholar]
  36. AlagozM. KheradN. Advance genome editing technologies in the treatment of human diseases: CRISPR therapy.Int. J. Mol. Med.202046252153410.3892/ijmm.2020.4609 32467995
    [Google Scholar]
  37. McCartyN.S. GrahamA.E. StudenáL. Ledesma-AmaroR. Multiplexed CRISPR technologies for gene editing and transcriptional regulation.Nat. Commun.2020111128110.1038/s41467‑020‑15053‑x 32152313
    [Google Scholar]
  38. YipB. Recent advances in CRISPR/Cas9 delivery strategies.Biomolecules202010683910.3390/biom10060839 32486234
    [Google Scholar]
  39. KattiA. DiazB.J. CaragineC.M. SanjanaN.E. DowL.E. CRISPR in cancer biology and therapy.Nat. Rev. Cancer202222525927910.1038/s41568‑022‑00441‑w 35194172
    [Google Scholar]
  40. UsluU. JuneC.H. Beyond the blood: expanding CAR T cell therapy to solid tumors.. Nat. Biotechnol. 2024202410.1038/s41587‑024‑02446‑239533105
    [Google Scholar]
  41. LiuB. ZhouH. TanL. SiuK.T.H. GuanX.Y. Exploring treatment options in cancer: tumor treatment strategies.Signal Transduct. Target. Ther.20249117510.1038/s41392‑024‑01856‑7 39013849
    [Google Scholar]
  42. FritschE.F. OttP.A. Personalized cancer vaccines directed against tumor mutations: building evidence from mice to humans.Cancer Res.202484795395510.1158/0008‑5472.CAN‑24‑0565 38558128
    [Google Scholar]
  43. XieN. ShenG. GaoW. HuangZ. HuangC. FuL. Neoantigens: promising targets for cancer therapy.Signal Transduct. Target. Ther.202381910.1038/s41392‑022‑01270‑x 36604431
    [Google Scholar]
  44. FanT. ZhangM. YangJ. ZhuZ. CaoW. DongC. Therapeutic cancer vaccines: advancements, challenges and prospects.Signal Transduct. Target. Ther.20238145010.1038/s41392‑023‑01674‑3 38086815
    [Google Scholar]
  45. RappaportA.R. KyiC. LaneM. HartM.G. JohnsonM.L. HenickB.S. LiaoC.Y. MahipalA. ShergillA. SpiraA.I. GoldmanJ.W. ScallanC.D. SchenkD. PalmerC.D. DavisM.J. KounlavouthS. KempL. YangA. LiY.J. LikesM. ShenA. BoucherG.R. EgorovaM. VeresR.L. EspinosaJ.A. JaroslavskyJ.R. Kraemer TardifL.D. AcrebucheL. PucciaC. SousaL. ZhouR. BaeK. HechtJ.R. CarboneD.P. JohnsonB. AllenA. FergusonA.R. JoossK. A shared neoantigen vaccine combined with immune checkpoint blockade for advanced metastatic solid tumors: phase 1 trial interim results.Nat. Med.20243041013102210.1038/s41591‑024‑02851‑9 38538867
    [Google Scholar]
  46. FinckA.V. BlanchardT. RoselleC.P. GolinelliG. JuneC.H. Engineered cellular immunotherapies in cancer and beyond.Nat. Med.202228467868910.1038/s41591‑022‑01765‑8 35440724
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575361098250112085145
Loading
/content/journals/mrmc/10.2174/0113895575361098250112085145
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test