Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

The five-membered oxazole motif heterocyclic aromatic ring has been gaining considerable attention due to its bioisosterism property and unusually wide range of desired biological properties. Thus, it is a perfect pre-built platform for the discovery of new scaffold development in medicinal chemistry. In recent years, the potential of oxazoles has garnered significant attention from medicinal chemists, resulting in the development of several synthetic and plant-based drugs currently in the market. Interest in the biological applications of oxazoles has notably intensified over the past fifteen years. This overview aims to provide a comprehensive, systematic summary of recent advancements in the synthetic chemistry of oxazole-based compounds, highlighting significant progress in their biological applications during this period as well as outlining prospects for further development. In summary, we overview literature in synthetic chemistry and explore structure-activity relationships and mechanisms of action with medicinal applications for the development of oxazole derivatives that hold promise for discovering new and effective drug candidates.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064361520250115090651
2025-01-20
2025-12-01
Loading full text...

Full text loading...

References

  1. KakkarS. NarasimhanB. A comprehensive review on biological activities of oxazole derivatives.BMC Chem.2019131610.1186/s13065‑019‑0531‑9
    [Google Scholar]
  2. ZhangH.Z. ZhaoZ.L. ZhouC.H. Recent advance in oxazole-based medicinal chemistry.Eur. J. Med. Chem.201814444449210.1016/j.ejmech.2017.12.044 29288945
    [Google Scholar]
  3. HassnerA. FischerB. New chemistry of oxazoles.Heterocycles19933521441146510.3987/REV‑92‑SR(T)6
    [Google Scholar]
  4. YuanL. ShengR. GuanM. WangY. ChenS. Biologically active 2-oxazolidinone derivatives beyond antibacterial activities.Curr. Med. Chem.202330232672268910.2174/0929867329666220823113415 36017852
    [Google Scholar]
  5. XuH.L. WeiY. HaoS. 4-Methylumbelliferone fused oxazole thioether derivatives: Synthesis, characterization and antifungal activities.Nat. Prod. Res.202236370771310.1080/14786419.2020.1798665 32757631
    [Google Scholar]
  6. ShakyaA.K. KaurA. NajjarA.B.O. NaikR.R. Molecular modeling, synthesis, characterization and pharmacological evaluation of benzo[d]oxazole derivatives as non-steroidal anti-inflammatory agents.Saudi Pharm. J.201624561662410.1016/j.jsps.2015.03.018 27829803
    [Google Scholar]
  7. CameronA. ReadJ. TranterR. WinterV.J. SessionsR.B. BradyR.L. VivasL. EastonA. KendrickH. CroftS.L. BarrosD. LavanderaJ.L. MartinJ.J. RiscoF. cía-OchoaG.S. GamoF.J. SanzL. LeonL. RuizJ.R. GabarróR. MalloA. de las HerasF.G. Identification and activity of a series of azole-based compounds with lactate dehydrogenase-directed anti-malarial activity.J. Biol. Chem.200427930314293143910.1074/jbc.M402433200 15117937
    [Google Scholar]
  8. AmiriE.S.S. ShafaeiF. MoradiV.A. OrimiL.G.F. RostamiZ. A novel synthesis and antioxidant evaluation of functionalized [1,3]‐oxazoles using Fe3O4‐magnetic nanoparticles.J. Heterocycl. Chem.201956102744275210.1002/jhet.3640
    [Google Scholar]
  9. DengC. YanH. WangJ. LiuB. LiuK. ShiY. The anti-HIV potential of imidazole, oxazole and thiazole hybrids: A mini-review.Arab. J. Chem.2022151110424210.1016/j.arabjc.2022.104242
    [Google Scholar]
  10. ChenJ. LvS. LiuJ. YuY. WangH. ZhangH. An overview of bioactive 1,3-oxazole-containing alkaloids from marine organisms.Pharmaceuticals20211412127410.3390/ph14121274 34959674
    [Google Scholar]
  11. WileyR.H. The chemistry of the oxazoles.Chem. Rev.194537340144210.1021/cr60118a002 21013426
    [Google Scholar]
  12. CornforthJ. CornforthR. Mechanism and extension of the Fischer oxazole synthesis.Chem. Soc.1949194910281030
    [Google Scholar]
  13. RymbaiE. ChakrabortyA. ChoudhuryR. VermaN. DeB. Review on chemistry and therapeutic activity of the derivatives of furan and oxazole: The oxygen containing heterocycles.Der Pharma Chemica2019112041
    [Google Scholar]
  14. BelaidiS. MellaouiM. Electronic structure and physical-chemistry property relationship for oxazole derivatives by Ab initio and DFT methods.Org. Chem. Int.201120111710.1155/2011/254064
    [Google Scholar]
  15. MengH. ZiY. XuX.P. JiS.J. Metal-free one-pot domino reaction: Chemoselective synthesis of polyarylated oxazoles.Tetrahedron201571233819382610.1016/j.tet.2015.03.119
    [Google Scholar]
  16. YuX-Q. WuB. WenJ. ZhangJ. LiJ. XiangY-Z. One-pot van leusen synthesis of 4,5-disubstituted oxazoles in ionic liquids.Synlett20092009350050410.1055/s‑0028‑1087547
    [Google Scholar]
  17. CaoM. FangY.L. WangY.C. XuX.J. XiZ.W. TangS. Ce(OTf) 3 -catalyzed multicomponent reaction of alkynyl carboxylic acids, tert -butyl isocyanide, and azides for the assembly of triazole–oxazole derivatives.ACS Comb. Sci.202022526827310.1021/acscombsci.0c00012 32275136
    [Google Scholar]
  18. RenZ.L. GuanZ.R. KongH.H. DingM.W. Multifunctional odorless isocyano(triphenylphosphoranylidene)-acetates: Synthesis and direct one-pot four-component Ugi/Wittig cyclization to multisubstituted oxazoles.Org. Chem. Front.20174102044204810.1039/C7QO00490G
    [Google Scholar]
  19. WipfP. FletcherJ.M. ScaroneL. Microwave promoted oxazole synthesis: Cyclocondensation cascade of oximes and acyl chlorides.Tetrahedron Lett.200546335463546610.1016/j.tetlet.2005.06.063
    [Google Scholar]
  20. GaoW.C. WangR.L. ZhangC. Practical oxazole synthesis mediated by iodine from α-bromoketones and benzylamine derivatives.Org. Biomol. Chem.201311417123712810.1039/c3ob41566j 24057123
    [Google Scholar]
  21. XuZ. ZhangC. JiaoN. Synthesis of oxazoles through copper-mediated aerobic oxidative dehydrogenative annulation and oxygenation of aldehydes and amines.Angew. Chem. Int. Ed.20125145113671137010.1002/anie.201206382 23047285
    [Google Scholar]
  22. WanC. ZhangJ. WangS. FanJ. WangZ. Facile synthesis of polysubstituted oxazoles via a copper-catalyzed tandem oxidative cyclization.Org. Lett.201012102338234110.1021/ol100688c 20394433
    [Google Scholar]
  23. GokhaleK.M. WagalO. KanitkarA. Synthesis of Di and trisubstituted oxazoles in nonionic liquid under catalyst free conditions.Int. J. Pharm. Phytopharmacol. Res.201214156160
    [Google Scholar]
  24. SinghB.S. LoboH.R. PinjariD.V. JaragK.J. PanditA.B. ShankarlingG.S. Ultrasound and deep eutectic solvent (DES): A novel blend of techniques for rapid and energy efficient synthesis of oxazoles.Ultrason. Sonochem.201320128729310.1016/j.ultsonch.2012.06.003 22784641
    [Google Scholar]
  25. FanS. TongT. FangL. WuJ. LiE. KangH. LvX. WangX. A facile one-pot synthesis of 2- o -cyanoaryl oxazole derivatives mediated by CuCN.Tetrahedron Lett.201859141409141310.1016/j.tetlet.2018.02.058
    [Google Scholar]
  26. KajolK. RameshC. Sequential one‐pot method for the synthesis of 4‐(Hydroxymethyl)oxazoles and their application in phosphonates synthesis.Asian J. Org. Chem.202110364965410.1002/ajoc.202000710
    [Google Scholar]
  27. PadmajaA. RajasekharC. MuralikrishnaA. PadmavathiV. Synthesis and antioxidant activity of oxazolyl/thiazolylsulfonylmethyl pyrazoles and isoxazoles.Eur. J. Med. Chem.201146105034503810.1016/j.ejmech.2011.08.010 21864949
    [Google Scholar]
  28. KeivanlooA. AbbaspourS. SepehriS. BakheradM. Synthesis, antibacterial activity and molecular docking study of a series of 1,3-oxazole-quinoxaline amine hybrids.Polycycl. Aromat. Compd.20224252378239110.1080/10406638.2020.1833052
    [Google Scholar]
  29. YeW. Discovery of novel trimethoxyphenylbenzo [d] oxazoles as dual tubulin/PDE4 inhibitors capable of inducing apoptosis at G2/M phase arrest in glioma and lung cancer cells.European J. Med. Chem.202122411370010.1016/j.ejmech.2021.113700
    [Google Scholar]
  30. QaziS.U. NazA. HameedA. OsraF.A. JalilS. IqbalJ. ShahS.A.A. MirzaA.Z. Semicarbazones, thiosemicarbazone, thiazole and oxazole analogues as monoamine oxidase inhibitors: Synthesis, characterization, biological evaluation, molecular docking, and kinetic studies.Bioorg. Chem.202111510520910.1016/j.bioorg.2021.105209 34364054
    [Google Scholar]
  31. ZhangM.Z. ChenQ. MulhollandN. BeattieD. IrwinD. GuY.C. YangG.F. CloughJ. Synthesis and fungicidal activity of novel pimprinine analogues.Eur. J. Med. Chem.20125328329110.1016/j.ejmech.2012.04.012 22560632
    [Google Scholar]
  32. WuC. LiangZ.W. XuY.Y. HeW.M. XiangJ.N. Gold-catalyzed oxazoles synthesis and their relevant antiproliferative activities.Chin. Chem. Lett.201324121064106610.1016/j.cclet.2013.06.026
    [Google Scholar]
  33. LiuZ. BianM. MaQ.Q. ZhangZ. DuH.H. WeiC.X. Design and synthesis of new benzo [d] oxazole-based derivatives and their neuroprotective effects on β-amyloid-induced PC12 cells.Molecules20202522539110.3390/molecules25225391
    [Google Scholar]
  34. PremakumariC. MuralikrishnaA. PadmajaA. PadmavathiV. ParkS.J. KimT-J. ReddyG.D. Synthesis, antimicrobial and anticancer activities of amido sulfonamido methane linked bis heterocycles.Arab. J. Chem.20147438539510.1016/j.arabjc.2013.10.024
    [Google Scholar]
  35. NiraimathiV. SureshJ. LathaT. Antileptospiral screening (In vitro) of azomethines of aryl oxazole2.Int. J. Pharm. Pharm. Sci.20113152153
    [Google Scholar]
  36. PouramiriB. MoghimiS. MahdaviM. NadriH. MoradiA. KermaniA.T.E. FiroozpourL. AsadipourA. ForoumadiA. Synthesis and anticholinesterase activity of new substituted benzo[d]oxazole‐based derivatives.Chem. Biol. Drug Des.201789578378910.1111/cbdd.12902 27863021
    [Google Scholar]
  37. RahimF. TariqS. TahaM. UllahH. ZamanK. UddinI. WadoodA. KhanA.A. RehmanA.U. UddinN. ZafarS. ShahS.A.A. New triazinoindole bearing thiazole/oxazole analogues: Synthesis, α-amylase inhibitory potential and molecular docking study.Bioorg. Chem.20199210328410.1016/j.bioorg.2019.103284 31546207
    [Google Scholar]
  38. KhusnutdinovaE.F. PetrovaA.V. LobovA.N. KukovinetsO.S. BaevD.S. KazakovaO.B. Synthesis of C17-[5-methyl-1,3]-oxazoles by N -propargylation of triterpenic acids and evaluation of their cytotoxic activity.Nat. Prod. Res.202135213850385810.1080/14786419.2020.1744139 32223360
    [Google Scholar]
  39. AhmadH. UllahS. RahmanF. SaeedA. PelletierJ. SévignyJ. HassanA. IqbalJ. Synthesis of biphenyl oxazole derivatives via Suzuki coupling and biological evaluations as nucleotide pyrophosphatase/phosphodiesterase-1 and -3 inhibitors.Eur. J. Med. Chem.202020811275910.1016/j.ejmech.2020.112759 32883636
    [Google Scholar]
  40. LinY. AhmedW. HeM. XiangX. TangR. CuiZ.N. Synthesis and bioactivity of phenyl substituted furan and oxazole carboxylic acid derivatives as potential PDE4 inhibitors.Eur. J. Med. Chem.202020711279510.1016/j.ejmech.2020.112795 33002845
    [Google Scholar]
  41. RenteríaI.A.S.A. CastilloR.C.J.J.J. CoronaR.C.M. FernándezN.H.E. GonzálezZ.G.E. GalindoA.R.V.M. EspinozaE.A.E. AlanísL.A.F.G. Synthesis and in vitro evaluation of antimycobacterial and cytotoxic activity of new α,β-unsaturated amide, oxazoline and oxazole derivatives from -serine.Bioorg. Med. Chem. Lett.202030912707410.1016/j.bmcl.2020.127074 32151467
    [Google Scholar]
  42. WahaibiA.L.H. MostafaA. MostafaY.A. u-GhadirA.O.F. AbdelazeemA.H. GoudaA.M. KutkatO. ShamaA.N.M. ShehataM. GomaaH.A.M. AbdelrahmanM.H. MohamedF.A.M. GuX. AliM.A. TrembleauL. YoussifB.G.M. Discovery of novel oxazole-based macrocycles as anti-coronaviral agents targeting SARS-CoV-2 main protease.Bioorg. Chem.202111610536310.1016/j.bioorg.2021.105363 34555629
    [Google Scholar]
  43. KatariyaK.D. VennapuD.R. ShahS.R. Synthesis and molecular docking study of new 1,3-oxazole clubbed pyridyl-pyrazolines as anticancer and antimicrobial agents.J. Mol. Struct.2021123213003610.1016/j.molstruc.2021.130036
    [Google Scholar]
  44. SiscoE. BarnesK.L. Design, synthesis, and biological evaluation of novel 1,3-oxazole sulfonamides as tubulin polymerization inhibitors.ACS Med. Chem. Lett.20211261030103710.1021/acsmedchemlett.1c00219 34141089
    [Google Scholar]
  45. BalarajuV. KalyaniS. SridharG. LaxminarayanaE. Design, synthesis and biological assessment of 1,3,4-oxadiazole incorporated oxazole-triazine derivatives as anticancer agents.Chem. Data Collect.20213310069510.1016/j.cdc.2021.100695
    [Google Scholar]
  46. KrishnaA.M.S. GandhamH.B. ValluruK.R. RaoN.S.K. SridharG. BattulaV.R. Design, synthesis and anticancer activity of arylketo alkyne derivatives of 7-azaindole-oxazole.Chem. Data Collect.20213410074310.1016/j.cdc.2021.100743
    [Google Scholar]
  47. KalininS. KovalenkoA. ValtariA. NocentiniA. GureevM. UrttiA. KorsakovM. SupuranC.T. KrasavinM. 5-(Sulfamoyl)thien-2-yl 1,3-oxazole inhibitors of carbonic anhydrase II with hydrophilic periphery.J. Enzyme Inhib. Med. Chem.20223711005101110.1080/14756366.2022.2056733 35350949
    [Google Scholar]
  48. BairiS. AlagarsamyV. RachamallaS.S. Design, synthesis and biological evaluation of aryl 1,3-oxazole-oxazolo[4,5-b]pyridin-2-yl)benzo[d]thiazol-6-yl)thiazole-2-carboxamides as anticancer agents.Chem. Data Collect.20224010088310.1016/j.cdc.2022.100883
    [Google Scholar]
  49. InamiH. MizutaniT. WatanabeJ. HayashidaH. ItoT. TerasawaT. KontaniT. YamagishiH. UsudaH. AoyamaN. ImamuraE. IshikawaT. Design, synthesis, and pharmacological evaluation of N-(3-carbamoyl-1H-pyrazol-4-yl)-1,3-oxazole-4-carboxamide derivatives as interleukin-1 receptor-associated kinase 4 inhibitors with reduced potential for cytochrome P450 1A2 induction.Bioorg. Med. Chem.20238711730210.1016/j.bmc.2023.117302 37201454
    [Google Scholar]
  50. LingalaA.K. MurahariK.K. DesireddiJ.R. MotheT. MaitiB. ManchalR. Design, synthesis and biological evaluation of isoxazole bearing 1, 3-oxazole-1, 3, 4-oxadiazole derivatives as anticancer agents.Chem. Data Collect.20234310095910.1016/j.cdc.2022.100959
    [Google Scholar]
  51. KokkiligaddaS.B. MusunuriS. MaitiB. RaoM.V.B. SomaiahN. Synthesis and biological evaluation of amide derivatives of quinazoline-thaizole-oxazole as anticancer agents.Chem. Data Collect.20234810104610.1016/j.cdc.2023.101046
    [Google Scholar]
  52. MishraT. GuptaS. RaiP. KhandelwalN. ChourasiyaM. KushwahaV. SinghA. VarshneyS. GaikwadA.N. NarenderT. Anti-adipogenic action of a novel oxazole derivative through activation of AMPK pathway.Eur. J. Med. Chem.202326211589510.1016/j.ejmech.2023.115895 37883898
    [Google Scholar]
  53. HussainR. RahimF. RehmanW. KhanS. RasheedL. MaalikA. TahaM. AlanaziM.M. AlanaziA.S. KhanI. ShahS.A.A. Synthesis, in vitro analysis and molecular docking study of novel benzoxazole-based oxazole derivatives for the treatment of Alzheimer’s disease.Arab. J. Chem.2023161110524410.1016/j.arabjc.2023.105244
    [Google Scholar]
  54. KhedkarR.N. SindkhedkarM. JosephA. Computational design, synthesis, and bioevaluation of 2-(Pyrimidin-4-yl) oxazole-4-carboxamide derivatives: Dual inhibition of EGFRWT and EGFRT790M with admet profiling.Bioorg. Chem.202415310791010.1016/j.bioorg.2024.107910 39482200
    [Google Scholar]
  55. PattabiV. VeeraboinaR.M. EppakayalaL. NavuluriS. MulakayalaN. Design, synthesis and biological evaluation of aryl urea derivatives of oxazole-pyrimidine as anticancer agents.Results Chem.2024710144210.1016/j.rechem.2024.101442
    [Google Scholar]
/content/journals/mc/10.2174/0115734064361520250115090651
Loading
/content/journals/mc/10.2174/0115734064361520250115090651
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test