Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Background

Oxidative stress is strongly linked to neurodegeneration through the activation of c-Abl kinase, which arrests α-synuclein proteolysis by interacting with parkin interacting substrate (PARIS) and aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2). This activation, triggered by ataxia-telangiectasia mutated (ATM) kinase, leads to dopaminergic neuron loss and α-synuclein aggregation, a critical pathophysiological aspect of Parkinson’s disease (PD). To halt PD progression, pharmacological inhibition of c-Abl kinase is essential. Despite three generations of tyrosine kinase inhibitors (TKIs) being explored for PD treatment, they present significant concerns including poor blood-brain barrier penetration, off-target effects, and severe side effects. Notably, there are currently no FDA-approved c-Abl kinase inhibitors in clinical usage for PD treatment, highlighting the urgent need for potent, safe, and cost-effective alternatives.

Objective

This study aims to identify potential c-Abl kinase inhibitors from plant-derived compounds with reported anti-Parkinson's potential and their derivatives using molecular docking, molecular dynamics simulations (MDS), and pharmacokinetics and toxicity profiling.

Methods

Seventy-eight compounds sourced from literature were docked against c-Abl kinase using Maestro 12.5. The top three hit compounds, along with nilotinib (control drug), were subjected to drug-likeness, ADMET profiling using the AI Drug Lab server and 100 ns MDS using Desmond.

Results

Amburoside A, diarylheptanoid MS13, and dimethylaminomethyl-substituted-curcumin showed binding affinities close to nilotinib, with values of -12.615, -12.556, and -11.895 kcal/mol respectively, compared to nilotinib's -16.826 kcal/mol. The three plant-derived compounds exhibited excellent structural stability and favorable ADMET profiles, including optimal blood-brain barrier permeation.

Conclusion

The three hit compounds identified in this study show potential as c-Abl kinase inhibitors. Given the absence of FDA-approved c-Abl kinase inhibitors for PD, these findings are significant as they could contribute new therapeutic options for the treatment and management of PD. However, further and experiments are necessary to validate these findings.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064310145240822060730
2025-01-13
2025-12-01
Loading full text...

Full text loading...

References

  1. AlbrechtF. PoulakisK. FreidleM. JohanssonH. EkmanU. VolpeG. WestmanE. PereiraJ.B. FranzénE. Unraveling parkinson’s disease heterogeneity using subtypes based on multimodal data.Parkinsonism Relat. Disord.2022102192910.1016/j.parkreldis.2022.07.014 35932584
    [Google Scholar]
  2. BrahmachariS. GeP. LeeS.H. KimD. KaruppagounderS.S. KumarM. MaoX. ShinJ.H. LeeY. PletnikovaO. TroncosoJ.C. DawsonV.L. DawsonT.M. KoH.S. Activation of tyrosine kinase c-Abl contributes to α-synuclein–induced neurodegeneration.J. Clin. Invest.201612682970298810.1172/JCI85456 27348587
    [Google Scholar]
  3. SaleemU. BibiS. ShahM.A. AhmadB. SaleemA. ChauhdaryZ. Anti-Parkinson’s evaluation of Brassica juncea leaf extract and underlying mechanism of its phytochemicals.IMR Press202126111031105110.52586/5007
    [Google Scholar]
  4. KaiserT.M. DentmonZ.W. DalloulC.E. SharmaS.K. LiottaD.C. Accelerated discovery of novel ponatinib analogs with improved properties for the treatment of parkinson’s disease.ACS Med. Chem. Lett.202011449149610.1021/acsmedchemlett.9b00612 32292555
    [Google Scholar]
  5. LionakiE. MarkakiM. PalikarasK. TavernarakisN. Mitochondria, autophagy and age-associated neurodegenerative diseases: New insights into a complex interplay.Biochim. Biophys. Acta Bioenerg.20151847111412142310.1016/j.bbabio.2015.04.010 25917894
    [Google Scholar]
  6. LindholmD. PhamD.D. CasconeA. ErikssonO. WennerbergK. SaarmaM. c-Abl inhibitors enable insights into the pathophysiology and neuroprotection in parkinson’s disease.Front. Aging Neurosci.2016825410.3389/fnagi.2016.00254 27833551
    [Google Scholar]
  7. KarimM.R. LiaoE.E. KimJ. MeintsJ. MartinezH.M. PletnikovaO. TroncosoJ.C. LeeM.K. α-Synucleinopathy associated c-Abl activation causes p53-dependent autophagy impairment.Mol. Neurodegener.20201512710.1186/s13024‑020‑00364‑w 32299471
    [Google Scholar]
  8. WalshR.R. DamleN.K. MandhaneS. PiccoliS.P. TalluriR.S. LoveD. Plasma and cerebrospinal fluid pharmacokinetics of vodobatinib, a neuroprotective c-Abl tyrosine kinase inhibitor for the treatment of Parkinson’s disease.Parkinsonism Relat. Disord.202310528110.1016/j.parkreldis.2023.105281
    [Google Scholar]
  9. GhoshS. WonS.J. WangJ. FongR. ButlerN.J.M. MossA. WongC. PanJ. SanchezJ. HuynhA. WuL. ManfredssonF.P. SwansonR.A. α-synuclein aggregates induce c-Abl activation and dopaminergic neuronal loss by a feed-forward redox stress mechanism.Prog. Neurobiol.202120210207010.1016/j.pneurobio.2021.102070 33951536
    [Google Scholar]
  10. GoyalV. DashD. Anticancer drugs for parkinson’s disease: Is it a ray of hope or only hype?Ann. Indian Acad. Neurol.2019221131610.4103/aian.AIAN_177_18 30692753
    [Google Scholar]
  11. HannanM.A. DashR. HaqueM.N. MohibbullahM. SohagA.A.M. RahmanM.A. UddinM.J. AlamM. MoonI.S. Neuroprotective potentials of marine algae and their bioactive metabolites: Pharmacological insights and therapeutic advances.Mar. Drugs202018734710.3390/md18070347 32630301
    [Google Scholar]
  12. BrahmachariS. KaruppagounderS.S. GeP. LeeS. DawsonV.L. DawsonT.M. KoH.S. c-Abl and parkinson’s disease: Mechanisms and therapeutic potential.J. Parkinsons Dis.20177458960110.3233/JPD‑171191 29103051
    [Google Scholar]
  13. BarodiaS.K. CreedR.B. GoldbergM.S. Parkin and PINK1 functions in oxidative stress and neurodegeneration.Brain Res. Bull.2017133515910.1016/j.brainresbull.2016.12.004 28017782
    [Google Scholar]
  14. ChuC.T. Multiple pathways for mitophagy: A neurodegenerative conundrum for parkinson’s disease.Neurosci. Lett.2019697667110.1016/j.neulet.2018.04.004 29626647
    [Google Scholar]
  15. MarínT. VallsC. JerezC. ElguetaD. VidalL. AlvarezA.R. The c-Abl/p73 pathway induces neurodegeneration in a Parkinson’s disease model.IBRO Neurosci. Rep.20221337838710.1016/j.ibneur.2022.10.006 36590096
    [Google Scholar]
  16. FengL. FuS. YaoY. LiY. XuL. ZhaoY. LuoL. Roles for c-Abl in postoperative neurodegeneration.Int. J. Med. Sci.202219121753176110.7150/ijms.73740 36313229
    [Google Scholar]
  17. ZhangY. WuJ. JinW. ShenM. YinS. LaiX. Nonreceptor tyrosine kinase c-abl-mediated phb2 phosphorylation aggravates mitophagy disorder in parkinson’s disease model.Wiley Online Library202210.1155/2022/9233749
    [Google Scholar]
  18. WeisbergE. ManleyP.W. BreitensteinW. BrüggenJ. Cowan-JacobS.W. RayA. HuntlyB. FabbroD. FendrichG. Hall-MeyersE. KungA.L. MestanJ. DaleyG.Q. CallahanL. CatleyL. CavazzaC. MohammedA. NeubergD. WrightR.D. GillilandD.G. GriffinJ.D. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl.Cancer Cell20057212914110.1016/j.ccr.2005.01.007 15710326
    [Google Scholar]
  19. ZhouZ.H. WuY.F. WangX. HanY.Z. The c-Abl inhibitor in parkinson disease.Neurol. Sci.201738454755210.1007/s10072‑016‑2808‑2 28078567
    [Google Scholar]
  20. KimH. ShinJ.Y. JoA. KimJ.H. ParkS. ChoiJ.Y. KangH.C. DawsonV.L. DawsonT.M. ShinJ.H. LeeY. Parkin interacting substrate phosphorylation by c-Abl drives dopaminergic neurodegeneration.Brain2021144123674369110.1093/brain/awab356 34581802
    [Google Scholar]
  21. LeeS. RyuH.G. KweonS.H. KimH. ParkH. LeeK.H. JangS.M. NaC.H. KimS. KoH.S. c-Abl regulates the pathological deposition of TDP-43 via tyrosine 43 phosphorylation.Cells20221124397210.3390/cells11243972 36552734
    [Google Scholar]
  22. WernerM.H. OlanowC.W. Parkinson’s disease modification through abl kinase inhibition: An opportunity.Mov. Disord.202237161510.1002/mds.28858 34816484
    [Google Scholar]
  23. PaganF.L. HebronM.L. WilmarthB. Torres-YaghiY. LawlerA. MundelE.E. YusufN. StarrN.J. ArellanoJ. HowardH.H. PeytonM. MatarS. LiuX. FowlerA.J. SchwartzS.L. AhnJ. MoussaC. Pharmacokinetics and pharmacodynamics of a single dose Nilotinib in individuals with Parkinson’s disease.Pharmacol. Res. Perspect.201972e0047010.1002/prp2.470 30906562
    [Google Scholar]
  24. LeeS. KimS. ParkY.J. YunS.P. KwonS.H. KimD. KimD.Y. ShinJ.S. ChoD.J. LeeG.Y. JuH.S. YunH.J. ParkJ.H. KimW.R. JungE.A. LeeS. KoH.S. The c-Abl inhibitor, Radotinib HCl, is neuroprotective in a preclinical Parkinson’s disease mouse model.Hum. Mol. Genet.201827132344235610.1093/hmg/ddy143 29897434
    [Google Scholar]
  25. SachaT. SzczepanekE. DumnickaP. Góra-TyborJ. Niesiobędzka-KrężelJ. PrejznerW. WasilewskaE. KłoczkoJ. CiepłuchH. MakowskaW. PatkowskaE. WasilewskaJ. BoberG. KoperaM. WicharyR. Kroll-BalcerzakR. GromekT. WachM. Rudkowska-KazanowskaA. ŚwiniarskaM. PaczkowskaE. BiernatM. JoksM. OllerM. KaszaR. KostyraA. GilJ. Grzybowska-IzydorczykO. The outcomes of ponatinib therapy in patients with chronic myeloid leukemia resistant or intolerant to previous tyrosine kinase inhibitors, treated in poland within the donation program.Clin. Lymphoma Myeloma Leuk.202222640541510.1016/j.clml.2021.11.012 34933827
    [Google Scholar]
  26. ZhouY. YamamuraY. OgawaM. TsujiR. TsuchiyaK. KasaharaJ. GotoS. c-Abl inhibition exerts symptomatic antiparkinsonian effects through a striatal postsynaptic mechanism.Front. Pharmacol.20189131110.3389/fphar.2018.01311 30505273
    [Google Scholar]
  27. RabieiZ. SolatiK. Amini-KhoeiH. Phytotherapy in treatment of Parkinson’s disease: A review.Pharm. Biol.201957135536210.1080/13880209.2019.1618344 31141426
    [Google Scholar]
  28. SharmaP. DwivedeeB.P. BishtD. DashA.K. KumarD. The chemical constituents and diverse pharmacological importance of Tinospora cordifolia.Heliyon201959e0243710.1016/j.heliyon.2019.e02437 31701036
    [Google Scholar]
  29. KhazdairM.R. KianmehrM. AnaeigoudariA. Effects of medicinal plants and flavonoids on parkinson’s disease: A review on basic and clinical evidences.Adv. Pharm. Bull.202111222423210.34172/apb.2021.026 33880344
    [Google Scholar]
  30. KulkarniA.M. RampoguS. LeeK.W. Computer-aided drug discovery identifies alkaloid inhibitors of parkinson’s disease associated protein, prolyl oligopeptidase.Evid. Based Complement. Alternat. Med.2021668757210.1155/2021/6687572 33897801
    [Google Scholar]
  31. IshikiH.M. FilhoJ.M.B. da SilvaM.S. ScottiM.T. ScottiL. ScottiL. Computer-aided drug design applied to parkinson targets.Curr. Neuropharmacol.201816686588010.2174/1570159X15666171128145423 29189169
    [Google Scholar]
  32. Cruz-VicenteP. PassarinhaL.A. SilvestreS. GallardoE. Recent developments in new therapeutic agents against alzheimer and parkinson diseases: In-Silico approaches.Molecules2021268219310.3390/molecules26082193 33920326
    [Google Scholar]
  33. EceA. Computer-aided drug design.BMC Chem.20231712610.1186/s13065‑023‑00939‑w 36964610
    [Google Scholar]
  34. AldewachiH. Al-ZidanR.N. ConnerM.T. SalmanM.M. High-throughput screening platforms in the discovery of novel drugs for neurodegenerative diseases.Bioengineering2021823010.3390/bioengineering8020030 33672148
    [Google Scholar]
  35. SehgalS.A. HammadM.A. TahirR.A. AkramH.N. AhmadF. Current therapeutic molecules and targets in neurodegenerative diseases based on in silico drug design.Curr. Neuropharmacol.201816664966310.2174/1570159X16666180315142137 29542412
    [Google Scholar]
  36. SalmanM.M. Al-ObaidiZ. KitchenP. LoretoA. BillR.M. Wade-MartinsR. Advances in applying computer-aided drug design for neurodegenerative diseases.Int. J. Mol. Sci.2021229468810.3390/ijms22094688 33925236
    [Google Scholar]
  37. IdoudiS. BedhiafiT. HijjiY.M. BillaN. Curcumin and derivatives in nanoformulations with therapeutic potential on colorectal cancer.AAPS PharmSciTech.202223511510.1208/s12249‑022‑02268‑y 35441267
    [Google Scholar]
  38. MbeseZ. KhwazaV. AderibigbeB.A. Curcumin and its derivatives as potential therapeutic agents in prostate, colon and breast cancers.Molecules20192423438610.3390/molecules24234386 31801262
    [Google Scholar]
  39. OglahM.K. MustafaY.F. BashirM.K. JasimM.H. Curcumin and its derivatives: A review of their biological activities.Systematic Review Pharmacy202011472481
    [Google Scholar]
  40. KhanH. UllahH. AschnerM. CheangW.S. Neuroprotective effects of quercetin in alzheimer’s disease.Biomolecules202010159
    [Google Scholar]
  41. AhmedS.H.H. GondaT. AgbaduaO.G. GirstG. BerkeczR. KúszN. TsaiM.C. WuC.C. BaloghG.T. HunyadiA. Preparation and evaluation of 6-gingerol derivatives as novel antioxidants and antiplatelet agents.Antioxidants202312374410.3390/antiox12030744 36978992
    [Google Scholar]
  42. MakK.K. ShimingZ. SakirollaR. BalijepalliM.K. Dinkova-KostovaA.T. EpemoluO. MohdZ. PichikaM.R. Synthesis of new shogaol analogues as NRF2 activators and evaluation of their anti-inflammatory activity, modes of action and metabolic stability.Antioxidants202312247510.3390/antiox12020475 36830033
    [Google Scholar]
  43. HarderE. DammW. MapleJ. WuC. ReboulM. XiangJ.Y. WangL. LupyanD. DahlgrenM.K. KnightJ.L. KausJ.W. CeruttiD.S. KrilovG. JorgensenW.L. AbelR. FriesnerR.A. OPLS3: A force field providing broad coverage of drug-like small molecules and proteins.J. Chem. Theory Comput.201612128129610.1021/acs.jctc.5b00864 26584231
    [Google Scholar]
  44. TianH. KetkarR. TaoP. ADMETboost: A web server for accurate ADMET prediction.J. Mol. Model.2022281240810.1007/s00894‑022‑05373‑8 36454321
    [Google Scholar]
  45. HospitalA. GoñiJ.R. OrozcoM. GelpíJ.L. Molecular dynamics simulations: Advances and applications.Adv. Appl. Bioinform. Chem.201583747 26604800
    [Google Scholar]
  46. KumarA. HigdonJ.J.L. Particle mesh ewald stokesian dynamics simulations for suspensions of non-spherical particles.J. Fluid Mech.201167529733510.1017/jfm.2011.18
    [Google Scholar]
  47. BarclayP.L. ZhangD.Z. Periodic boundary conditions for arbitrary deformations in molecular dynamics simulations.J. Comput. Phys.202143511023810.1016/j.jcp.2021.110238
    [Google Scholar]
  48. HooverW.G. Canonical dynamics: Equilibrium phase-space distributions.Phys. Rev. A Gen. Phys.19853131695169710.1103/PhysRevA.31.1695 9895674
    [Google Scholar]
  49. AzizM. EjazS.A. ZargarS. AkhtarN. AborodeA.T. A WaniT. BatihaG.E. SiddiqueF. AlqarniM. AkintolaA.A. Deep learning and structure-based virtual screening for drug discovery against NEK7: A novel target for the treatment of cancer.Molecules202227132710.3390/molecules27134098 35807344
    [Google Scholar]
  50. DanazumiA.U. UmarH.I. You must be flexible enough to be trained, Mr. Dynamics simulator.Mol. Divers.20242842731273310.1007/s11030‑023‑10689‑5 37436658
    [Google Scholar]
  51. CavasottoC.N. AucarM.G. AdlerN.S. Computational chemistry in drug lead discovery and design.Int. J. Quantum Chem.20191192e2567810.1002/qua.25678
    [Google Scholar]
  52. DuX. LiY. XiaY.L. AiS.M. LiangJ. SangP. JiX.L. LiuS.Q. Insights into protein–ligand interactions: Mechanisms, models, and methods.Int. J. Mol. Sci.201617214410.3390/ijms17020144 26821017
    [Google Scholar]
  53. HollingsworthS.A. DrorR.O. Molecular dynamics simulation for all.Neuron20189961129114310.1016/j.neuron.2018.08.011 30236283
    [Google Scholar]
  54. TranJ. AnastacioH. BardyC. Genetic predispositions of Parkinson’s disease revealed in patient-derived brain cells.NPJ Parkinsons Dis.202061810.1038/s41531‑020‑0110‑8 32352027
    [Google Scholar]
  55. SadatmadaniS.F. MalakoutikhahZ. MohagheghF. PeikarM. SaboktakinM. Nilotinib-induced elephantine psoriasis in a patient with chronic myeloid leukemia: A rare case report and literature review.Curr. Ther. Res. Clin. Exp.20229610067610.1016/j.curtheres.2022.100676 35789635
    [Google Scholar]
  56. RymbaiE. RoyD. JupudiS. SrinivasadesikanV. The identification of c-Abl inhibitors as potential agents for Parkinson’s disease: A preliminary in silico approach.Mol. Divers.202411510.1007/s11030‑023‑10796‑3 38273156
    [Google Scholar]
  57. LealL.K.A.M. JúniorH.V.N. CunhaG.M.A. MoraesM.O. PessoaC. OliveiraR.A. SilveiraE.R. CanutoK.M. VianaG.S.B. Amburoside A, a glucoside from Amburana cearensis, protects mesencephalic cells against 6-hydroxydopamine-induced neurotoxicity.Neurosci. Lett.20053882869010.1016/j.neulet.2005.06.034 16039060
    [Google Scholar]
  58. LvH. SheG. Naturally occurring diarylheptanoids-a supplementary version.Rec. Nat. Prod.201264321333
    [Google Scholar]
  59. LiT. PanD. PangQ. ZhouM. YaoX. YaoX. LiH. YuY. Diarylheptanoid analogues from the rhizomes of Zingiber officinale and their anti-tumour activity.RSC Adv.20211147293762938410.1039/D1RA03592D 35479564
    [Google Scholar]
  60. CrunkhornS. Suppressing c-Abl in parkinson disease.Res. Gate202322318310.1038/d41573‑023‑00024‑w
    [Google Scholar]
/content/journals/mc/10.2174/0115734064310145240822060730
Loading
/content/journals/mc/10.2174/0115734064310145240822060730
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test