Skip to content
2000
image of Polymeric Nanocarriers for Enhanced Blood-Brain Barrier Permeation in Neurological Drug Delivery

Abstract

The blood-brain barrier (BBB) serves as a formidable obstacle to the treatment of neurological disorders by restricting the passage of therapeutic agents into the central nervous system (CNS). Polymeric nanocarriers have emerged as innovative tools to enhance drug delivery across the BBB, improving the bioavailability and efficacy of treatments for various neurological diseases. This review explores the challenges associated with BBB permeability and highlights recent advances in polymeric nanocarrier design. Key strategies such as surface modification, ligand conjugation, and stimuli-responsive carriers are discussed to optimize BBB penetration. Furthermore, this review examines the therapeutic potential of nanocarrier-based approaches for treating neurodegenerative disorders, brain tumors, and stroke. By leveraging nanotechnology, polymeric nanocarriers offer a promising avenue to overcome BBB-related drug delivery limitations and advance CNS therapeutics.

Loading

Article metrics loading...

/content/journals/mns/10.2174/0118764029366173250706232958
2025-07-22
2025-09-26
Loading full text...

Full text loading...

References

  1. Ehrlich P. Das Sauerstoff-Bedürfniss des Organismus: Eine farbenanalytische Studie: A. Bavaria, Germany Hirschwald 1885
    [Google Scholar]
  2. Goldmann E. Vital staining of the central nervous system: Contribution to the physiopathology of the choroidal plexus and the meninges. Abh Paresh 1913 1913 1 1 9
    [Google Scholar]
  3. Reese T.S. Karnovsky M.J. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J. Cell Biol. 1967 34 1 207 217 10.1083/jcb.34.1.207 6033532
    [Google Scholar]
  4. LeBleu V.S. MacDonald B. Kalluri R. Structure and function of basement membranes. Exp. Biol. Med. 2007 232 9 1121 1129 10.3181/0703‑MR‑72 17895520
    [Google Scholar]
  5. On N. Miller D. Transporter-based delivery of anticancer drugs to the brain: Improving brain penetration by minimizing drug efflux at the blood-brain barrier. Curr. Pharm. Des. 2014 20 10 1499 1509 10.2174/13816128113199990458 23789953
    [Google Scholar]
  6. Knox E.G. Aburto M.R. Clarke G. Cryan J.F. O’Driscoll C.M. The blood-brain barrier in aging and neurodegeneration. Mol. Psychiatry 2022 27 6 2659 2673 10.1038/s41380‑022‑01511‑z 35361905
    [Google Scholar]
  7. Naahidi S. Jafari M. Edalat F. Raymond K. Khademhosseini A. Chen P. Biocompatibility of engineered nanoparticles for drug delivery. J. Control. Release 2013 166 2 182 194 10.1016/j.jconrel.2012.12.013 23262199
    [Google Scholar]
  8. Saraiva C. Praça C. Ferreira R. Santos T. Ferreira L. Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. J. Control. Release 2016 235 34 47 10.1016/j.jconrel.2016.05.044 27208862
    [Google Scholar]
  9. Sharma S. Dang S. Nanocarrier-based drug delivery to brain: Interventions of surface modification. Curr. Neuropharmacol. 2023 21 3 517 535 10.2174/1570159X20666220706121412 35794771
    [Google Scholar]
  10. Joudeh N. Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. J. Nanobiotechnology 2022 20 1 262 10.1186/s12951‑022‑01477‑8 35672712
    [Google Scholar]
  11. Lahkar S. Das M.K. Surface modified polymeric nanoparticles for brain targeted drug delivery. Curr. Trends Biotechnol. Pharm. 2013 7 4 914 931
    [Google Scholar]
  12. Li X. Tsibouklis J. Weng T. Zhang B. Yin G. Feng G. Cui Y. Savina I.N. Mikhalovska L.I. Sandeman S.R. Howel C.A. Mikhalovsky S.V. Nano carriers for drug transport across the blood–brain barrier. J. Drug Target. 2017 25 1 17 28 10.1080/1061186X.2016.1184272 27126681
    [Google Scholar]
  13. Gagliardi M. Borri C. Polymer nanoparticles as smart carriers for the enhanced release of therapeutic agents to the CNS. Curr. Pharm. Des. 2017 23 3 393 410 10.2174/1381612822666161027111542 27799038
    [Google Scholar]
  14. Costoya J. Surnar B. Kalathil A.A. Kolishetti N. Dhar S. Controlled release nanoplatforms for three commonly used chemotherapeutics. Mol. Aspects Med. 2022 83 101043 10.1016/j.mam.2021.101043 34920863
    [Google Scholar]
  15. Zha S. Wong K.L. All A.H. Intranasal delivery of functionalized polymeric nanomaterials to the brain. Adv. Healthc. Mater. 2022 11 11 2102610 10.1002/adhm.202102610 35166052
    [Google Scholar]
  16. Saeedi M. Morteza-Semnani K. Siahposht-Khachaki A. Akbari J. Valizadeh M. Sanaee A. Jafarkhani B. Eghbali M. Zanjani H.H.H. Hashemi S.M.H. Rahimnia S.M. Passive targeted drug delivery of venlafaxine hcl to the brain by modified chitosan nanoparticles: Characterization, cellular safety assessment, and in vivo evaluation. J. Pharm. Innov. 2023 18 3 1441 1453 10.1007/s12247‑023‑09733‑6
    [Google Scholar]
  17. Yoo H.S. Lee K.H. Oh J.E. Park T.G. In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin–PLGA conjugates. J. Control. Release 2000 68 3 419 431 10.1016/S0168‑3659(00)00280‑7 10974396
    [Google Scholar]
  18. Heggannavar G.B. Vijeth S. Kariduraganavar M.Y. Preparation of transferrin-conjugated poly-ε-caprolactone nanoparticles and delivery of paclitaxel to treat glioblastoma across blood–brain barrier. Emergent Mater. 2019 2 4 463 474 10.1007/s42247‑019‑00033‑9
    [Google Scholar]
  19. Pirhaghi M. Mamashli F. Moosavi-Movahedi F. Arghavani P. Amiri A. Davaeil B. Mohammad-Zaheri M. Mousavi-Jarrahi Z. Sharma D. Langel Ü. Otzen D.E. Saboury A.A. Cell-penetrating peptides: Promising therapeutics and drug-delivery systems for neurodegenerative diseases. Mol. Pharm. 2024 21 5 2097 2117 10.1021/acs.molpharmaceut.3c01167 38440998
    [Google Scholar]
  20. Desale K. Kuche K. Jain S. Cell-penetrating peptides (CPPs): An overview of applications for improving the potential of nanotherapeutics. Biomater. Sci. 2021 9 4 1153 1188 10.1039/D0BM01755H 33355322
    [Google Scholar]
  21. Ghorai S.M. Deep A. Magoo D. Gupta C. Gupta N. Cell-penetrating and targeted peptides delivery systems as potential pharmaceutical carriers for enhanced delivery across the blood–brain barrier (BBB). Pharmaceutics 2023 15 7 1999 10.3390/pharmaceutics15071999 37514185
    [Google Scholar]
  22. Xu J. Wang F. Ye L. Wang R. Zhao L. Yang X. Ji J. Liu A. Zhai G. Penetrating peptides: Applications in drug delivery. J. Drug Deliv. Sci. Technol. 2023 84 104475 10.1016/j.jddst.2023.104475
    [Google Scholar]
  23. Campos-Escamilla C. The role of transferrins and iron-related proteins in brain iron transport: Applications to neurological diseases. Adv. Protein Chem. Struct. Biol. 2021 123 133 162 10.1016/bs.apcsb.2020.09.002 33485481
    [Google Scholar]
  24. Choudhury H. Pandey M. Chin P.X. Phang Y.L. Cheah J.Y. Ooi S.C. Mak K.K. Pichika M.R. Kesharwani P. Hussain Z. Gorain B. Transferrin receptors-targeting nanocarriers for efficient targeted delivery and transcytosis of drugs into the brain tumors: A review of recent advancements and emerging trends. Drug Deliv. Transl. Res. 2018 8 5 1545 1563 10.1007/s13346‑018‑0552‑2 29916012
    [Google Scholar]
  25. Arbez-Gindre C. Steele B.R. Micha-Screttas M. Dendrimers in alzheimer’s disease: Recent approaches in multi-targeting strategies. Pharmaceutics 2023 15 3 898 10.3390/pharmaceutics15030898 36986759
    [Google Scholar]
  26. Jiang Z. Guan J. Qian J. Zhan C. Peptide ligand-mediated targeted drug delivery of nanomedicines. Biomater. Sci. 2019 7 2 461 471 10.1039/C8BM01340C 30656305
    [Google Scholar]
  27. Caraway C.A. Gaitsch H. Wicks E.E. Kalluri A. Kunadi N. Tyler B.M. Polymeric nanoparticles in brain cancer therapy: A review of current approaches. Polymers 2022 14 14 2963 10.3390/polym14142963 35890738
    [Google Scholar]
  28. Ahlawat J. Henriquez G. Narayan M. Enhancing the delivery of chemotherapeutics: Role of biodegradable polymeric nanoparticles. Molecules 2018 23 9 2157 10.3390/molecules23092157 30150595
    [Google Scholar]
  29. Habib S. Singh M. Angiopep-2-modified nanoparticles for brain-directed delivery of therapeutics: A review. Polymers 2022 14 4 712 10.3390/polym14040712 35215625
    [Google Scholar]
  30. Huey R. Hawthorne S. McCarron P. The potential use of rabies virus glycoprotein-derived peptides to facilitate drug delivery into the central nervous system: A mini review. J. Drug Target. 2017 25 5 379 385 10.1080/1061186X.2016.1223676 27581650
    [Google Scholar]
  31. Tuma P.L. Hubbard A.L. Transcytosis: Crossing cellular barriers. Physiol. Rev. 2003 83 3 871 932 10.1152/physrev.00001.2003 12843411
    [Google Scholar]
  32. De Bock M. Van Haver V. Vandenbroucke R.E. Decrock E. Wang N. Leybaert L. Into rather unexplored terrain—transcellular transport across the blood–brain barrier. Glia 2016 64 7 1097 1123 10.1002/glia.22960 26852907
    [Google Scholar]
  33. Hillaireau H. Couvreur P. Nanocarriers’ entry into the cell: Relevance to drug delivery. Cell. Mol. Life Sci. 2009 66 17 2873 2896 10.1007/s00018‑009‑0053‑z 19499185
    [Google Scholar]
  34. Karimi M. Eslami M. Sahandi-Zangabad P. Mirab F. Farajisafiloo N. Shafaei Z. Ghosh D. Bozorgomid M. Dashkhaneh F. Hamblin M.R. pH ‐Sensitive stimulus‐responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016 8 5 696 716 10.1002/wnan.1389 26762467
    [Google Scholar]
  35. Jhaveri A. Magnetic field-responsive nanocarriers. In: Smart Pharma Nanocar; 2015 267 308 10.1142/9781783267231_0009
    [Google Scholar]
  36. Chauhan V.P. Jain R.K. Strategies for advancing cancer nanomedicine. Nat. Mater. 2013 12 11 958 962 10.1038/nmat3792 24150413
    [Google Scholar]
  37. Albanese A. Tang P.S. Chan W.C.W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012 14 1 1 16 10.1146/annurev‑bioeng‑071811‑150124 22524388
    [Google Scholar]
  38. Hickey J.W. Santos J.L. Williford J.M. Mao H.Q. Control of polymeric nanoparticle size to improve therapeutic delivery. J. Control. Release 2015 219 536 547 10.1016/j.jconrel.2015.10.006 26450667
    [Google Scholar]
  39. Cruz L.J. Stammes M.A. Que I. van Beek E.R. Knol-Blankevoort V.T. Snoeks T.J.A. Chan A. Kaijzel E.L. Löwik C.W.G.M. Effect of PLGA NP size on efficiency to target traumatic brain injury. J. Control. Release 2016 223 31 41 10.1016/j.jconrel.2015.12.029 26708021
    [Google Scholar]
  40. Nowak M. Brown T.D. Graham A. Helgeson M.E. Mitragotri S. Size, shape, and flexibility influence nanoparticle transport across brain endothelium under flow. Bioeng. Transl. Med. 2020 5 2 10153 10.1002/btm2.10153 32440560
    [Google Scholar]
  41. Wong A.D. Ye M. Levy A.F. Rothstein J.D. Bergles D.E. Searson P.C. The blood-brain barrier: An engineering perspective. Front. Neuroeng. 2013 6 7 10.3389/fneng.2013.00007 24009582
    [Google Scholar]
  42. Igartúa D.E. Martinez C.S. Temprana C.F. Alonso S.V. Prieto M.J. PAMAM dendrimers as a carbamazepine delivery system for neurodegenerative diseases: A biophysical and nanotoxicological characterization. Int. J. Pharm. 2018 544 1 191 202 10.1016/j.ijpharm.2018.04.032 29678547
    [Google Scholar]
  43. Parikh T. Bommana M.M. Squillante E. Efficacy of surface charge in targeting pegylated nanoparticles of sulpiride to the brain. Eur. J. Pharm. Biopharm. 2010 74 3 442 450 10.1016/j.ejpb.2009.11.001 19941957
    [Google Scholar]
  44. Han G. Ghosh P. Rotello V.M. Functionalized gold nanoparticles for drug delivery. Nanomedicine 2007 2 1 113 123 10.2217/17435889.2.1.113
    [Google Scholar]
  45. Wilhelm A.J. Tavares Q.D.S. Ohta, J. Audet, HF Dvorak, and WC W. Chan. Nat. Rev. Mater. 2016 1 16014 10.1038/natrevmats.2016.14
    [Google Scholar]
  46. Kulkarni S.A. Feng S.S. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm. Res. 2013 30 10 2512 2522 10.1007/s11095‑012‑0958‑3 23314933
    [Google Scholar]
  47. Deng Z.J. Liang M. Toth I. Monteiro M. Minchin R.F. Plasma protein binding of positively and negatively charged polymer-coated gold nanoparticles elicits different biological responses. Nanotoxicology 2013 7 3 314 322 10.3109/17435390.2012.655342 22394123
    [Google Scholar]
  48. Setyawati M.I. Tay C.Y. Leong D.T. Effect of zinc oxide nanomaterials-induced oxidative stress on the p53 pathway. Biomaterials 2013 34 38 10133 10142 10.1016/j.biomaterials.2013.09.024 24090840
    [Google Scholar]
  49. Fleischer C.C. Payne C.K. Nanoparticle surface charge mediates the cellular receptors used by protein-nanoparticle complexes. J. Phys. Chem. B 2012 116 30 8901 8907 10.1021/jp304630q 22774860
    [Google Scholar]
  50. Jallouli Y. Paillard A. Chang J. Sevin E. Betbeder D. Influence of surface charge and inner composition of porous nanoparticles to cross blood–brain barrier in vitro. Int. J. Pharm. 2007 344 1-2 103 109 10.1016/j.ijpharm.2007.06.023 17651930
    [Google Scholar]
  51. Akbari J. Saeedi M. Morteza-Semnani K. Ghasemi M. Eshaghi M. Eghbali M. Jafarkhani B. Rahimnia S.M. Negarandeh R. Babaei A. Hashemi S.M.H. Asare-Addo K. Nokhodchi A. An eco-friendly and hopeful promise platform for delivering hydrophilic wound healing agents in topical administration for wound disorder: Diltiazem-loaded niosomes. J. Pharm. Innov. 2023 18 3 1111 1127 10.1007/s12247‑023‑09710‑z
    [Google Scholar]
  52. Das S.S. Bharadwaj P. Bilal M. Barani M. Rahdar A. Taboada P. Bungau S. Kyzas G.Z. Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers 2020 12 6 1397 10.3390/polym12061397 32580366
    [Google Scholar]
  53. Majumder J. Minko T. Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery. Expert Opin. Drug Deliv. 2021 18 2 205 227 10.1080/17425247.2021.1828339 32969740
    [Google Scholar]
  54. Morteza-Semnani K. Saeedi M. Akbari J. Moazeni M. Seraj H. Daftarifard E. Tajbakhsh M. Hashemi S.M.H. Babaei A. Fluconazole nanosuspension enhances in vitro antifungal activity against resistant strains of Candida albicans. Ulum-i Daruyi 2021 28 1 112 129 10.34172/PS.2021.21
    [Google Scholar]
  55. Ding H. Tan P. Fu S. Tian X. Zhang H. Ma X. Gu Z. Luo K. Preparation and application of pH-responsive drug delivery systems. J. Control. Release 2022 348 206 238 10.1016/j.jconrel.2022.05.056 35660634
    [Google Scholar]
  56. AlSawaftah N.M. Awad N.S. Pitt W.G. Husseini G.A. pH-responsive nanocarriers in cancer therapy. Polymers 2022 14 5 936 10.3390/polym14050936 35267759
    [Google Scholar]
  57. Zhu Y. Liao L. Applications of nanoparticles for anticancer drug delivery: A review. J. Nanosci. Nanotechnol. 2015 15 7 4753 4773 10.1166/jnn.2015.10298 26373036
    [Google Scholar]
  58. Caprifico A.E. Foot P.J.S. Polycarpou E. Calabrese G. Overcoming the blood-brain barrier: Functionalised chitosan nanocarriers. Pharmaceutics 2020 12 11 1013 10.3390/pharmaceutics12111013 33114020
    [Google Scholar]
  59. Karimi M. Sahandi Zangabad P. Ghasemi A. Amiri M. Bahrami M. Malekzad H. Ghahramanzadeh Asl H. Mahdieh Z. Bozorgomid M. Ghasemi A. Rahmani Taji Boyuk M.R. Hamblin M.R. Temperature-responsive smart nanocarriers for delivery of therapeutic agents: Applications and recent advances. ACS Appl. Mater. Interfaces 2016 8 33 21107 21133 10.1021/acsami.6b00371 27349465
    [Google Scholar]
  60. Papadakis C.M. Niebuur B.J. Schulte A. Thermoresponsive polymers under pressure with a focus on poly(N -isopropylacrylamide) (PNIPAM). Langmuir 2024 40 1 1 20 10.1021/acs.langmuir.3c02398 38149782
    [Google Scholar]
  61. Yetisgin A.A. Cetinel S. Zuvin M. Kosar A. Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules 2020 25 9 2193 10.3390/molecules25092193 32397080
    [Google Scholar]
  62. Li N. Binder W.H. Click-chemistry for nanoparticle-modification. J. Mater. Chem. 2011 21 42 16717 16734 10.1039/c1jm11558h
    [Google Scholar]
  63. Dash B.S. Das S. Chen J.P. Photosensitizer-functionalized nanocomposites for light-activated cancer theranostics. Int. J. Mol. Sci. 2021 22 13 6658 10.3390/ijms22136658 34206318
    [Google Scholar]
  64. Aundhia C. Parmar G. Talele C. Talele D. Seth A.K. Light sensitive liposomes: A novel strategy for targeted drug delivery. Pharm. Nanotechnol. 2024 [PMID: 38279711
    [Google Scholar]
  65. Vinchhi P. Rawal S.U. Patel M.M. External stimuli-responsive drug delivery systems. In:Drug Delivery Devices and Therapeutic Systems. Amsterdam, Netherlands Elsevier 2021 267 288 10.1016/B978‑0‑12‑819838‑4.00023‑7
    [Google Scholar]
  66. Saini R.K. Bagri L.P. Bajpai A.K. Mishra A. Responsive polymer nanoparticles for drug delivery applications. In:Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications. Amsterdam, Netherlands Elsevier 2018 289 320 10.1016/B978‑0‑08‑101997‑9.00015‑1
    [Google Scholar]
  67. Augustine R. Kalva N. Kim H.A. Zhang Y. Kim I. pH-responsive polypeptide-based smart nano-carriers for theranostic applications. Molecules 2019 24 16 2961 10.3390/molecules24162961 31443287
    [Google Scholar]
  68. Kohori F. Sakai K. Aoyagi T. Yokoyama M. Yamato M. Sakurai Y. Okano T. Control of adriamycin cytotoxic activity using thermally responsive polymeric micelles composed of poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(d,l-lactide). Colloids Surf. B Biointerfaces 1999 16 1-4 195 205 10.1016/S0927‑7765(99)00070‑3
    [Google Scholar]
  69. Shinde G. Shiyani S. Shelke S. Chouthe R. Kulkarni D. Marvaniya K. Enhanced brain targeting efficiency using 5-FU (fluorouracil) lipid–drug conjugated nanoparticles in brain cancer therapy. Prog. Biomater. 2020 9 4 259 275 10.1007/s40204‑020‑00147‑y 33252721
    [Google Scholar]
  70. Cui Y. Zhang M. Zeng F. Jin H. Xu Q. Huang Y. Dual-targeting magnetic PLGA nanoparticles for codelivery of paclitaxel and curcumin for brain tumor therapy. ACS Appl. Mater. Interfaces 2016 8 47 32159 32169 10.1021/acsami.6b10175 27808492
    [Google Scholar]
  71. Cummings J.L. Biomarkers in Alzheimer’s disease drug development. Alzheimers Dement. 2011 7 3 e13 e44 10.1016/j.jalz.2010.06.004 21550318
    [Google Scholar]
  72. Jakob-Roetne R. Jacobsen H. Alzheimer’s disease: From pathology to therapeutic approaches. Angew. Chem. Int. Ed. 2009 48 17 3030 3059 10.1002/anie.200802808 19330877
    [Google Scholar]
  73. Nguyen T.T. Ta Q.T.H. Nguyen T.T.D. Le T.T. Vo V.G. Role of insulin resistance in the Alzheimer’s disease progression. Neurochem. Res. 2020 45 7 1481 1491 10.1007/s11064‑020‑03031‑0 32314178
    [Google Scholar]
  74. Nguyen T.T. Ta Q.T.H. Nguyen T.K.O. Nguyen T.T.D. Van Giau V. Type 3 diabetes and its role implications in Alzheimer’s disease. Int. J. Mol. Sci. 2020 21 9 3165 10.3390/ijms21093165 32365816
    [Google Scholar]
  75. Bagyinszky E. Giau V.V. Shim K. Suk K. An S.S.A. Kim S. Role of inflammatory molecules in the Alzheimer’s disease progression and diagnosis. J. Neurol. Sci. 2017 376 242 254 10.1016/j.jns.2017.03.031 28431620
    [Google Scholar]
  76. Serrano-Pozo A. Frosch M.P. Masliah E. Hyman B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2011 1 1 a006189 10.1101/cshperspect.a006189 22229116
    [Google Scholar]
  77. Nguyen T.T. Nguyen T.T.D. Nguyen T.K.O. Vo T.K. Vo V.G. Advances in developing therapeutic strategies for Alzheimer’s disease. Biomed. Pharmacother. 2021 139 111623 10.1016/j.biopha.2021.111623 33915504
    [Google Scholar]
  78. Tsatsanis A. Wong B.X. Gunn A.P. Ayton S. Bush A.I. Devos D. Duce J.A. Amyloidogenic processing of Alzheimer’s disease β-amyloid precursor protein induces cellular iron retention. Mol. Psychiatry 2020 25 9 1958 1966 10.1038/s41380‑020‑0762‑0 32444869
    [Google Scholar]
  79. Eftekharzadeh B. Daigle J.G. Kapinos L.E. Coyne A. Schiantarelli J. Carlomagno Y. Cook C. Miller S.J. Dujardin S. Amaral A.S. Grima J.C. Bennett R.E. Tepper K. DeTure M. Vanderburg C.R. Corjuc B.T. DeVos S.L. Gonzalez J.A. Chew J. Vidensky S. Gage F.H. Mertens J. Troncoso J. Mandelkow E. Salvatella X. Lim R.Y.H. Petrucelli L. Wegmann S. Rothstein J.D. Hyman B.T. Tau protein disrupts nucleocytoplasmic transport in Alzheimer’s disease. Neuron 2018 99 5 925 940.e7 10.1016/j.neuron.2018.07.039 30189209
    [Google Scholar]
  80. Zhao N. Yang X. Calvelli H.R. Cao Y. Francis N.L. Chmielowski R.A. Joseph L.B. Pang Z.P. Uhrich K.E. Baum J. Moghe P.V. Antioxidant nanoparticles for concerted inhibition of α-synuclein fibrillization, and attenuation of microglial intracellular aggregation and activation. Front. Bioeng. Biotechnol. 2020 8 112 10.3389/fbioe.2020.00112 32154238
    [Google Scholar]
  81. Xiao R.Z. Zeng Z.W. Zhou G.L. Wang J.J. Li F.Z. Wang A.M. Recent advances in PEG-PLA block copolymer nanoparticles. Int. J. Nanomedicine 2010 5 1057 1065 [PMID: 21170353
    [Google Scholar]
  82. Liu Z. Gao X. Kang T. Jiang M. Miao D. Gu G. Hu Q. Song Q. Yao L. Tu Y. Chen H. Jiang X. Chen J. B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide. Bioconjug. Chem. 2013 24 6 997 1007 10.1021/bc400055h 23718945
    [Google Scholar]
  83. Matsuzaki K. Physicochemical interactions of amyloid β-peptide with lipid bilayers. Biochim. Biophys. Acta Biomembr. 2007 1768 8 1935 1942 10.1016/j.bbamem.2007.02.009 17382287
    [Google Scholar]
  84. Jeon S.G. Cha M.Y. Kim J. Hwang T.W. Kim K.A. Kim T.H. Song K.C. Kim J.J. Moon M. Vitamin D-binding protein-loaded PLGA nanoparticles suppress Alzheimer’s disease-related pathology in 5XFAD mice. Nanomedicine 2019 17 297 307 10.1016/j.nano.2019.02.004 30794963
    [Google Scholar]
  85. Huo X. Zhang Y. Jin X. Li Y. Zhang L. A novel synthesis of selenium nanoparticles encapsulated PLGA nanospheres with curcumin molecules for the inhibition of amyloid β aggregation in Alzheimer’s disease. J. Photochem. Photobiol. B 2019 190 98 102 10.1016/j.jphotobiol.2018.11.008 30504054
    [Google Scholar]
  86. Carradori D. Balducci C. Re F. Brambilla D. Le Droumaguet B. Flores O. Gaudin A. Mura S. Forloni G. Ordoñez-Gutierrez L. Wandosell F. Masserini M. Couvreur P. Nicolas J. Andrieux K. Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer’s disease-like transgenic mouse model. Nanomedicine 2018 14 2 609 618 10.1016/j.nano.2017.12.006 29248676
    [Google Scholar]
  87. ManafiRad A.; Farzadfar, F.; Habibi, L.; Azhdarzadeh, M.; Aghaverdi, H.; Tehrani, K.H.; Lotfi, M.; Kehoe, P.G.; Sheidaei, A.; Ghasemian, A.; Darzi, E.R.; Mahmoodi, R.; Mahmoudi, M. Is amyloid-β an innocent bystander and marker in Alzheimer’s disease? Is the liability of multivalent cation homeostasis and its influence on amyloid-β function the real mechanism? J. Alzheimers Dis. 2014 42 1 69 85 10.3233/JAD‑140321 24787921
    [Google Scholar]
  88. Cole GM Teter B Frautschy SA Neuroprotective effects of curcumin. In:The Molecular Targets and Therapeutic Uses of Curcumin in Health. and Disease. Boston Springer 2007 197 212 10.1007/978‑0‑387‑46401‑5_8
    [Google Scholar]
  89. Klaassens B.L. van Gerven J.M.A. Klaassen E.S. van der Grond J. Rombouts S.A.R.B. Cholinergic and serotonergic modulation of resting state functional brain connectivity in Alzheimer’s disease. Neuroimage 2019 199 143 152 10.1016/j.neuroimage.2019.05.044 31112788
    [Google Scholar]
  90. Cano A. Ettcheto M. Chang J.H. Barroso E. Espina M. Kühne B.A. Barenys M. Auladell C. Folch J. Souto E.B. Camins A. Turowski P. García M.L. Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer’s disease mice model. J. Control. Release 2019 301 62 75 10.1016/j.jconrel.2019.03.010 30876953
    [Google Scholar]
  91. Poewe W. Seppi K. Tanner C.M. Halliday G.M. Brundin P. Volkmann J. Schrag A.E. Lang A.E. Parkinson disease. Nat. Rev. Dis. Primers 2017 3 1 17013 10.1038/nrdp.2017.13 28332488
    [Google Scholar]
  92. Lafuente J.V. Requejo C. Ugedo L. Nanodelivery of therapeutic agents in Parkinson’s disease. Prog Brain Res., 2019 245 (263) 270 10.1016/bs.pbr.2019.03.004 30961870
    [Google Scholar]
  93. Torres-Ortega P.V. Saludas L. Hanafy A.S. Garbayo E. Blanco-Prieto M.J. Micro- and nanotechnology approaches to improve Parkinson’s disease therapy. J. Control. Release 2019 295 201 213 10.1016/j.jconrel.2018.12.036 30579984
    [Google Scholar]
  94. Pillay S. Pillay V. Choonara Y.E. Naidoo D. Khan R.A. du Toit L.C. Ndesendo V.M.K. Modi G. Danckwerts M.P. Iyuke S.E. Design, biometric simulation and optimization of a nano-enabled scaffold device for enhanced delivery of dopamine to the brain. Int. J. Pharm. 2009 382 1-2 277 290 10.1016/j.ijpharm.2009.08.021 19703530
    [Google Scholar]
  95. Yoosefian M Rahmanifar E Etminan N. Nanocarrier for levodopa Parkinson therapeutic drug; comprehensive benserazide analysis. Artif. Cells Nanomed Biotechnol., 2018 46 (suppl) 434 446
    [Google Scholar]
  96. Fernandes C. Martins C. Fonseca A. Nunes R. Matos M.J. Silva R. Garrido J. Sarmento B. Remião F. Otero-Espinar F.J. Uriarte E. Borges F. PEGylated PLGA nanoparticles as a smart carrier to increase the cellular uptake of a coumarin-based monoamine oxidase B inhibitor. ACS Appl. Mater. Interfaces 2018 10 46 39557 39569 10.1021/acsami.8b17224 30352150
    [Google Scholar]
  97. Monge-Fuentes V. Biolchi Mayer A. Lima M.R. Geraldes L.R. Zanotto L.N. Moreira K.G. Martins O.P. Piva H.L. Felipe M.S.S. Amaral A.C. Bocca A.L. Tedesco A.C. Mortari M.R. Dopamine-loaded nanoparticle systems circumvent the blood–brain barrier restoring motor function in mouse model for Parkinson’s Disease. Sci. Rep. 2021 11 1 15185 10.1038/s41598‑021‑94175‑8 34312413
    [Google Scholar]
  98. Ostrom Q.T. Gittleman H. Farah P. Ondracek A. Chen Y. Wolinsky Y. Stroup N.E. Kruchko C. Barnholtz-Sloan J.S. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro-oncol. 2013 15 Suppl. 2 ii1 ii56 10.1093/neuonc/not151 24137015
    [Google Scholar]
  99. Louis D.N. Ohgaki H. Wiestler O.D. Cavenee W.K. Burger P.C. Jouvet A. Scheithauer B.W. Kleihues P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007 114 2 97 109 10.1007/s00401‑007‑0243‑4 17618441
    [Google Scholar]
  100. Nguyen TT Dung Nguyen TT Vo TK Tran NM Nguyen MK Van Vo T Nanotechnology-based drug delivery for central nervous system disorders. Biomed. Pharmacother. 2021 143 112117 10.1016/j.biopha.2021.112117
    [Google Scholar]
  101. Zhou J. Patel T.R. Sirianni R.W. Strohbehn G. Zheng M.Q. Duong N. Schafbauer T. Huttner A.J. Huang Y. Carson R.E. Zhang Y. Sullivan D.J. Piepmeier J.M. Saltzman W.M. Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma. Proc. Natl. Acad. Sci. USA 2013 110 29 11751 11756 10.1073/pnas.1304504110 23818631
    [Google Scholar]
  102. Sun P. Xiao Y. Di Q. Ma W. Ma X. Wang Q. Chen W. Transferrin receptor-targeted PEG-PLA polymeric micelles for chemotherapy against glioblastoma multiforme. Int. J. Nanomedicine 2020 15 6673 6687 10.2147/IJN.S257459 32982226
    [Google Scholar]
  103. Qiu J. Kong L. Cao X. Li A. Wei P. Wang L. Mignani S. Caminade A.M. Majoral J.P. Shi X. Enhanced delivery of therapeutic siRNA into glioblastoma cells using dendrimer-entrapped gold nanoparticles conjugated with β-cyclodextrin. Nanomaterials 2018 8 3 131 10.3390/nano8030131 29495429
    [Google Scholar]
  104. Ragelle H. Danhier F. Préat V. Langer R. Anderson D.G. Nanoparticle-based drug delivery systems: A commercial and regulatory outlook as the field matures. Expert Opin. Drug Deliv. 2017 14 7 851 864 10.1080/17425247.2016.1244187 27730820
    [Google Scholar]
  105. Hyun H. Won Y.W. Kim K.M. Lee J. Lee M. Kim Y.H. Therapeutic effects of a reducible poly (oligo-d-arginine) carrier with the heme oxygenase-1 gene in the treatment of hypoxic-ischemic brain injury. Biomaterials 2010 31 34 9128 9134 10.1016/j.biomaterials.2010.08.038 20828810
    [Google Scholar]
  106. Liu S. Feng X. Jin R. Li G. Tissue plasminogen activator-based nanothrombolysis for ischemic stroke. Expert Opin. Drug Deliv. 2018 15 2 173 184 10.1080/17425247.2018.1384464 28944694
    [Google Scholar]
  107. Absar S. Kwon Y.M. Ahsan F. Bio-responsive delivery of tissue plasminogen activator for localized thrombolysis. J. Control. Release 2014 177 42 50 10.1016/j.jconrel.2013.12.036 24417965
    [Google Scholar]
  108. Colasuonno M. Palange A.L. Aid R. Ferreira M. Mollica H. Palomba R. Emdin M. Del Sette M. Chauvierre C. Letourneur D. Decuzzi P. Erythrocyte-inspired discoidal polymeric nanoconstructs carrying tissue plasminogen activator for the enhanced lysis of blood clots. ACS Nano 2018 12 12 12224 12237 10.1021/acsnano.8b06021 30427660
    [Google Scholar]
  109. wang X. Inapagolla R Kannan S Lieh-Lai M Kannan RM Synthesis, characterization, and in vitro activity of dendrimerstreptokinase conjugates. Bioconjug Chem 2007 18 3 791 799 10.1021/bc060322d 17429940
    [Google Scholar]
  110. Oladipo A.O. Lebelo S.L. Msagati T.A.M. Nanocarrier design–function relationship: The prodigious role of properties in regulating biocompatibility for drug delivery applications. Chem. Biol. Interact. 2023 377 110466 10.1016/j.cbi.2023.110466 37004951
    [Google Scholar]
  111. Lin G. Zhang M. Ligand chemistry in antitumor theranostic nanoparticles. Acc. Chem. Res. 2023 56 12 1578 1590 10.1021/acs.accounts.3c00151 37220248
    [Google Scholar]
  112. Baryakova T.H. Pogostin B.H. Langer R. McHugh K.J. Overcoming barriers to patient adherence: The case for developing innovative drug delivery systems. Nat. Rev. Drug Discov. 2023 22 5 387 409 10.1038/s41573‑023‑00670‑0 36973491
    [Google Scholar]
  113. Kaushik A. Jayant R.D. Bhardwaj V. Nair M. Personalized nanomedicine for CNS diseases. Drug Discov. Today 2018 23 5 1007 1015 10.1016/j.drudis.2017.11.010 29155026
    [Google Scholar]
  114. Halwani A.A. Development of pharmaceutical nanomedicines: From the bench to the market. Pharmaceutics 2022 14 1 106 10.3390/pharmaceutics14010106 35057002
    [Google Scholar]
  115. Sanhai W.R. Sakamoto J.H. Canady R. Ferrari M. Seven challenges for nanomedicine. Nat. Nanotechnol. 2008 3 5 242 244 10.1038/nnano.2008.114 18654511
    [Google Scholar]
  116. Hansen S.F. Baun A. European regulation affecting nanomaterials-review of limitations and future recommendations. Dose Response 2012 10 3 364 383 10.2203/dose‑response.10‑029.Hansen
    [Google Scholar]
/content/journals/mns/10.2174/0118764029366173250706232958
Loading
/content/journals/mns/10.2174/0118764029366173250706232958
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test