Skip to content
2000
image of Role of Exosomal Non-Coding RNAs In Vivo and In Vitro Studies in Colorectal Cancer

Abstract

Colorectal Cancer (CRC) is the third most lethal cancer worldwide. Complex intercellular communication within the tumor microenvironment influences cancer progression, therapeutic resistance, with Exosomes (Exos) and Circulating Extracellular Vesicles (EVs) playing a critical role in this communication. Exosomes can impact recipient cells by carrying various biomolecules, promoting changes that support cancer progression. This review focuses specifically on exosome-derived noncoding RNAs (ncRNAs) in CRC, including microRNAs (miRNAs]), circular RNAs (circRNAs), and long noncoding RNAs (lncRNAs), as significant regulators of cancer biology. The roles of these exosomal ncRNAs in CRC are central to tumor progression, metastasis, and treatment resistance. This review delves into specific molecular mechanisms, such as exosomal lncRNA H19, which enhances CRC chemoresistance by activating the β-catenin pathway, and exo-miR-21, which is implicated in 5-FU chemoresistance. We also highlight emerging evidence on exosomal circRNAs like circ_0006174, linked to doxorubicin resistance through miR-1205/CCND2 axis modulation. These exo-ncRNAs have shown promise as biomarkers and potential therapeutic targets, with studies indicating their diagnostic and prognostic capabilities in CRC patient cohorts. By examining recent in vivo and in vitro studies, we offer a comprehensive understanding of exosomal ncRNAs' roles in CRC pathogenesis and potential applications in clinical trials.

Loading

Article metrics loading...

/content/journals/mirna/10.2174/0122115366331268250303031240
2025-03-18
2025-09-26
Loading full text...

Full text loading...

References

  1. Peng Y. Nie Y. Yu J. Wong C.C. Microbial metabolites in colorectal cancer: Basic and clinical implications. Metabolites. 2021 11 3 159 10.3390/metabo11030159 33802045
    [Google Scholar]
  2. Porcellini E. Laprovitera N. Riefolo M. Ravaioli M. Garajova I. Ferracin M. Epigenetic and epitranscriptomic changes in colorectal cancer: Diagnostic, prognostic, and treatment implications. Cancer Lett. 2018 419 84 95 10.1016/j.canlet.2018.01.049 29360561
    [Google Scholar]
  3. Carroll K.L. Frugé A.D. Heslin M.J. Lipke E.A. Greene M.W. Diet as a risk factor for early-onset colorectal adenoma and carcinoma: A systematic review. Front. Nutr. 2022 9 896330 10.3389/fnut.2022.896330 35757246
    [Google Scholar]
  4. Gagnière J. Raisch J. Veziant J. Barnich N. Bonnet R. Buc E. Bringer M.A. Pezet D. Bonnet M. Gut microbiota imbalance and colorectal cancer. World J. Gastroenterol. 2016 22 2 501 518 10.3748/wjg.v22.i2.501 26811603
    [Google Scholar]
  5. Liu Y. Lau H.C.H. Yu J. Microbial metabolites in colorectal tumorigenesis and cancer therapy. Gut Microbes 2023 15 1 2203968 10.1080/19490976.2023.2203968 37095682
    [Google Scholar]
  6. Kumar A. Gautam V. Sandhu A. Rawat K. Sharma A. Saha L. Current and emerging therapeutic approaches for colorectal cancer: A comprehensive review. World J. Gastrointest. Surg. 2023 15 4 495 519 10.4240/wjgs.v15.i4.495 37206081
    [Google Scholar]
  7. Cruz De los Santos M. Dragomir M.P. Calin G.A. The role of exosomal long non-coding RNAs in cancer drug resistance. Cancer Drug Resist. 2019 2 4 1178 1192 10.20517/cdr.2019.74 31867576
    [Google Scholar]
  8. Longley D.B. Johnston P.G. Molecular mechanisms of drug resistance. J. Pathol. 2005 205 2 275 292 10.1002/path.1706 15641020
    [Google Scholar]
  9. Yimin E Lu C. Zhu K. Li W. Sun J. Ji P. Meng M. Liu Z. Yu C. Function and mechanism of exosomes derived from different cells as communication mediators in colorectal cancer metastasis. iScience 2024 27 4 109350 10.1016/j.isci.2024.109350 38500820
    [Google Scholar]
  10. Hu H.Y. Yu C.H. Zhang H.H. Zhang S.Z. Yu W.Y. Yang Y. Chen Q. Exosomal miR-1229 derived from colorectal cancer cells promotes angiogenesis by targeting HIPK2. Int. J. Biol. Macromol. 2019 132 470 477 10.1016/j.ijbiomac.2019.03.221 30936013
    [Google Scholar]
  11. Chen E. Yu J. The role and metabolic adaptations of neutrophils in premetastatic niches. Biomark. Res. 2023 11 1 50 10.1186/s40364‑023‑00493‑6 37158964
    [Google Scholar]
  12. Hongkuan Z. Karsoon T. Shengkang L. Hongyu M. Huaiping Z. The functional roles of the non-coding RNAs in molluscs. Gene 2021 768 145300 10.1016/j.gene.2020.145300 33207256
    [Google Scholar]
  13. Mezher M. Abdallah S. Ashekyan O. Shoukari A.A. Choubassy H. Kurdi A. Temraz S. Nasr R. Insights on the biomarker potential of exosomal non-coding rnas in colorectal cancer: An in silico characterization of related exosomal lncrna/circrna–mirna–target axis. Cells 2023 12 7 1081 10.3390/cells12071081 37048155
    [Google Scholar]
  14. Anastasiadou E. Jacob L.S. Slack F.J. Non-coding RNA networks in cancer. Nat. Rev. Cancer 2018 18 1 5 18 10.1038/nrc.2017.99 29170536
    [Google Scholar]
  15. Zhang P. Wu W. Chen Q. Chen M. Non-coding rnas and their integrated networks. J. Integr. Bioinform. 2019 16 3 20190027 10.1515/jib‑2019‑0027 31301674
    [Google Scholar]
  16. Amelimojarad M. AmeliMojarad M. Nazemalhosseini-Mojarad E. Exosomal noncoding RNAs in colorectal cancer: An overview of functions, challenges, opportunities, and clinical applications. Pathol. Res. Pract. 2022 238 154133 10.1016/j.prp.2022.154133 36152568
    [Google Scholar]
  17. Samuels M. Jones W. Towler B. Turner C. Robinson S. Giamas G. The role of non-coding RNAs in extracellular vesicles in breast cancer and their diagnostic implications. Oncogene 2023 42 41 3017 3034 10.1038/s41388‑023‑02827‑y 37670020
    [Google Scholar]
  18. Wang W. Hao L.P. Song H. Chu X.Y. Wang R. The potential roles of exosomal non-coding rnas in hepatocellular carcinoma. Front. Oncol. 2022 12 790916 10.3389/fonc.2022.790916 35280805
    [Google Scholar]
  19. Li Y. Tang X. Wang B. Chen M. Zheng J. Chang K. Current landscape of exosomal non-coding RNAs in prostate cancer: Modulators and biomarkers. Noncoding RNA Res. 2024 9 4 1351 1362 10.1016/j.ncrna.2024.07.003 39247145
    [Google Scholar]
  20. Zhang Y. Luo J. Yang W. Ye W.C. CircRNAs in colorectal cancer: Potential biomarkers and therapeutic targets. Cell Death Dis. 2023 14 6 353 10.1038/s41419‑023‑05881‑2 37296107
    [Google Scholar]
  21. Hussen B.M. Abdullah S.R. Mohammed A.A. Rasul M.F. Hussein A.M. Eslami S. Glassy M.C. Taheri M. Advanced strategies of targeting circular RNAs as therapeutic approaches in colorectal cancer drug resistance. Pathol. Res. Pract. 2024 260 155402 10.1016/j.prp.2024.155402 38885593
    [Google Scholar]
  22. Jia Z. Jia J. Yao L. Li Z. Crosstalk of exosomal non-coding rnas in the tumor microenvironment: Novel frontiers. Front. Immunol. 2022 13 900155 10.3389/fimmu.2022.900155 35663957
    [Google Scholar]
  23. Gurunathan S. Kang M.H. Jeyaraj M. Qasim M. Kim J.H. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells 2019 8 4 307 10.3390/cells8040307 30987213
    [Google Scholar]
  24. Cheng Y. Zeng Q. Han Q. Xia W. Effect of pH, temperature and freezing-thawing on quantity changes and cellular uptake of exosomes. Protein. Cell. 2019 10 4 295 299 10.1007/s13238‑018‑0529‑4 29616487
    [Google Scholar]
  25. Xu R. Simpson R.J. Greening D.W. A protocol for isolation and proteomic characterization of distinct extracellular vesicle subtypes by sequential centrifugal ultrafiltration. Methods Mol. Biol. 2017 1545 91 116 10.1007/978‑1‑4939‑6728‑5_7 27943209
    [Google Scholar]
  26. Théry C. Amigorena S. Raposo G. Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell. Biol. 2006 Chapter 3 Unit 3. 22 10.1002/0471143030.cb0322s30 18228490
    [Google Scholar]
  27. Tauro B.J. Greening D.W. Mathias R.A. Ji H. Mathivanan S. Scott A.M. Simpson R.J. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 2012 56 2 293 304 10.1016/j.ymeth.2012.01.002 22285593
    [Google Scholar]
  28. Liangsupree T. Multia E. Riekkola M.L. Modern isolation and separation techniques for extracellular vesicles. J. Chromatogr. A 2021 1636 461773 10.1016/j.chroma.2020.461773 33316564
    [Google Scholar]
  29. Böing A.N. van der Pol E. Grootemaat A.E. Coumans F.A.W. Sturk A. Nieuwland R. Single‐step isolation of extracellular vesicles by size‐exclusion chromatography. J. Extracell. Vesicles 2014 3 1 23430 10.3402/jev.v3.23430 25279113
    [Google Scholar]
  30. Rider M.A. Hurwitz S.N. Meckes D.G. Jr ExtraPEG: A polyethylene glycol-based method for enrichment of extracellular vesicles. Sci. Rep. 2016 6 1 23978 10.1038/srep23978 27068479
    [Google Scholar]
  31. Di Bella M.A. Overview and update on extracellular vesicles: Considerations on exosomes and their application in modern medicine. Biology (Basel) 2022 11 6 804 10.3390/biology11060804 35741325
    [Google Scholar]
  32. Guerrini L. Garcia-Rico E. O’Loghlen A. Giannini V. Alvarez-Puebla R.A. Surface-enhanced Laman scattering (SERS) spectroscopy for sensing and characterization of exosomes in cancer diagnosis. Cancers (Basel) 2021 13 9 2179 10.3390/cancers13092179 33946619
    [Google Scholar]
  33. Tian Y. Li S. Song J. Ji T. Zhu M. Anderson G.J. Wei J. Nie G. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 2014 35 7 2383 2390 10.1016/j.biomaterials.2013.11.083 24345736
    [Google Scholar]
  34. Jang S.C. Kim O.Y. Yoon C.M. Choi D.S. Roh T.Y. Park J. Nilsson J. Lötvall J. Kim Y.K. Gho Y.S. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano 2013 7 9 7698 7710 10.1021/nn402232g 24004438
    [Google Scholar]
  35. Statello L. Guo C.J. Chen L.L. Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 2021 22 2 96 118 10.1038/s41580‑020‑00315‑9 33353982
    [Google Scholar]
  36. Ponting C.P. Oliver P.L. Reik W. Evolution and functions of long noncoding RNAs. Cell 2009 136 4 629 641 10.1016/j.cell.2009.02.006 19239885
    [Google Scholar]
  37. Ponjavic J. Ponting C.P. Lunter G. Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res. 2007 17 5 556 565 10.1101/gr.6036807 17387145
    [Google Scholar]
  38. Huang Z. Du Y. Wen J. Lu B. Zhao Y. snoRNAs: functions and mechanisms in biological processes, and roles in tumor pathophysiology. Cell Death Discov. 2022 8 1 259 10.1038/s41420‑022‑01056‑8 35552378
    [Google Scholar]
  39. He X. Yu B. Kuang G. Wu Y. Zhang M. Cao P. Ou C. Long noncoding RNA DLEU2 affects the proliferative and invasive ability of colorectal cancer cells. J. Cancer 2021 12 2 428 437 10.7150/jca.48423 33391439
    [Google Scholar]
  40. Bhan A. Soleimani M. Mandal S.S. Long noncoding RNA and cancer: A new paradigm. Cancer Res. 2017 77 15 3965 3981 10.1158/0008‑5472.CAN‑16‑2634 28701486
    [Google Scholar]
  41. Sun R. He X.Y. Mei C. Ou C.L. Role of exosomal long non-coding RNAs in colorectal cancer. World J. Gastrointest. Oncol. 2021 13 8 867 878 10.4251/wjgo.v13.i8.867 34457192
    [Google Scholar]
  42. Lv Q. Wang Z. Zhong Z. Huang W. Role of long noncoding rnas in parkinson’s disease: Putative biomarkers and therapeutic targets. Parkinsons Dis. 2020 2020 1 12 10.1155/2020/5374307 32617144
    [Google Scholar]
  43. Liu Y. Ding W. Yu W. Zhang Y. Ao X. Wang J. Long non-coding RNAs: Biogenesis, functions, and clinical significance in gastric cancer. Mol. Ther. Oncolytics 2021 23 458 476 10.1016/j.omto.2021.11.005 34901389
    [Google Scholar]
  44. Chang W. Wang M. Zhang Y. Yu F. Hu B. Goljanek-Whysall K. Li P. Roles of long noncoding RNAs and small extracellular vesicle‐long noncoding RNAs in type 2 diabetes. Traffic 2022 23 11 526 537 10.1111/tra.12868 36109347
    [Google Scholar]
  45. Chen N. Zhao G. Yan X. Lv Z. Yin H. Zhang S. Song W. Li X. Li L. Du Z. Jia L. Zhou L. Li W. Hoffman A.R. Hu J.F. Cui J. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol. 2018 19 1 218 10.1186/s13059‑018‑1594‑y 30537986
    [Google Scholar]
  46. Xiao Y. Zhong J. Zhong B. Huang J. Jiang L. Jiang Y. Yuan J. Sun J. Dai L. Yang C. Li Z. Wang J. Zhong T. Exosomes as potential sources of biomarkers in colorectal cancer. Cancer Lett. 2020 476 13 22 10.1016/j.canlet.2020.01.033 32044357
    [Google Scholar]
  47. Guinney J. Dienstmann R. Wang X. de Reyniès A. Schlicker A. Soneson C. Marisa L. Roepman P. Nyamundanda G. Angelino P. Bot B.M. Morris J.S. Simon I.M. Gerster S. Fessler E. De Sousa E Melo F. Missiaglia E. Ramay H. Barras D. Homicsko K. Maru D. Manyam G.C. Broom B. Boige V. Perez-Villamil B. Laderas T. Salazar R. Gray J.W. Hanahan D. Tabernero J. Bernards R. Friend S.H. Laurent-Puig P. Medema J.P. Sadanandam A. Wessels L. Delorenzi M. Kopetz S. Vermeulen L. Tejpar S. The consensus molecular subtypes of colorectal cancer. Nat. Med. 2015 21 11 1350 1356 10.1038/nm.3967 26457759
    [Google Scholar]
  48. Huang X. Yuan T. Tschannen M. Sun Z. Jacob H. Du M. Liang M. Dittmar R.L. Liu Y. Liang M. Kohli M. Thibodeau S.N. Boardman L. Wang L. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics 2013 14 1 319 10.1186/1471‑2164‑14‑319 23663360
    [Google Scholar]
  49. Ha D. Yang N. Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges. Acta Pharm. Sin. B 2016 6 4 287 296 10.1016/j.apsb.2016.02.001 27471669
    [Google Scholar]
  50. Jorgensen B.G. Ro S. MicroRNAs and 'sponging' competitive endogenous rnas dysregulated in colorectal cancer: Potential as noninvasive biomarkers and therapeutic targets. Int. J. Mol. Sci. 2022 23 4 2166 10.3390/ijms23042166 35216281
    [Google Scholar]
  51. Meng S. Zhou H. Feng Z. Xu Z. Tang Y. Li P. Wu M. CircRNA: Functions and properties of a novel potential biomarker for cancer. Mol. Cancer 2017 16 1 94 10.1186/s12943‑017‑0663‑2 28535767
    [Google Scholar]
  52. Vakhshiteh F. Hassani S. Momenifar N. Pakdaman F. Exosomal circRNAs: New players in colorectal cancer. Cancer Cell Int. 2021 21 1 483 10.1186/s12935‑021‑02112‑6 34521402
    [Google Scholar]
  53. Zhang Y. Bi J. Huang J. Tang Y. Du S. Li P. Exosome: A review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int. J. Nanomedicine 2020 15 6917 6934 10.2147/IJN.S264498 33061359
    [Google Scholar]
  54. Li R. Jiang J. Shi H. Qian H. Zhang X. Xu W. CircRNA: A rising star in gastric cancer. Cell. Mol. Life Sci. 2020 77 9 1661 1680 10.1007/s00018‑019‑03345‑5 31659415
    [Google Scholar]
  55. Du W.W. Zhang C. Yang W. Yong T. Awan F.M. Yang B.B. Identifying and characterizing circRNA-protein interaction. Theranostics 2017 7 17 4183 4191 10.7150/thno.21299 29158818
    [Google Scholar]
  56. Huang A. Zheng H. Wu Z. Chen M. Huang Y. Circular RNA-protein interactions: functions, mechanisms, and identification. Theranostics 2020 10 8 3503 3517 10.7150/thno.42174 32206104
    [Google Scholar]
  57. Shi L. Yan P. Liang Y. Sun Y. Shen J. Zhou S. Circular RNA expression is suppressed by androgen receptor (AR)-regulated adenosine deaminase that acts on RNA (ADAR1) in human hepatocellular carcinoma. Cell. Death. Dis. 2017 8 11 e3171 10.1038/cddis.2017.556 29144509
    [Google Scholar]
  58. Zheng X. Chen L. Zhou Y. Wang Q. Zheng Z. Xu B. Wu C. Zhou Q. Hu W. Wu C. Jiang J. A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling. Mol. Cancer 2019 18 1 47 10.1186/s12943‑019‑1010‑6 30925892
    [Google Scholar]
  59. Poursheikhani A. Abbaszadegan M.R. Kerachian M.A. Mechanisms of long non‐coding RNA function in colorectal cancer tumorigenesis. Asia Pac. J. Clin. Oncol. 2021 17 1 7 23 10.1111/ajco.13452 32970938
    [Google Scholar]
  60. Ning T. Li J. He Y. Zhang H. Wang X. Deng T. Liu R. Li H. Bai M. Fan Q. Zhu K. Ying G. Ba Y. Exosomal miR-208b related with oxaliplatin resistance promotes treg expansion in colorectal cancer. Mol. Ther. 2021 29 9 2723 2736 10.1016/j.ymthe.2021.04.028 33905821
    [Google Scholar]
  61. Zeng Z. Li Y. Pan Y. Lan X. Song F. Sun J. Zhou K. Liu X. Ren X. Wang F. Hu J. Zhu X. Yang W. Liao W. Li G. Ding Y. Liang L. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat. Commun. 2018 9 1 5395 10.1038/s41467‑018‑07810‑w 30568162
    [Google Scholar]
  62. Zhao S. Mi Y. Guan B. Zheng B. Wei P. Gu Y. Zhang Z. Cai S. Xu Y. Li X. He X. Zhong X. Li G. Chen Z. Li D. Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer. J. Hematol. Oncol. 2020 13 1 156 10.1186/s13045‑020‑00991‑2 33213490
    [Google Scholar]
  63. Xavier C.P.R. Belisario D.C. Rebelo R. Assaraf Y.G. Giovannetti E. Kopecka J. The role of extracellular vesicles in the transfer of drug resistance competences to cancer cells. Drug. Resist. Updat. 2022 62 100833 10.1016/j.drup.2022.100833 35429792
    [Google Scholar]
  64. Kurter H. Yeşi̇l J. Daskin E. Çalibaşi Koçal G. Elli̇dokuz H. Başbinar Y. Drug resistance mechanisms on colorectal cancer. Journal of Basic and Clinical Health Sciences 2021 5 1 88 93 10.30621/jbachs.869310
    [Google Scholar]
  65. Mansoori B. Mohammadi A. Davudian S. Shirjang S. Baradaran B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull. 2017 7 3 339 348 10.15171/apb.2017.041 29071215
    [Google Scholar]
  66. Shah M.A. Schwartz G.K. Cell cycle-mediated drug resistance: An emerging concept in cancer therapy. Clin. Cancer Res. 2001 7 8 2168 2181 11489790
    [Google Scholar]
  67. Attardi L.D. DePinho R.A. Conquering the complexity of p53. Nat. Genet. 2004 36 1 7 8 10.1038/ng0104‑7 14702030
    [Google Scholar]
  68. Hemann M.T. Lowe S.W. The p53–Bcl-2 connection. Cell Death Differ. 2006 13 8 1256 1259 10.1038/sj.cdd.4401962 16710363
    [Google Scholar]
  69. Chen X. Chen S. Yu D. Metabolic reprogramming of chemoresistant cancer cells and the potential significance of metabolic regulation in the reversal of cancer chemoresistance. Metabolites 2020 10 7 289 10.3390/metabo10070289 32708822
    [Google Scholar]
  70. Lampropoulou D.I. Pliakou E. Aravantinos G. Filippou D. Gazouli M. The role of exosomal non-coding rnas in colorectal cancer drug resistance. Int. J. Mol. Sci. 2022 23 3 1473 10.3390/ijms23031473 35163397
    [Google Scholar]
  71. Laplagne C. Domagala M. Le Naour A. Quemerais C. Hamel D. Fournié J.J. Couderc B. Bousquet C. Ferrand A. Poupot M. Latest advances in targeting the tumor microenvironment for tumor suppression. Int. J. Mol. Sci. 2019 20 19 4719 10.3390/ijms20194719 31547627
    [Google Scholar]
  72. Shedden K. Xie X.T. Chandaroy P. Chang Y.T. Rosania G.R. Expulsion of small molecules in vesicles shed by cancer cells: Association with gene expression and chemosensitivity profiles. Cancer Res. 2003 63 15 4331 4337 12907600
    [Google Scholar]
  73. Chapuy B. Koch R. Radunski U. Corsham S. Cheong N. Inagaki N. Ban N. Wenzel D. Reinhardt D. Zapf A. Schweyer S. Kosari F. Klapper W. Truemper L. Wulf G.G. Intracellular ABC transporter A3 confers multidrug resistance in leukemia cells by lysosomal drug sequestration. Leukemia 2008 22 8 1576 1586 10.1038/leu.2008.103 18463677
    [Google Scholar]
  74. Bebawy M. Combes V. Lee E. Jaiswal R. Gong J. Bonhoure A. Grau G.E.R. Membrane microparticles mediate transfer of P-glycoprotein to drug sensitive cancer cells. Leukemia 2009 23 9 1643 1649 10.1038/leu.2009.76 19369960
    [Google Scholar]
  75. Bahrami A. Moradi Binabaj M. A Ferns G. Exosomes: Emerging modulators of signal transduction in colorectal cancer from molecular understanding to clinical application. Biomed. Pharmacother. 2021 141 111882 10.1016/j.biopha.2021.111882 34218003
    [Google Scholar]
  76. Hu Y. Yan C. Mu L. Huang K. Li X. Tao D. Wu Y. Qin J. Fibroblast-derived exosomes contribute to chemoresistance through priming cancer stem cells in colorectal cancer. PLoS One 2015 10 5 e0125625 10.1371/journal.pone.0125625 25938772
    [Google Scholar]
  77. Hu J.L. Wang W. Lan X.L. Zeng Z.C. Liang Y.S. Yan Y.R. Song F.Y. Wang F.F. Zhu X.H. Liao W.J. Liao W.T. Ding Y.Q. Liang L. CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol. Cancer 2019 18 1 91 10.1186/s12943‑019‑1019‑x 31064356
    [Google Scholar]
  78. Nie H. Liao Z. Wang Y. Zhou J. He X. Ou C. Exosomal long non-coding RNAs: Emerging players in cancer metastasis and potential diagnostic biomarkers for personalized oncology. Genes Dis. 2021 8 6 769 780 10.1016/j.gendis.2020.12.004 34522707
    [Google Scholar]
  79. Yang X.D. Xu H.T. Xu X.H. Ru G. Liu W. Zhu J.J. Wu Y.Y. Zhao K. Wu Y. Xing C.G. Zhang S.Y. Cao J.P. Li M. Knockdown of long non-coding RNA HOTAIR inhibits proliferation and invasiveness and improves radiosensitivity in colorectal cancer. Oncol. Rep. 2016 35 1 479 487 10.3892/or.2015.4397 26549670
    [Google Scholar]
  80. He X. Li S. Yu B. Kuang G. Wu Y. Zhang M. He Y. Ou C. Cao P. Up-regulation of LINC00467 promotes the tumourigenesis in colorectal cancer. J. Cancer 2019 10 25 6405 6413 10.7150/jca.32216 31772673
    [Google Scholar]
  81. Luo M.-L. Methods to study long noncoding RNA biology in cancer. Adv. Exp. Med. Biol. 2016 927 69 107 10.1007/978‑981‑10‑1498‑7_3 27376732
    [Google Scholar]
  82. Zhou Y. Zhu Y. Xie Y. Ma X. The role of long non-coding RNAs in immunotherapy resistance. Front. Oncol. 2019 9 1292 10.3389/fonc.2019.01292 31850199
    [Google Scholar]
  83. Wu K. Zhao Z. Liu K. Zhang J. Li G. Wang L. Long noncoding RNA lnc-sox5 modulates CRC tumorigenesis by unbalancing tumor microenvironment. Cell Cycle 2017 16 13 1295 1301 10.1080/15384101.2017.1317416 28632999
    [Google Scholar]
  84. Liang Z. Liu H. Wang F. Xiong L. Zhou C. Hu T. He X. Wu X. Xie D. Wu X. Lan P. LncRNA RPPH1 promotes colorectal cancer metastasis by interacting with TUBB3 and by promoting exosomes-mediated macrophage M2 polarization. Cell Death Dis. 2019 10 11 829 10.1038/s41419‑019‑2077‑0 31685807
    [Google Scholar]
  85. Zhou L. Li J. Tang Y. Yang M. Exosomal LncRNA LINC00659 transferred from cancer-associated fibroblasts promotes colorectal cancer cell progression via miR-342-3p/ANXA2 axis. J. Transl. Med. 2021 19 1 8 10.1186/s12967‑020‑02648‑7 33407563
    [Google Scholar]
  86. Luan Y. Li X. Luan Y. Zhao R. Li Y. Liu L. Hao Y. Oleg Vladimir B. Jia L. Circulating lncRNA UCA1 promotes malignancy of colorectal cancer via the miR-143/MYO6 axis. Mol. Ther. Nucleic Acids 2020 19 790 803 10.1016/j.omtn.2019.12.009 31955010
    [Google Scholar]
  87. Wang F.W. Cao C.H. Han K. Zhao Y.X. Cai M.Y. Xiang Z.C. Zhang J.X. Chen J.W. Zhong L.P. Huang Y. Zhou S.F. Jin X.H. Guan X.Y. Xu R.H. Xie D. APC-activated long noncoding RNA inhibits colorectal carcinoma pathogenesis through reduction of exosome production. J. Clin. Invest. 2019 129 2 727 743 10.1172/JCI122478 30511962
    [Google Scholar]
  88. Liu K. Gao L. Ma X. Huang J.J. Chen J. Zeng L. Ashby C.R. Jr Zou C. Chen Z.S. Long non-coding RNAs regulate drug resistance in cancer. Mol. Cancer 2020 19 1 54 10.1186/s12943‑020‑01162‑0 32164712
    [Google Scholar]
  89. Ren J. Ding L. Zhang D. Shi G. Xu Q. Shen S. Wang Y. Wang T. Hou Y. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics 2018 8 14 3932 3948 10.7150/thno.25541 30083271
    [Google Scholar]
  90. Sun F. Liang W. Qian J. The identification of CRNDE, H19, UCA1 and HOTAIR as the key lncRNAs involved in oxaliplatin or irinotecan resistance in the chemotherapy of colorectal cancer based on integrative bioinformatics analysis. Mol. Med. Rep. 2019 20 4 3583 3596 10.3892/mmr.2019.10588 31432188
    [Google Scholar]
  91. Hui B. Lu C. Wang J. Xu Y. Yang Y. Ji H. Li X. Xu L. Wang J. Tang W. Wang K. Gu Y. Engineered exosomes for co‐delivery of PGM5‐AS1 and oxaliplatin to reverse drug resistance in colon cancer. J. Cell. Physiol. 2022 237 1 911 933 10.1002/jcp.30566 34463962
    [Google Scholar]
  92. Romano G. Veneziano D. Acunzo M. Croce C.M. Small non-coding RNA and cancer. Carcinogenesis 2017 38 5 485 491 10.1093/carcin/bgx026 28449079
    [Google Scholar]
  93. Fang Y. Fang D. Hu J. MicroRNA and its roles in esophageal cancer. Med. Sci. Monit. 2012 18 3 RA22 RA30 10.12659/MSM.882509 22367141
    [Google Scholar]
  94. Peng Y. Croce C.M. The role of MicroRNAs in human cancer. Signal Transduct. Target. Ther. 2016 1 1 15004 10.1038/sigtrans.2015.4 29263891
    [Google Scholar]
  95. Smolarz B. Durczyński A. Romanowicz H. Szyłło K. Hogendorf P. miRNAs in cancer (Review of Literature). Int. J. Mol. Sci. 2022 23 5 2805 10.3390/ijms23052805 35269947
    [Google Scholar]
  96. Laschos K. Lampropoulou D.I. Aravantinos G. Piperis M. Filippou D. Theodoropoulos G. Gazouli M. Exosomal noncoding RNAs in cholangiocarcinoma: Laboratory noise or hope? World J. Gastrointest. Surg. 2020 12 10 407 424 10.4240/wjgs.v12.i10.407 33194090
    [Google Scholar]
  97. Song B. Wang Y. Xi Y. Kudo K. Bruheim S. Botchkina G.I. Gavin E. Wan Y. Formentini A. Kornmann M. Fodstad O. Ju J. Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene 2009 28 46 4065 4074 10.1038/onc.2009.274 19734943
    [Google Scholar]
  98. Wang S. Zeng Y. Zhou J.M. Nie S.L. Peng Q. Gong J. Huo J.R. MicroRNA-1246 promotes growth and metastasis of colorectal cancer cells involving CCNG2 reduction. Mol. Med. Rep. 2016 13 1 273 280 10.3892/mmr.2015.4557 26573378
    [Google Scholar]
  99. Mitchell P.S. Parkin R.K. Kroh E.M. Fritz B.R. Wyman S.K. Pogosova-Agadjanyan E.L. Peterson A. Noteboom J. O’Briant K.C. Allen A. Lin D.W. Urban N. Drescher C.W. Knudsen B.S. Stirewalt D.L. Gentleman R. Vessella R.L. Nelson P.S. Martin D.B. Tewari M. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 2008 105 30 10513 10518 10.1073/pnas.0804549105 18663219
    [Google Scholar]
  100. Chen X. Ba Y. Ma L. Cai X. Yin Y. Wang K. Guo J. Zhang Y. Chen J. Guo X. Li Q. Li X. Wang W. Zhang Y. Wang J. Jiang X. Xiang Y. Xu C. Zheng P. Zhang J. Li R. Zhang H. Shang X. Gong T. Ning G. Wang J. Zen K. Zhang J. Zhang C.Y. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008 18 10 997 1006 10.1038/cr.2008.282 18766170
    [Google Scholar]
  101. Chakrabortty A. Patton D.J. Smith B.F. Agarwal P. miRNAs: Potential as biomarkers and therapeutic targets for cancer. Genes (Basel) 2023 14 7 1375 10.3390/genes14071375 37510280
    [Google Scholar]
  102. Ogata-Kawata H. Izumiya M. Kurioka D. Honma Y. Yamada Y. Furuta K. Gunji T. Ohta H. Okamoto H. Sonoda H. Watanabe M. Nakagama H. Yokota J. Kohno T. Tsuchiya N. Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One 2014 9 4 e92921 10.1371/journal.pone.0092921 24705249
    [Google Scholar]
  103. Igaz P. Circulating microRNAs in disease diagnostics and their potential biological relevance. Springer 2015 10.1007/978‑3‑0348‑0955‑9
    [Google Scholar]
  104. Koga Y. Yasunaga M. Moriya Y. Akasu T. Fujita S. Yamamoto S. Matsumura Y. Exosome can prevent RNase from degrading microRNA in feces. J. Gastrointest. Oncol. 2011 2 4 215 222 22811855
    [Google Scholar]
  105. Shigeyasu K. Toden S. Zumwalt T.J. Okugawa Y. Goel A. Emerging role of microRNAs as liquid biopsy biomarkers in gastrointestinal cancers. Clin. Cancer Res. 2017 23 10 2391 2399 10.1158/1078‑0432.CCR‑16‑1676 28143873
    [Google Scholar]
  106. Chen B. Xia Z. Deng Y.N. Yang Y. Zhang P. Zhu H. Xu N. Liang S. Emerging microRNA biomarkers for colorectal cancer diagnosis and prognosis. Open Biol. 2019 9 1 180212 10.1098/rsob.180212 30958116
    [Google Scholar]
  107. Baassiri A. Nassar F. Mukherji D. Shamseddine A. Nasr R. Temraz S. Exosomal non coding rna in liquid biopsies as a promising biomarker for colorectal cancer. Int. J. Mol. Sci. 2020 21 4 1398 10.3390/ijms21041398 32092975
    [Google Scholar]
  108. He H.W. Wang N.N. Yi X.M. Tang C.P. Wang D. Low-level serum miR-24-2 is associated with the progression of colorectal cancer. Cancer Biomark. 2018 21 2 261 267 10.3233/CBM‑170321 29171985
    [Google Scholar]
  109. Ya G. Wang H. Ma Y. Hu A. Ma Y. Hu J. Yu Y. Serum miR-129 functions as a biomarker for colorectal cancer by targeting estrogen receptor (ER) β. Pharmazie 2017 72 2 107 112 29441863
    [Google Scholar]
  110. Matsumura T. Sugimachi K. Iinuma H. Takahashi Y. Kurashige J. Sawada G. Ueda M. Uchi R. Ueo H. Takano Y. Shinden Y. Eguchi H. Yamamoto H. Doki Y. Mori M. Ochiya T. Mimori K. Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer. Br. J. Cancer 2015 113 2 275 281 10.1038/bjc.2015.201 26057451
    [Google Scholar]
  111. Han L. Shi W.J. Xie Y.B. Zhang Z.G. Diagnostic value of four serum exosome microRNAs panel for the detection of colorectal cancer. World J. Gastrointest. Oncol. 2021 13 8 970 979 10.4251/wjgo.v13.i8.970 34457199
    [Google Scholar]
  112. Lopes-Rodrigues V. Seca H. Sousa D. Sousa E. Lima R.T. Vasconcelos M.H. The network of P-glycoprotein and microRNAs interactions. Int. J. Cancer 2014 135 2 253 263 10.1002/ijc.28500 24122334
    [Google Scholar]
  113. Liang G. Zhu Y. Ali D.J. Tian T. Xu H. Si K. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J. Nanobiotechnology 2020 18 1 1 15 10.1186/s12951‑019‑0560‑5 31898555
    [Google Scholar]
  114. Yao S. Yin Y. Jin G. Li D. Li M. Hu Y. Feng Y. Liu Y. Bian Z. Wang X. Mao Y. Zhang J. Wu Z. Huang Z. Exosome‐mediated delivery of miR‐204‐5p inhibits tumor growth and chemoresistance. Cancer Med. 2020 9 16 5989 5998 10.1002/cam4.3248 32618144
    [Google Scholar]
  115. Holzner S. Senfter D. Stadler S. Staribacher A. Nguyen C.H. Gaggl A. Geleff S. Huttary N. Krieger S. Jäger W. Dolznig H. Mader R.M. Krupitza G. Colorectal cancer cell-derived microRNA200 modulates the resistance of adjacent blood endothelial barriers in vitro. Oncol. Rep. 2016 36 5 3065 3071 10.3892/or.2016.5114 27666412
    [Google Scholar]
  116. Ren D. Lin B. Zhang X. Peng Y. Ye Z. Ma Y. Liang Y. Cao L. Li X. Li R. Sun L. Liu Q. Wu J. Zhou K. Zeng J. Maintenance of cancer stemness by miR-196b-5p contributes to chemoresistance of colorectal cancer cells via activating STAT3 signaling pathway. Oncotarget 2017 8 30 49807 49823 10.18632/oncotarget.17971 28591704
    [Google Scholar]
  117. Liu T. Zhang X. Du L. Wang Y. Liu X. Tian H. Wang L. Li P. Zhao Y. Duan W. Xie Y. Sun Z. Wang C. RETRACTED ARTICLE: Exosome-transmitted miR-128-3p increase chemosensitivity of oxaliplatin-resistant colorectal cancer. Mol. Cancer 2019 18 1 43 10.1186/s12943‑019‑0981‑7 30890168
    [Google Scholar]
  118. Kang F. Jiang F. Ouyang L. Wu S. Fu C. Liu Y. Li Z. Tian Y. Cao X. Wang X. He Q. Potential biological roles of exosomal long non-coding rnas in gastrointestinal cancer. Front. Cell Dev. Biol. 2022 10 886191 10.3389/fcell.2022.886191 35602607
    [Google Scholar]
  119. Ashwal-Fluss R. Meyer M. Pamudurti N.R. Ivanov A. Bartok O. Hanan M. Evantal N. Memczak S. Rajewsky N. Kadener S. circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell 2014 56 1 55 66 10.1016/j.molcel.2014.08.019 25242144
    [Google Scholar]
  120. Guo X. Gao C. Yang D.H. Li S. Exosomal circular RNAs: A chief culprit in cancer chemotherapy resistance. Drug Resist. Updat. 2023 67 100937 10.1016/j.drup.2023.100937 36753923
    [Google Scholar]
  121. Li Y. Zheng Q. Bao C. Li S. Guo W. Zhao J. Chen D. Gu J. He X. Huang S. Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Res. 2015 25 8 981 984 10.1038/cr.2015.82 26138677
    [Google Scholar]
  122. Harper K. Mottram T. Whitehouse A. Insights into the evolving roles of circular rnas in cancer. Cancers (Basel) 2021 13 16 4180 10.3390/cancers13164180 34439334
    [Google Scholar]
  123. Lai Z. Wei T. Li Q. Wang X. Zhang Y. Zhang S. Exosomal circFBLIM1 promotes hepatocellular carcinoma progression and glycolysis by regulating the miR-338/LRP6 axis. Cancer Biother. Radiopharm. 2020 32907351
    [Google Scholar]
  124. Hashemi M. Khosroshahi E.M. Daneii P. Hassanpoor A. Eslami M. Koohpar Z.K. Asadi S. Zabihi A. Jamali B. Ghorbani A. Nabavi N. Memarkashani M.R. Salimimoghadam S. Taheriazam A. Tan S.C. Entezari M. Farahani N. Hushmandi K. Emerging roles of CircRNA-miRNA networks in cancer development and therapeutic response. Noncoding RNA Res. 2025 10 98 115 10.1016/j.ncrna.2024.09.006 39351450
    [Google Scholar]
  125. Bai H. Lei K. Huang F. Jiang Z. Zhou X. Exo-circRNAs: A new paradigm for anticancer therapy. Mol. Cancer 2019 18 1 56 10.1186/s12943‑019‑0986‑2 30925885
    [Google Scholar]
  126. Feng W. Gong H. Wang Y. Zhu G. Xue T. Wang Y. Cui G. RETRACTED: Circift80 functions as a cerna of mir-1236-3p to promote colorectal cancer progression. Mol. Ther. Nucleic Acids 2019 18 375 387 10.1016/j.omtn.2019.08.024 31648103
    [Google Scholar]
  127. Zhang X. Wang S. Wang H. Cao J. Huang X. Chen Z. Xu P. Sun G. Xu J. Lv J. Xu Z. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol. Cancer 2019 18 1 20 10.1186/s12943‑018‑0935‑5 30717751
    [Google Scholar]
  128. Zhang Y. Tan X. Lu Y. Exosomal transfer of circ_0006174 contributes to the chemoresistance of doxorubicin in colorectal cancer by depending on the miR-1205/CCND2 axis. J. Physiol. Biochem. 2022 78 1 39 50 10.1007/s13105‑021‑00831‑y 34792792
    [Google Scholar]
  129. Abe N. Matsumoto K. Nishihara M. Nakano Y. Shibata A. Maruyama H. Shuto S. Matsuda A. Yoshida M. Ito Y. Abe H. Rolling circle translation of circular RNA in living human cells. Sci. Rep. 2015 5 1 16435 10.1038/srep16435 26553571
    [Google Scholar]
  130. Nishida N. Yano H. Nishida T. Kamura T. Kojiro M. Angiogenesis in cancer. Vasc. Health Risk Manag. 2006 2 3 213 219 10.2147/vhrm.2006.2.3.213 17326328
    [Google Scholar]
  131. Zhang X.P. Pei J.P. Zhang C.D. Yusupu M. Han M.H. Dai D.Q. Exosomal circRNAs: A key factor of tumor angiogenesis and therapeutic intervention. Biomed. Pharmacother. 2022 156 113921 10.1016/j.biopha.2022.113921 36411614
    [Google Scholar]
  132. Zeng W. Liu Y. Li W.T. Li Y. Zhu J.F. CircFNDC3B sequestrates miR‐937‐5p to derepress TIMP3 and inhibit colorectal cancer progression. Mol. Oncol. 2020 14 11 2960 2984 10.1002/1878‑0261.12796 32896063
    [Google Scholar]
  133. Zhang C. Zhou X. Geng X. Zhang Y. Wang J. Wang Y. Jing J. Zhou X. Pan W. Circular RNA hsa_circ_0006401 promotes proliferation and metastasis in colorectal carcinoma. Cell Death Dis. 2021 12 5 443 10.1038/s41419‑021‑03714‑8 33947841
    [Google Scholar]
  134. Wang L. Zhou J. Zhang C. Chen R. Sun Q. Yang P. Peng C. Tan Y. Jin C. Wang T. Ji J. Sun Y. A novel tumour suppressor protein encoded by circMAPK14 inhibits progression and metastasis of colorectal cancer by competitively binding to MKK6. Clin. Transl. Med. 2021 11 10 e613 10.1002/ctm2.613 34709743
    [Google Scholar]
  135. Li X. Wang J. Zhang C. Lin C. Zhang J. Zhang W. Zhang W. Lu Y. Zheng L. Li X. Circular rna circitga7 inhibits colorectal cancer growth and metastasis by modulating the ras pathway and upregulating transcription of its host gene ITGA7. J. Pathol. 2018 246 2 166 179 10.1002/path.5125 29943828
    [Google Scholar]
  136. Weng W. Wei Q. Toden S. Yoshida K. Nagasaka T. Fujiwara T. Cai S. Qin H. Ma Y. Goel A. Circular RNA ciRS-7—a promising prognostic biomarker and a potential therapeutic target in colorectal cancer. Clin. Cancer Res. 2017 23 14 3918 3928 10.1158/1078‑0432.CCR‑16‑2541 28174233
    [Google Scholar]
  137. Wang S. Cheng L. Wu H. Li G. Mechanisms and prospects of circular RNAs and their interacting signaling pathways in colorectal cancer. Front. Oncol. 2022 12 949656 10.3389/fonc.2022.949656 35992800
    [Google Scholar]
  138. Burd C.E. Jeck W.R. Liu Y. Sanoff H.K. Wang Z. Sharpless N.E. Expression of linear and novel circular forms of an ink4/arf-associated non-coding rna correlates with atherosclerosis risk. PLoS Genet. 2010 6 12 e1001233 10.1371/journal.pgen.1001233 21151960
    [Google Scholar]
  139. Pan B. Qin J. Liu X. He B. Wang X. Pan Y. Sun H. Xu T. Xu M. Chen X. Xu X. Zeng K. Sun L. Wang S. Identification of serum exosomal hsa-circ-0004771 as a novel diagnostic biomarker of colorectal cancer. Front. Genet. 2019 10 1096 10.3389/fgene.2019.01096 31737058
    [Google Scholar]
  140. Xie Y. Li J. Li P. Li N. Zhang Y. Binang H. Zhao Y. Duan W. Chen Y. Wang Y. Du L. Wang C. RNA-Seq profiling of serum exosomal circular RNAs reveals Circ-PNN as a potential biomarker for human colorectal cancer. Front. Oncol. 2020 10 982 10.3389/fonc.2020.00982 32626660
    [Google Scholar]
  141. Li T. Zhou T. Wu J. Lv H. Zhou H. Du M. Zhang X. Wu N. Gong S. Ren Z. Zhang P. Zhang C. Liu G. Liu X. Zhang Y. Plasma exosome-derived circGAPVD1 as a potential diagnostic marker for colorectal cancer. Transl. Oncol. 2023 31 101652 10.1016/j.tranon.2023.101652 36934637
    [Google Scholar]
  142. Dou Y. Cha D.J. Franklin J.L. Higginbotham J.N. Jeppesen D.K. Weaver A.M. Prasad N. Levy S. Coffey R.J. Patton J.G. Zhang B. Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes. Sci. Rep. 2016 6 1 37982 10.1038/srep37982 27892494
    [Google Scholar]
  143. Hua X. Sun Y. Chen J. Wu Y. Sha J. Han S. Zhu X. Circular RNAs in drug resistant tumors. Biomed. Pharmacother. 2019 118 109233 10.1016/j.biopha.2019.109233 31351436
    [Google Scholar]
  144. Qin M. Zhang C. Li Y. Circular RNAs in gynecologic cancers: Mechanisms and implications for chemotherapy resistance. Front. Pharmacol. 2023 14 1194719 10.3389/fphar.2023.1194719 37361215
    [Google Scholar]
  145. Whiteside T.L. Tumor-derived exosomes and their role in cancer progression. Adv. Clin. Chem. 2016 74 103 141 10.1016/bs.acc.2015.12.005 27117662
    [Google Scholar]
  146. Liu Z. Zheng N. Li J. Li C. Zheng D. Jiang X. Ge X. Liu M. Liu L. Song Z. Bao L. Zhan Y. Gao X. N6-methyladenosine-modified circular RNA QSOX1 promotes colorectal cancer resistance to anti-CTLA-4 therapy through induction of intratumoral regulatory T cells. Drug Resist. Updat. 2022 65 100886 10.1016/j.drup.2022.100886 36370665
    [Google Scholar]
  147. Hon K.W. Ab-Mutalib N.S. Abdullah N.M.A. Jamal R. Abu N. Extracellular vesicle-derived circular rnas confers chemoresistance in colorectal cancer. Sci. Rep. 2019 9 1 16497 10.1038/s41598‑019‑53063‑y 31712601
    [Google Scholar]
  148. Li C. Li X. Exosome‐derived circ_0094343 promotes chemosensitivity of colorectal cancer cells by regulating glycolysis via the mir‐766‐5p/trim67 axis. Contrast Media Mol. Imaging 2022 2022 1 2878557 10.1155/2022/2878557 35854778
    [Google Scholar]
  149. Minciacchi V.R. Zijlstra A. Rubin M.A. Di Vizio D. Extracellular vesicles for liquid biopsy in prostate cancer: Where are we and where are we headed? Prostate Cancer Prostatic Dis. 2017 20 3 251 258 10.1038/pcan.2017.7 28374743
    [Google Scholar]
  150. Maas S.L.N. de Vrij J. van der Vlist E.J. Geragousian B. van Bloois L. Mastrobattista E. Schiffelers R.M. Wauben M.H.M. Broekman M.L.D. Nolte-’t Hoen E.N.M. Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. J. Control. Release 2015 200 87 96 10.1016/j.jconrel.2014.12.041 25555362
    [Google Scholar]
  151. Yan L. Zhao W. Yu H. Wang Y. Liu Y. Xie C. A comprehensive meta-analysis of microRNAs for predicting colorectal cancer. Medicine (Baltimore) 2016 95 9 e2738 10.1097/MD.0000000000002738 26945359
    [Google Scholar]
  152. Cekaite L. Eide P.W. Lind G.E. Skotheim R.I. Lothe R.A. MicroRNAs as growth regulators, their function and biomarker status in colorectal cancer. Oncotarget 2016 7 6 6476 6505 10.18632/oncotarget.6390 26623728
    [Google Scholar]
  153. Ždralević M. Raonić J. Popovic N. Vučković L. Rovčanin Dragović I. Vukčević B. Todorović V. Vukmirović F. Marzano F. Tullo A. Guaragnella N. Giannattasio S. Radunović M. The role of miRNA in colorectal cancer diagnosis: A pilot study. Oncol. Lett. 2023 25 6 267 10.3892/ol.2023.13853 37216163
    [Google Scholar]
  154. Al-Akhrass H. Christou N. The clinical assessment of microrna diagnostic, prognostic, and theranostic value in colorectal cancer. Cancers (Basel) 2021 13 12 2916 10.3390/cancers13122916 34208056
    [Google Scholar]
  155. Glažar P. Papavasileiou P. Rajewsky N. circBase: A database for circular RNAs. RNA 2014 20 11 1666 1670 10.1261/rna.043687.113 25234927
    [Google Scholar]
  156. Liu C. Liu R. Wang B. Lian J. Yao Y. Sun H. Zhang C. Fang L. Guan X. Shi J. Han S. Zhan F. Luo S. Yao Y. Zheng T. Zhang Y. Blocking IL-17A enhances tumor response to anti-PD-1 immunotherapy in microsatellite stable colorectal cancer. J. Immunother. Cancer 2021 9 1 e001895 10.1136/jitc‑2020‑001895 33462141
    [Google Scholar]
  157. Jiang W. Pan S. Chen X. Wang Z. Zhu X. The role of lncRNAs and circRNAs in the PD-1/PD-L1 pathway in cancer immunotherapy. Mol. Cancer 2021 20 1 116 10.1186/s12943‑021‑01406‑7 34496886
    [Google Scholar]
  158. Yoshioka Y. Kosaka N. Konishi Y. Ohta H. Okamoto H. Sonoda H. Nonaka R. Yamamoto H. Ishii H. Mori M. Furuta K. Nakajima T. Hayashi H. Sugisaki H. Higashimoto H. Kato T. Takeshita F. Ochiya T. Ultra-sensitive liquid biopsy of circulating extracellular vesicles using exoscreen. Nat. Commun. 2014 5 1 3591 10.1038/ncomms4591 24710016
    [Google Scholar]
  159. Ostenfeld M.S. Jensen S.G. Jeppesen D.K. Christensen L.L. Thorsen S.B. Stenvang J. Hvam M.L. Thomsen A. Mouritzen P. Rasmussen M.H. Nielsen H.J. Ørntoft T.F. Andersen C.L. miRNA profiling of circulating epcam + extracellular vesicles: Promising biomarkers of colorectal cancer. J. Extracell. Vesicles 2016 5 1 31488 10.3402/jev.v5.31488 27576678
    [Google Scholar]
  160. Xiao Y. Li Y. Yuan Y. Liu B. Pan S. Liu Q. Qi X. Zhou H. Dong W. Jia L. The potential of exosomes derived from colorectal cancer as a biomarker. Clin. Chim. Acta 2019 490 186 193 10.1016/j.cca.2018.09.007 30194933
    [Google Scholar]
  161. He J. Wu W. Comprehensive landscape and future perspectives of long noncoding RNAs (lncRNAs) in colorectal cancer (CRC): Based on a bibliometric analysis. Noncoding RNA Res. 2023 8 1 33 52 10.1016/j.ncrna.2022.10.001 36311994
    [Google Scholar]
  162. Wang Y. Liu J. Ma J. Sun T. Zhou Q. Wang W. Wang G. Wu P. Wang H. Jiang L. Yuan W. Sun Z. Ming L. Exosomal circRNAs: Biogenesis, effect and application in human diseases. Mol. Cancer 2019 18 1 116 10.1186/s12943‑019‑1041‑z 31277663
    [Google Scholar]
/content/journals/mirna/10.2174/0122115366331268250303031240
Loading
/content/journals/mirna/10.2174/0122115366331268250303031240
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test