Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Pyrazoline is a 5-membered ring that has two adjacent nitrogen. It has gained advanced attention from medical and organic chemists due to very low cytotoxic activities. It is applicable and more applied in research fields and has various pharmacological activities, including cardiovascular, anti-tumor, and anti-cancer properties. In this review, the main objective is to study the pharmacological aspects of pyrazoline and its derivative analogs. The present synthetic pyrazolines are better scaffolds, which show more biological and medicinal characteristics. These compounds exhibit diverse pharmacological activities, showcasing their potential as promising candidates for cancer therapy. Pyrazolines demonstrate remarkable anti-proliferative and apoptosis-inducing effects on cancer cells, attributed to their distinctive molecular structure. This review highlights the growing significance of pyrazolines in medicinal chemistry, emphasizing their role in designing novel anticancer agents. The multifaceted properties of pyrazolines offer a compelling foundation for further research, driving innovation in the quest for effective and targeted anticancer drugs.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064339011241129075522
2025-01-09
2025-12-20
Loading full text...

Full text loading...

References

  1. PM. BalrajV. VinithaG. vR. Synthesis, structural-spectral characterization and theoretical studies of Pyridinium-4-carbohydrazide 2,4,6-trinitrophenolate.J. Mol. Struct.2022126213277910.1016/j.molstruc.2022.132779
    [Google Scholar]
  2. PracekaM.S. MegantaraS. MaharaniR. MuchtaridiM. Comparison of various synthesis methods and synthesis parameters of pyrazoline derivates.J. Adv. Pharm. Technol. Res.202112432132610.4103/japtr.JAPTR_252_21 34820304
    [Google Scholar]
  3. Hartwig de OliveiraD. SousaF.S.S. BirmannP.T. PesaricoA.P. AlvesD. JacobR.G. Evaluation of antioxidant activity and toxicity of sulfur-or selenium-containing 4-(arylchalcogenyl)-1 H-pyrazoles.Can. J. Physiol. Pharmacol.20209844144810.1139/cjpp‑2019‑0356
    [Google Scholar]
  4. Abu-HashemA.A. Synthesis and antimicrobial activity of new 1,2,4‐triazole, 1,3,4‐oxadiazole, 1,3,4‐thiadiazole, thiopyrane, thiazolidinone, and azepine derivatives.J. Heterocycl. Chem.2021581749210.1002/jhet.4149
    [Google Scholar]
  5. WangS. LiuH. WangX. LeiK. LiG. QuanZ. Synthesis and evaluation of antidepressant activities of 5-Aryl-4,5-dihydrotetrazolo [1,5-a]thieno[2,3-e]pyridine derivatives.Molecules20192410185710.3390/molecules24101857 31091808
    [Google Scholar]
  6. GroverG. PalR. BhatiaR. YarM.S. NathR. SinghS. RajK. KumarB. AkhtarM.J. Design, synthesis, and pharmacological evaluation of aryl oxadiazole linked 1,2,4-triazine derivatives as anticonvulsant agents.Med. Chem. Res.202231578179310.1007/s00044‑022‑02880‑4
    [Google Scholar]
  7. SayedA.R. GomhaS.M. TaherE.A. MuhammadZ.A. El-SeediH.R. GaberH.M. AhmedM.M. One-Pot synthesis of novel thiazoles as potential anti-Cancer agents.Drug Des. Devel. Ther.2020141363137510.2147/DDDT.S221263 32308369
    [Google Scholar]
  8. MantzanidouM. PontikiE. Hadjipavlou-LitinaD. Pyrazoles and pyrazolines as anti-Inflammatory agents.Molecules20212611343910.3390/molecules26113439 34198914
    [Google Scholar]
  9. ZerafaN. CiniM. MagriD.C. Molecular engineering of 1,3,5-triaryl-2-pyrazoline fluorescent logic systems responsive to acidity and oxidisability and attachment to polymer beads.Mol. Syst. Des. Eng.202161939910.1039/D0ME00136H
    [Google Scholar]
  10. AlmahdiM.M. SaeedA.E.M. MetwallyN.H. Synthesis and antimicrobial activity of some new pyrazoline derivatives bearing sulfanilamido moiety.Eur. J. Chem.2019101303610.5155/eurjchem.10.1.30‑36.1791
    [Google Scholar]
  11. UddinA. SinghV. IrfanI. MohammadT. Singh HadaR. Imtaiyaz HassanM. AbidM. SinghS. Identification and structure–activity relationship (SAR) studies of carvacrol derivatives as potential anti-malarial against Plasmodium falciparum falcipain-2 protease.Bioorg. Chem.202010310414210.1016/j.bioorg.2020.104142 32763521
    [Google Scholar]
  12. ParonikyanE.G. OgannisyanA.V. ParonikyanR.G. DzhagatspanyanI.A. NazaryanI.M. AkopyanA.G. MinasyanN.S. Synthesis and neurotropic activity of 4-phenylpyridine-3-carboxylic acid and 3-hydroxy-4-phenylthieno[2,3-b]-pyridine derivatives.Pharm. Chem. J.2019521083984310.1007/s11094‑019‑1911‑0
    [Google Scholar]
  13. KumarL. LalK. KumarA. PaulA.K. KumarA. Pyrazoline tethered 1,2,3-triazoles: Synthesis, antimicrobial evaluation and in silico studies.J. Mol. Struct.2021124613115410.1016/j.molstruc.2021.131154
    [Google Scholar]
  14. AbeedA.A.O. JaleelG.A.A. YoussefM.S.K. Novel heterocyclic hybrids based on 2-pyrazoline: Synthesis and assessment of anti-inflammatory and analgesic activities.Curr. Org. Synth.201916692193010.2174/1570179416666190703115133 31984913
    [Google Scholar]
  15. El-KazakA.M. El-GoharyN.M. BadranA.S. IbrahimM.A. Synthesis and chemical reactivity of the novel 3-chloro-3-(4-chlorocoumarin-3-yl)prop-2-enal.Tetrahedron201975293923393210.1016/j.tet.2019.06.013
    [Google Scholar]
  16. TokF. İrem AbasB. ÇevikÖ. Koçyiğit-KaymakçıoğluB. Design, synthesis and biological evaluation of some new 2-Pyrazoline derivatives as potential anticancer agents.Bioorg. Chem.202010210406310.1016/j.bioorg.2020.104063 32663669
    [Google Scholar]
  17. AhamedL.S. AliR.A. AhmedR.S. Solvent-free synthesis of new chalcone derivatives from 3-nitro phthalic acid and evaluation of their biological activities.Egypt. J. Chem.202164610.21608/ejchem.2021.55742.3176
    [Google Scholar]
  18. NarwalS. KumarS. VermaP.K. Synthesis and biological activity of new chalcone scaffolds as prospective antimicrobial agents.Res. Chem. Intermed.20214741625164110.1007/s11164‑020‑04359‑6
    [Google Scholar]
  19. JainS.K. SinghalR. JainN.K. Synthesis, characterization and biological activity of pyrazoline derivatives.Res. J. Pharma. Technol.2021146223622710.52711/0974‑360X.2021.01077
    [Google Scholar]
  20. SadgirN.V. Synthesis, characterization and antimicrobial activity of chalcones, pyrazolines and pyrimidine derivatives.World J. Pharma. Res.2021103220210.17605/OSF.IO/X5JHP
    [Google Scholar]
  21. KalaiselviE. ArunadeviR. SashikalaS. Synthesis, characterization and antimicrobial activity of A chalcone derivative.J. Sci. Technol.20205Volume 533534310.46243/jst.2020.v5.i4.pp335‑343
    [Google Scholar]
  22. UpparV. ChandrashekharappaS. BasarikattA.I. BanuprakashG. MohanM.K. ChougalaM. Mudnakudu-NagarajuK.K. NingegowdaR. Synthesis, antibacterial, and antioxidant studies of 7-amino-3-(4-fluorobenzoyl)indolizine-1-carboxylate derivatives.J. Appl. Pharm. Sci.2020102778510.7324/JAPS.2020.102013
    [Google Scholar]
  23. HosnyM.A. ZakiY.H. MokbelW.A. AbdelhamidA.O. Synthesis, characterization, antimicrobial activity and anticancer of some new pyrazolo [1, 5-a] pyrimidines and pyrazolo [5, 1-c] 1, 2, 4-triazines.Med. Chem.202016675076010.2174/1573406415666190620144404 31218963
    [Google Scholar]
  24. BhattJ.J. DhakhdaS.K. TrivediM.H. Synthesis, characterization and anti-microbial activity of pyrazole capped 2-azitidinone derivatives.Res. J. Life Sci. Bioinform. Pharm. Chem. Sci.20195164765210.26479/2019.0501.54
    [Google Scholar]
  25. MohamedS. DawoudN. ShabaanS.N. FathallN. HosniG. AnwerK.E. Synthesis and biological activity of a new class of enaminonitrile pyrazole.Egyptian J. Chem.20226463187320310.21608/ejchem.2021.62916.3350
    [Google Scholar]
  26. ShaikhM.M. PatelA.P. PatelS.P. ChikhaliaK.H. Synthesis, in vitro COX-1/COX-2 inhibition testing and molecular docking study of novel 1,4-benzoxazine derivatives.New J. Chem.20194326103051031710.1039/C9NJ00684B
    [Google Scholar]
  27. R, K.; Bodke, Y.D. Synthesis, analgesic and anti-inflammatory activity of benzofuran pyrazole heterocycles.Chem. Data Collect.20202810045310.1016/j.cdc.2020.100453
    [Google Scholar]
  28. El-OssailyY.A. AlanaziN.M.M. AlthobaitiI.O. AltalebH.A. Al-MuailkelN.S. El-SayedM.Y. HusseinM.F. AhmedI.M. AlanaziM.M. FawzyA. Abdel-RaheemS.A.A. TolbaM.S. Multicomponent approach to the synthesis and spectral characterization of some 3,5-pyrazolididione derivatives and evaluation as anti-inflammatory agents.Curr. Chem. Lett.202413112714010.5267/j.ccl.2023.8.003
    [Google Scholar]
  29. TrukhanovaY.A. KolesnikD.A. YakovlevI.P. SpiridonovaD.V. YuskovetsV.N. KuvaevaE.V. KsenofontovaG.V. SemakovaT.L. An efficient synthesis and characterization of novel (Z)-1-phenyl(arylamino)methylpyrrolidine-2,5-dione derivatives as potential analgesic agents.Chem. Data Collect.20213510077010.1016/j.cdc.2021.100770
    [Google Scholar]
  30. DengZ. FengJ. ZhouF. OuyangY. MaH. ZhouW. ZhangX. CaiQ. Copper(I)–catalyzed intramolecular asymmetric C-arylation of acyclic β-ester amides: Enantioselective formation of chiral oxindoles.Org. Chem. Front.20218154211421610.1039/D1QO00568E
    [Google Scholar]
  31. BaiX.D. ZhangQ.F. HeY. Enantioselective iridium catalyzed α-alkylation of azlactones by a tandem asymmetric allylic alkylation/aza-Cope rearrangement.Chem. Commun. (Camb.)201955395547555010.1039/C9CC01450K 30993284
    [Google Scholar]
  32. XieF. ZhaoJ. RenD. XueJ. WangJ. ZhaoQ. LiuL. LiuX. Enantio and diastereoselective copper-catalyzed synthesis of chiral aziridines with vicinal tetrasubstituted stereocenters.Org. Lett.202325478530853410.1021/acs.orglett.3c03565 37975634
    [Google Scholar]
  33. HuF. ZhangH. ChuY. HuiX.P. Efficient enantioselective synthesis of pyrazolines and isoxazolines enabled by an iridium-catalyzed intramolecular allylic substitution reaction.Org. Chem. Front.20229102734273810.1039/D2QO00147K
    [Google Scholar]
  34. SebestF. LachhaniK. PimpasriC. CasarrubiosL. WhiteA.J.P. RzepaH.S. Díez-GonzálezS. Cycloaddition reactions of azides and electron-deficient alkenes in deep eutectic solvents: Pyrazolines, aziridines and other surprises.Adv. Synth. Catal.202036291877188610.1002/adsc.201901614
    [Google Scholar]
  35. OsipovD.V. KorzhenkoK.S. RashchepkinaD.A. ArtemenkoA.A. DemidovO.P. ShiryaevV.A. OsyaninV.A. Catalyst-free formal [3 + 2] cycloaddition of stabilized N, N -cyclic azomethine imines to 3-nitrobenzofurans and 3-nitro-4 H -chromenes: Access to heteroannulated pyrazolo[1,2- a]pyrazoles.Org. Biomol. Chem.20211946101561016810.1039/D1OB01377G 34778893
    [Google Scholar]
  36. YuX.Y. XiaoW.J. ChenJ.R. Synthesis of trisubstituted 1, 2, 4‐triazoles from azlactones and aryldiazonium salts by a cycloaddition/decarboxylation cascade.Eur. J. Org. Chem.20192019416994699810.1002/ejoc.201901467
    [Google Scholar]
  37. AngyalA. DemjénA. WölflingJ. PuskásL.G. KanizsaiI. Acid-catalyzed 1, 3-dipolar cycloaddition of 2 H-azirines with nitrones: An unexpected access to 1, 2, 4, 5-tetrasubstituted imidazoles.J. Org. Chem.20208553587359510.1021/acs.joc.9b03288 32020808
    [Google Scholar]
  38. LiangQ. ZengY. Mendez OcampoP.A. ZhuH. QuZ.W. GrimmeS. SongD. [4+1] cyclization of α-diazo esters and mesoionic N-heterocyclic olefins.Chem. Commun. (Camb.)202359324770477310.1039/D3CC01139A 37000520
    [Google Scholar]
  39. BlackL.E. LongoJ.F. CarrollS.L. Mechanisms of receptor tyrosine-protein kinase ErbB-3 (ERBB3) action in human neoplasia.Am. J. Pathol.2019189101898191210.1016/j.ajpath.2019.06.008 31351986
    [Google Scholar]
  40. XiaX. GongC. ZhangY. XiongH. The history and development of HER2 inhibitors.Pharmaceuticals20231610145010.3390/ph16101450 37895921
    [Google Scholar]
  41. ChoiB. ChaM. EunG.S. LeeD.H. LeeS. EhsanM. ChaeP.S. HeoW.D. ParkY. YoonT.Y. Single-molecule functional anatomy of endogenous HER2-HER3 heterodimers.Elife20209e5393410.7554/eLife.53934
    [Google Scholar]
  42. VellingiriB. IyerM. Devi SubramaniamM. JayaramayyaK. SiamaZ. GiridharanB. NarayanasamyA. DayemA.A. ChoS.G. Understanding the role of the transcription factor Sp1 in ovarian cancer: From theory to practice.Int. J. Mol. Sci.2020213115310.3390/ijms21031153 32050495
    [Google Scholar]
  43. MajumderA. HER3: Toward the prognostic significance, therapeutic potential, current challenges, and future therapeutics in different types of cancer.Cells20231221251710.3390/cells12212517 37947595
    [Google Scholar]
  44. ZhangY. Targeting epidermal growth factor receptor for cancer treatment: Abolishing both kinase-dependent and kinase-independent functions of the receptor.Pharmacol. Rev.20237561218123210.1124/pharmrev.123.000906 37339882
    [Google Scholar]
  45. HiganoC.S. ArmstrongA.J. SartorA.O. VogelzangN.J. KantoffP.W. McLeodD.G. PieczonkaC.M. PensonD.F. ShoreN.D. VacircaJ. ConcepcionR.S. TutroneR.F. NordquistL.T. QuinnD.I. KassabianV. ScholzM.C. HarmonM. TylerR.C. ChangN.N. TangH. CooperbergM.R. Real‐world outcomes of sipuleucel‐T treatment in PROCEED, a prospective registry of men with metastatic castration‐resistant prostate cancer.Cancer2019125234172418010.1002/cncr.32445 31483485
    [Google Scholar]
  46. WeiX.X. KwakL. HamidA. HeM. SweeneyC. FlandersS.C. HarmonM. ChoudhuryA.D. Outcomes in men with metastatic castration-resistant prostate cancer who received sipuleucel-T and no immediate subsequent therapy: Experience at Dana Farber and in the proceed Registry.Prostate Cancer Prostatic Dis.202225231431910.1038/s41391‑022‑00493‑x 35145218
    [Google Scholar]
  47. MadanR.A. AntonarakisE.S. DrakeC.G. FongL. YuE.Y. McNeelD.G. LinD.W. ChangN.N. SheikhN.A. GulleyJ.L. Putting the pieces together: Completing the mechanism of action jigsaw for sipuleucel-T.JNCI. J. Natl. Cancer Inst.2020112656257310.1093/jnci/djaa021 32145020
    [Google Scholar]
  48. GündoğduS. TürkeşC. ArslanM. DemirY. BeydemirŞ. New isoindole‐1, 3‐dione substituted sulfonamides as potent inhibitors of carbonic anhydrase and acetylcholinesterase: Design, synthesis, and biological evaluation.ChemistrySelect2019445133471335510.1002/slct.201903458
    [Google Scholar]
  49. RanaM. HungyoH. ParasharP. AhmadS. MehandiR. TandonV. RazaK. AssiriM.A. AliT.E. El-BahyZ.M. Rahisuddin. Design, synthesis, X-ray crystal structures, anticancer, DNA binding, and molecular modelling studies of pyrazole–pyrazoline hybrid derivatives.RSC Advances20231338267662677910.1039/D3RA04873J 37681049
    [Google Scholar]
  50. HaqI. Thermodynamics of drug–DNA interactions.Arch. Biochem. Biophys.2002403111510.1016/S0003‑9861(02)00202‑3 12061796
    [Google Scholar]
  51. BagS. BhowmikS. Fluorescence Spectroscopy: A useful method to explore the interactions of small molecule ligands with DNA structures. Reverse Engineering of Regulatory Networks. MandalS. Springer2023333910.1007/978‑1‑0716‑3461‑5_3
    [Google Scholar]
  52. BenfenatiE. CarnesecchiE. RoncaglioniA. BaldinR. CerianiL. CiacciA. KovarichS. SartoriL. MostragA. MagdziarzT. YangC. Maintenance, update and further development of EFSA’s Chemical Hazards: OpenFoodTox 2.0.EFSA Support. Publ.20201731822E10.2903/sp.efsa.2020.EN‑1822
    [Google Scholar]
  53. KashyapD. GargV.K. GoelN. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis.Adv. Protein Chem. Struct. Biol.20211257312010.1016/bs.apcsb.2021.01.003 33931145
    [Google Scholar]
  54. BockF.J. RileyJ.S. When cell death goes wrong: Inflammatory outcomes of failed apoptosis and mitotic cell death.Cell Death Differ.202330229330310.1038/s41418‑022‑01082‑0 36376381
    [Google Scholar]
  55. NössingC. RyanK.M. 50 years on and still very much alive: ‘Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics’.Br. J. Cancer2023128342643110.1038/s41416‑022‑02020‑0 36369364
    [Google Scholar]
  56. XuX. LaiY. HuaZ.C. Apoptosis and apoptotic body: Disease message and therapeutic target potentials.Biosci. Rep.2019391BSR2018099210.1042/BSR20180992 30530866
    [Google Scholar]
  57. (a CarusoS. Atkin-SmithG.K. BaxterA.A. TixeiraR. JiangL. OzkocakD.C. SantavanondJ.P. HulettM.D. LockP. PoonI.K.H. Defining the role of cytoskeletal components in the formation of apoptopodia and apoptotic bodies during apoptosis.Apoptosis20215859662310.1177/03009858211005537
    [Google Scholar]
  58. (b BhiseS. B. YadavA. V. AvachatA. M. MalayandiR. Mechanisms of regulated cell death: Current perspectives.Veter. Pathol202158596623
    [Google Scholar]
  59. JanR. ChaudhryG.S. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics.Adv. Pharm. Bull.20199220521810.15171/apb.2019.024 31380246
    [Google Scholar]
  60. Ghafouri-FardS. KhoshbakhtT. HussenB.M. DongP. GasslerN. TaheriM. BaniahmadA. DilmaghaniN.A. A review on the role of cyclin dependent kinases in cancers.Cancer Cell Int.202222132510.1186/s12935‑022‑02747‑z 36266723
    [Google Scholar]
  61. ŁukasikP. ZałuskiM. GutowskaI. Cyclin-Dependent Kinases (CDK) and their role in diseases development–review.Int. J. Mol. Sci.2021226293510.3390/ijms22062935 33805800
    [Google Scholar]
  62. GaoX. LeoneG.W. WangH. Cyclin D-CDK4/6 functions in cancer.Adv. Cancer Res.202014814716910.1016/bs.acr.2020.02.002 32723562
    [Google Scholar]
  63. SelvarajC. Therapeutic targets in cancer treatment: Cell cycle proteins.Adv. Protein Chem. Struct. Biol.202313531334210.1016/bs.apcsb.2023.02.003 37061336
    [Google Scholar]
  64. MassacciG. PerfettoL. SaccoF. The cyclin-dependent kinase 1: more than a cell cycle regulator.Br. J. Cancer2023129111707171610.1038/s41416‑023‑02468‑8 37898722
    [Google Scholar]
  65. KõivomägiM. SwafferM.P. TurnerJ.J. MarinovG. SkotheimJ.M. G 1 cyclin–Cdk promotes cell cycle entry through localized phosphorylation of RNA polymerase II.Science2021374656534735110.1126/science.aba5186 34648313
    [Google Scholar]
  66. WarrenC.F.A. Wong-BrownM.W. BowdenN.A. BCL-2 family isoforms in apoptosis and cancer.Cell Death Dis.201910317710.1038/s41419‑019‑1407‑6 30792387
    [Google Scholar]
  67. FenoS. RizzutoR. RaffaelloA. ReaneD.V. The molecular complexity of the mitochondrial calcium uniporter.Cell Calcium20219310232210.1016/j.ceca.2020.102322 33264708
    [Google Scholar]
  68. AlevriadouB.R. PatelA. NobleM. GhoshS. GohilV.M. StathopulosP.B. MadeshM. Molecular nature and physiological role of the mitochondrial calcium uniporter channel.Am. J. Physiol. Cell Physiol.20213204C465C48210.1152/ajpcell.00502.2020 33296287
    [Google Scholar]
  69. XiaY. ZhangX. AnP. LuoJ. LuoY. Mitochondrial homeostasis in VSMCs as a central hub in vascular remodeling.Int. J. Mol. Sci.2023244348310.3390/ijms24043483 36834896
    [Google Scholar]
  70. ZiadaA.S. SmithM.S.R. CôtéH.C.F. Updating the free radical theory of aging.Front. Cell Dev. Biol.2020857564510.3389/fcell.2020.575645 33043009
    [Google Scholar]
  71. GendersA.J. HollowayG.P. BishopD.J. Are alterations in skeletal muscle mitochondria a cause or consequence of insulin resistance.Int. J. Mol. Sci.20202118694810.3390/ijms21186948 32971810
    [Google Scholar]
  72. Di GregorioJ. PetriccaS. IorioR. ToniatoE. FlatiV. Mitochondrial and metabolic alterations in cancer cells.Eur. J. Cell Biol.2022101315122510.1016/j.ejcb.2022.151225 35453093
    [Google Scholar]
  73. CassimS. VučetićM. ŽdralevićM. PouyssegurJ. Warburg and Beyond: The power of mitochondrial metabolism to collaborate or replace fermentative glycolysis in cancer.Cancers2020125111910.3390/cancers12051119 32365833
    [Google Scholar]
  74. FischerA. Alsina-SanchisE. Disturbed endothelial cell signaling in tumor progression and therapy resistance.Curr. Opin. Cell Biol.20248610228710.1016/j.ceb.2023.102287 38029706
    [Google Scholar]
  75. Al-OstootF.H. SalahS. KhameesH.A. KhanumS.A. Tumor angiogenesis: Current challenges and therapeutic opportunities.Cancer Treat Res. Commun.20212810042210.1016/j.ctarc.2021.100422
    [Google Scholar]
  76. RaniV. PrabhuA. Combining angiogenesis inhibitors with radiation: Advances and challenges in cancer treatment.Curr. Pharm. Des.202127791993110.2174/1381612826666201002145454 33006535
    [Google Scholar]
  77. DieterichL.C. TacconiC. DucoliL. DetmarM. Lymphatic vessels in cancer.Physiol. Rev.2022102418371879
    [Google Scholar]
  78. GhalehbandiS. YuzugulenJ. PranjolM.Z.I. PourgholamiM.H. The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF.Eur. J. Pharmacol.202394917558610.1016/j.ejphar.2023.175586 36906141
    [Google Scholar]
  79. FaresJ. FaresM.Y. KhachfeH.H. SalhabH.A. FaresY. Molecular principles of metastasis: A hallmark of cancer revisited.Signal Transduct. Target. Ther.2020512810.1038/s41392‑020‑0134‑x 32296047
    [Google Scholar]
  80. RibattiD. PezzellaF. Overview on the different patterns of tumor vascularization.Cells202110363910.3390/cells10030639 33805699
    [Google Scholar]
  81. ThankamonyA.P. SaxenaK. MuraliR. JollyM.K. NairR. Cancer stem cell plasticity – A deadly deal.Front. Mol. Biosci.202077910.3389/fmolb.2020.00079 32426371
    [Google Scholar]
  82. NacevB.A. JonesK.B. IntlekoferA.M. YuJ.S.E. AllisC.D. TapW.D. LadanyiM. NielsenT.O. The epigenomics of sarcoma.Nat. Rev. Cancer2020201060862310.1038/s41568‑020‑0288‑4 32782366
    [Google Scholar]
  83. MadrigalP. DengS. FengY. MilitiS. GohK.J. NibhaniR. GrandyR. OsnatoA. OrtmannD. BrownS. PauklinS. Epigenetic and transcriptional regulations prime cell fate before division during human pluripotent stem cell differentiation.Nat. Commun.202314140510.1038/s41467‑023‑36116‑9 36697417
    [Google Scholar]
  84. KunnumakkaraA.B. BordoloiD. SailoB.L. RoyN.K. ThakurK.K. BanikK. ShakibaeiM. GuptaS.C. AggarwalB.B. Cancer drug development: The missing links.Exp. Biol. Med. (Maywood)2019244866368910.1177/1535370219839163 30961357
    [Google Scholar]
  85. NeophytouC.M. PanagiM. StylianopoulosT. PapageorgisP. The role of tumor microenvironment in cancer metastasis.Cancers2021139205310.3390/cancers13092053 33922795
    [Google Scholar]
  86. Fousek-SchullerV. BorgstahlG. The intriguing mystery of RPA phosphorylation in DNA double-strand break repair.Genes202415216710.3390/genes15020167 38397158
    [Google Scholar]
  87. StecozaC.E. NitulescuG.M. DraghiciC. CaproiuM.T. HanganuA. OlaruO.T. MihaiD.P. BostanM. MihailaM. Synthesis of 1,3,4-thiadiazole derivatives and their anticancer evaluation.Int. J. Mol. Sci.202324241747610.3390/ijms242417476 38139304
    [Google Scholar]
  88. FuJ. SuX. LiZ. DengL. LiuX. FengX. PengJ. HGF/c-MET pathway in cancer: From molecular characterization to clinical evidence.Oncogene202140284625465110.1038/s41388‑021‑01863‑w 34145400
    [Google Scholar]
  89. TiwariP.C. PalR. ChaudharyM.J. NathR. Artificial intelligence revolutionizing drug development: Exploring opportunities and challenges.Drug Dev. Res.20238481652166310.1002/ddr.22115 37712494
    [Google Scholar]
  90. ConstantinescuT. LunguC.N. Anticancer activity of natural and synthetic chalcones.Int. J. Mol. Sci.202122211130610.3390/ijms222111306 34768736
    [Google Scholar]
  91. KavanaghM.E. HorningB.D. KhattriR. RoyN. LuJ.P. WhitbyL.R. YeE. BrannonJ.C. ParkerA. ChickJ.M. EisslerC.L. WongA.J. RodriguezJ.L. RodilesS. MasudaK. TeijaroJ.R. SimonG.M. PatricelliM.P. CravattB.F. Selective inhibitors of JAK1 targeting an isoform-restricted allosteric cysteine.Nat. Chem. Biol.202218121388139810.1038/s41589‑022‑01098‑0 36097295
    [Google Scholar]
  92. BalsaL.M. BaranE.J. LeónI.E. Copper complexes as antitumor agents: In vitro and in vivo evidence.Curr. Med. Chem.202330551055710.2174/0929867328666211117094550 34789122
    [Google Scholar]
  93. VyasA.K. LunagariyaK.S. KhuntR.C. Multi-step synthesis of novel pyrazole derivatives as anticancer agents.Poly. Aro. Com.2023351410.1080/10406638.2023.2278664
    [Google Scholar]
  94. WangL. DohertyG.A. JuddA.S. TaoZ.F. HansenT.M. FreyR.R. SongX. BrunckoM. KunzerA.R. WangX. WendtM.D. FlygareJ.A. CatronN.D. JudgeR.A. ParkC.H. ShekharS. PhillipsD.C. NimmerP. SmithM.L. TahirS.K. XiaoY. XueJ. ZhangH. LeP.N. MittenM.J. BoghaertE.R. GaoW. KovarP. ChooE.F. DiazD. FairbrotherW.J. ElmoreS.W. SampathD. LeversonJ.D. SouersA.J. Discovery of A-1331852, a first-in-class, potent, and orally-bioavailable BCL-XL inhibitor.ACS Med. Chem. Lett.202011101829183610.1021/acsmedchemlett.9b00568 33062160
    [Google Scholar]
  95. AliY.M. IsmailM.F. Abu El-AzmF.S.M. MarzoukM.I. Design, synthesis, and pharmacological assay of novel compounds based on pyridazine moiety as potential antitumor agents.J. Heterocycl. Chem.20195692580259110.1002/jhet.3662
    [Google Scholar]
  96. AljohaniG.F. AbolibdaT.Z. AlhilalM. Al-HumaidiJ.Y. AlhilalS. AhmedH.A. GomhaS.M. Novel thiadiazole-thiazole hybrids: Synthesis, molecular docking, and cytotoxicity evaluation against liver cancer cell lines.J. Taibah Univ. Sci.20221611005101510.1080/16583655.2022.2135805
    [Google Scholar]
  97. AbdelgawadN. IsmailM.F. HekalM.H. MarzoukM.I. Design, synthesis, and evaluation of some novel heterocycles bearing pyrazole moiety as potential anticancer agents.J. Heterocycl. Chem.20195661771177910.1002/jhet.3544
    [Google Scholar]
  98. NiuZ. MaS. ZhangL. LiuQ. ZhangS. Discovery of novel quinazoline derivatives as potent antitumor agents.Molecules20222712390610.3390/molecules27123906 35745027
    [Google Scholar]
  99. StefanesN.M. ToigoJ. MaioralM.F. JacquesA.V. Chiaradia-DelatorreL.D. PerondiD.M. RibeiroA.A.B. BigolinÁ. PirathI.M.S. DuarteB.F. NunesR.J. Santos-SilvaM.C. Synthesis of novel pyrazoline derivatives and the evaluation of death mechanisms involved in their antileukemic activity.Bioorg. Med. Chem.201927237538210.1016/j.bmc.2018.12.012 30579801
    [Google Scholar]
  100. RanaM. FaizanM.I. DarS.H. AhmadT. Rahisuddin. Design and synthesis of carbothioamide/carboxamide-based pyrazoline analogs as potential anticancer agents: Apoptosis, molecular docking, ADME assay, and DNA binding studies.ACS Omega2022726226392265610.1021/acsomega.2c02033 35811873
    [Google Scholar]
  101. FakhryM.M. MahmoudK. NafieM.S. NoorA.O. HareeriR.H. SalamaI. KishkS.M. Rational design, synthesis and biological evaluation of novel pyrazoline-based antiproliferative agents in MCF-7 cancer cells.Pharmaceuticals20221510124510.3390/ph15101245 36297358
    [Google Scholar]
  102. HaiderK. SharmaS. PokharelY.R. DasS. JosephA. NajmiA.K. AhmadF. YarM.S. Synthesis, biological evaluation, and in silico studies of indole‐tethered pyrazoline derivatives as anticancer agents targeting topoisomerase IIα.Drug Dev. Res.20228371555157710.1002/ddr.21976 35898169
    [Google Scholar]
  103. TilekarK. UpadhyayN. Meyer-AlmesF.J. LoiodiceF. AnisimovaN.Y. SpirinaT.S. SokolovaD.V. SmirnovaG.B. ChoeJ. PokrovskyV.S. LavecchiaA. S RamaaC. Synthesis and biological evaluation of pyrazoline and pyrrolidine‐2, 5‐dione hybrids as potential antitumor agents.ChemMedChem202015191813182510.1002/cmdc.202000458 32715626
    [Google Scholar]
  104. KarenS. JaimeM. GaryG.B. Method of using COX-2 inhibitors in the treatment and prevention of neoplasia.Patent US5972986-A1999
  105. StevenK.R. LeeB.S. AllenB. StephanC. YeJ.H. Indazole comound and pharmaceutical association for inhibiting protein kinase and method for their use.Patent US6534524-B12003
  106. BergleeH. ErikV. ZhengyingP. Inhibitors of Bruton tyrosine kinase.Patent US8476284-B22013
  107. DongZ. ShengH.W. MathewT.R. AntoinettecR. JiewiQ.I. Subsituted acetylenic imidazo [1,2-A] pyridazines as kinase inhibitors.Patent US9029533-B22015
  108. JagabandhuD. RameshP. PingC. DerekN. ArthurD. Cyclic protein tyrosine kinase inhibitor.Patent US6596746-B12003
  109. ThomasH. Use of RNAI inhibiting PARP activity for the manufacture of a medicamentfor a treatment cancer.Patent US8859562-B22014
  110. JohaneesJ.E NeilsG.B. Subsituted 5-flouro-1H- pyrazolopyridines and their use.Patent US9993476B22018
  111. KandeelE.M. AbdullahA.N. TaherA.L. YousefA. Treatment of fungal infection using dabigartin etexilate.Patent US11446286-B12022
  112. ElizabethA.E. ScottW.G. Metabolites os selective androgen receptor modulators.Patent WO2009155481A12021
  113. JunL. ZhenW. ChengS.M. A method of simultaneous determination of volatile phenolic substances in smoked met products based on gas chromatography-mass spectrometry.Patent CN115248278-A2022
/content/journals/mc/10.2174/0115734064339011241129075522
Loading
/content/journals/mc/10.2174/0115734064339011241129075522
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anticancer activity; apoptosis; cancer; cell cycle; Pyrazoline; synthesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test