Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Introduction

The marine habitat is a plentiful source of diverse, active compounds that are extensively utilised for their medicinal properties. Pharmaceutical trends have currently changed towards utilising a diverse range of goods derived from the marine environment.

Methods

This study aimed to examine the inhibitory effects of bioactive chemicals derived from marine algae and bacteria. The identification of these compounds was carried out through the process of Gas Chromatography-Mass Spectrometry (GC-MS) profiling. Subsequently, these compounds were subjected to docking simulations against a specific set of target proteins that are known to be frequently overexpressed in three distinct types of cancer.

Results

From the docking results, the ligand 1,4:3,6:5,7-Tribenzal-beta-mannoheptitol was found to be effective against the proteins mTOR (PDB ID: 4JSV) and FGFR2 (PDB ID:6V6Q). The findings of molecular simulation highlight that the investigated compound gets integrated with the target proteins effectively.

Conclusion

These marine derived compounds hold significant potential for further development and exploration in the field of cancer therapeutics.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064346419241104110015
2025-01-07
2025-12-30
Loading full text...

Full text loading...

References

  1. CooperG.M. The Cell: A Molecular Approach.Sunderland (MA)Sinauer Associates2022
    [Google Scholar]
  2. HausmanD.M. What is cancer?Perspect. Biol. Med.201962477878410.1353/pbm.2019.0046 31761807
    [Google Scholar]
  3. PatelA. Benign vs malignant tumors.JAMA Oncol.202069148810.1001/jamaoncol.2020.2592 32729930
    [Google Scholar]
  4. NakamuraH. MaedaH. Cancer Chemotherapy. Fundamentals of Pharmaceutical Nanoscience.Springer202340142710.1007/978‑1‑4614‑9164‑4_15
    [Google Scholar]
  5. BehranvandN. NasriF. Zolfaghari EmamehR. KhaniP. HosseiniA. GarssenJ. FalakR. Chemotherapy: A double-edged sword in cancer treatment.Cancer Immunol. Immunother.202271350752610.1007/s00262‑021‑03013‑3 34355266
    [Google Scholar]
  6. Altunİ. SonkayaA. The most common side effects experienced by patients were receiving first cycle of chemotherapy.Iran. J. Public Health201847812181219 30186799
    [Google Scholar]
  7. NasimF. SabathB.F. EapenG.A. Lung cancer.Med. Clin. North Am.2019103346347310.1016/j.mcna.2018.12.006 30955514
    [Google Scholar]
  8. ImyanitovE.N. IyevlevaA.G. LevchenkoE.V. Molecular testing and targeted therapy for non-small cell lung cancer: Current status and perspectives.Crit. Rev. Oncol. Hematol.202115710319410.1016/j.critrevonc.2020.103194 33316418
    [Google Scholar]
  9. Alves MartinsB.A. de BulhõesG.F. CavalcantiI.N. MartinsM.M. de OliveiraP.G. MartinsA.M.A. Biomarkers in colorectal cancer: The role of translational proteomics research.Front. Oncol.20199128410.3389/fonc.2019.01284 31828035
    [Google Scholar]
  10. DekkerE. TanisP.J. VleugelsJ.L.A. KasiP.M. WallaceM.B. Colorectal cancer.Lancet2019394102071467148010.1016/S0140‑6736(19)32319‑0 31631858
    [Google Scholar]
  11. MedhiB. SainiV.K. SewalR.K. AhmadY. Prospective observational study of adverse drug reactions of anticancer drugs used in cancer treatment in a tertiary care hospital.Indian J. Pharm. Sci.201577668769310.4103/0250‑474X.174990 26997696
    [Google Scholar]
  12. CacabelosR. NaidooV. CorzoL. CacabelosN. CarrilJ.C. Genophenotypic factors and pharmacogenomics in adverse drug reactions.Int. J. Mol. Sci.202122241330210.3390/ijms222413302 34948113
    [Google Scholar]
  13. ArulJothiK.N. KumaranK. SenthilS. NidhuA.B. MunaffN. JanitriV.B. KirubakaranR. SinghS.K. GuptG. DuaK. KrishnanA. Implications of reactive oxygen species in lung cancer and exploiting it for therapeutic interventions.Med. Oncol.20224014310.1007/s12032‑022‑01900‑y 36472716
    [Google Scholar]
  14. TownsendD. KasiA. Oxaliplatin.Comprehen. Pharmacol. Ref.20071–41410.1016/B978‑008055232‑3.62973‑3
    [Google Scholar]
  15. CassidyJ. MissetJ.L. Oxaliplatin-related side effects: Characteristics and management.Semin. Oncol.2002295Suppl. 15112010.1016/S0093‑7754(02)90016‑3 12422304
    [Google Scholar]
  16. SaikiaS. BordoloiM. Molecular docking: Challenges, advances and its use in drug discovery perspective.Curr. Drug Targets201920550152110.2174/1389450119666181022153016 30360733
    [Google Scholar]
  17. PinziL. RastelliG. Molecular docking: Shifting paradigms in drug discovery.Int. J. Mol. Sci.20192018433110.3390/ijms20184331 31487867
    [Google Scholar]
  18. JakharR. DangiM. KhichiA. ChhillarA.K. Relevance of molecular docking studies in drug designing.Curr. Bioinform.202015427027810.2174/1574893615666191219094216
    [Google Scholar]
  19. FerreiraL. Dos SantosR. OlivaG. AndricopuloA. Molecular docking and structure-based drug design strategies.Molecules2015207133841342110.3390/molecules200713384 26205061
    [Google Scholar]
  20. Purawarga MatadaG.S. DhiwarP.S. AbbasN. SinghE. GharaA. DasA. BhargavaS.V. Molecular docking and molecular dynamic studies: Screening of phytochemicals against EGFR, HER2, estrogen and NF-KB receptors for their potential use in breast cancer.J. Biomol. Struct. Dyn.202240136183619210.1080/07391102.2021.1877823 33525984
    [Google Scholar]
  21. KaurT. MadgulkarA. BhalekarM. AsgaonkarK. Molecular docking in formulation and development.Curr. Drug Discov. Technol.2019161303910.2174/1570163815666180219112421 29468973
    [Google Scholar]
  22. SekarA.S. KasinathanS. KnA. The Cytotoxic and anti-tumor potential of methanolic extracts of indian marine isolates in HCT116 colorectal cancer cells.Anticancer. Agents Med. Chem.202323171974198110.2174/1871520623666230810094755 37565553
    [Google Scholar]
  23. SruthiS. AS. KK. MacrinD. Murali RMV. AruljothiK.N. Anticancer activity and GC-MS profiling of bioactive constituents in the methanolic extracts of Spatoglossum variabile and Gracilaria corticata.Curr. Bioact. Compd.202420e24042422927310.2174/0115734072296835240409124751
    [Google Scholar]
  24. SaleemH. ZenginG. LocatelliM. AhmadI. KhaliqS. MahomoodallyM.F. HussainR. RengasamyK.R.R. MollicaA. Zainal AbidinS.A. AhemadN. Pharmacological, phytochemical and in-vivo toxicological perspectives of a xero-halophyte medicinal plant: Zaleya pentandra (L.).Jeffrey. Food Chem. Toxicol.201913111053510.1016/j.fct.2019.05.043 31154083
    [Google Scholar]
  25. TeohW.Y. YongY.S. RazaliF.N. StephenieS. Dawood ShahM. TanJ.K. GnanarajC. Mohd EsaN. LC-MS/MS and GC-MS analysis for the identification of bioactive Metabolites responsible for the Antioxidant and Antibacterial activities of Lygodium microphyllum (Cav.).R. Br. Separations202310321510.3390/separations10030215
    [Google Scholar]
  26. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The protein data bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.235 10592235
    [Google Scholar]
  27. SeeligerD. de GrootB.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina.J. Comput. Aided Mol. Des.201024541742210.1007/s10822‑010‑9352‑6 20401516
    [Google Scholar]
  28. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  29. DallakyanS. OlsonA.J. Small-molecule library screening by docking with PyRx.Methods Mol. Biol.2015126324325010.1007/978‑1‑4939‑2269‑7_19 25618350
    [Google Scholar]
  30. BowersK.J. ChowE. XuH. DrorR.O. EastwoodM.P. GregersenB.A. KlepeisJ.L. KolossvaryI. MoraesM.A. SacerdotiF.D. Scalable algorithms for molecular dynamics simulations on commodity clusters.Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC’06200610.1109/SC.2006.54
    [Google Scholar]
  31. VoD.V. LeeJ. ParkH. 1,2,3-Triazole Analogs with bulky and conformationally rigid substructures: synthesis and in vitro evaluation as DPP-4 inhibitors.Bull. Korean Chem. Soc.202344542542810.1002/bkcs.12677
    [Google Scholar]
  32. PhaleP.S. ShahB.A. MalhotraH. Variability in assembly of degradation Operons for Naphthalene and its derivative, Carbaryl, suggests mobilization through horizontal Gene transfer.Genes (Basel)201910856910.3390/genes10080569 31357661
    [Google Scholar]
  33. NaveedM. IshfaqH. RehmanS.U. JavedA. WaseemM. MakhdoomS.I. AzizT. AlharbiM. AlshammariA. AlasmariA.F. GC–MS profiling of Bacillus spp. metabolites with an in vitro biological activity assessment and computational analysis of their impact on epithelial glioblastoma cancer genes.Front Chem.202311128759910.3389/fchem.2023.1287599 38116103
    [Google Scholar]
  34. AliS.K. El-MasryS.S. El-AdlK. Abdel-MawgoudM. OklaM.K. Abdel-RaheamH.E.F. HeshamA.E.L. Aboel-AininM.A. MohamedH.S. Assessment of antimicrobial activity and GC-MS using culture filtrate of local marine Bacillus strains.J. Environ. Sci. Health B202459739941610.1080/03601234.2024.2357465 38785435
    [Google Scholar]
  35. AdcockS.A. McCammonJ.A. Molecular dynamics: Survey of methods for simulating the activity of proteins.Chem. Rev.200610651589161510.1021/cr040426m 16683746
    [Google Scholar]
  36. EspositoR. FedericoS. GlavianoF. SommaE. ZupoV. CostantiniM. Bioactive compounds from marine sponges and algae: Effects on cancer cell metabolome and chemical structures.Int. J. Mol. Sci.202223181068010.3390/ijms231810680 36142592
    [Google Scholar]
  37. KimC. KimB. Anti-cancer natural products and their bioactive compounds inducing ER stress-mediated apoptosis: A review.Nutrients2018108102110.3390/nu10081021 30081573
    [Google Scholar]
  38. LimontaP. MorettiR.M. MarzagalliM. FontanaF. RaimondiM. MarelliM.M. Role of endoplasmic reticulum stress in the anticancer activity of natural compounds.Int. J. Mol. Sci.201920496110.3390/ijms20040961 30813301
    [Google Scholar]
  39. MohamedL. ChakrabortyS. ArulJothiK.N. MabasaL. SayahK. Costa-LotufoL.V. JardineA. PrinceS. Galenia africana plant extract exhibits cytotoxicity in breast cancer cells by inducing multiple programmed cell death pathways.Saudi Pharm. J.202028101155116510.1016/j.jsps.2020.08.004 33132708
    [Google Scholar]
  40. DormanF.L. WhitingJ.J. CochranJ.W. Gardea-TorresdeyJ. Gas chromatography.Anal. Chem.201082124775478510.1021/ac101156h 20504041
    [Google Scholar]
  41. AhmedE.Y. ElserwyW.S. El-MansyM.F. SerryA.M. SalemA.M. AbdouA.M. AbdelrahmanB.A. ElsayedK.H. Abd ElazizM.R. Angiokinase inhibition of VEGFR-2, PDGFR and FGFR and cell growth inhibition in lung cancer: Design, synthesis, biological evaluation and molecular docking of novel azaheterocyclic coumarin derivatives.Bioorg. Med. Chem. Lett.20214812825810.1016/j.bmcl.2021.128258 34246754
    [Google Scholar]
  42. ChenJ. LiuB.X. ShenQ. LiN. LingJ. XiaoM. JiaoH.Y. LiT. Limonin inhibits angiogenesis and metastasis of human breast cancer cells by suppressing the VEGFR2/IGFR1-mediated STAT3 signaling pathway.Transl. Cancer Res.20209116820683210.21037/tcr‑20‑1992 35117291
    [Google Scholar]
  43. ZhaoY. GuoS. DengJ. ShenJ. DuF. WuX. ChenY. LiM. ChenM. LiX. LiW. GuL. SunY. WenQ. LiJ. XiaoZ. VEGF/VEGFR-targeted therapy and immunotherapy in non-small cell lung cancer: Targeting the tumor microenvironment.Int. J. Biol. Sci.20221893845385810.7150/ijbs.70958 35813484
    [Google Scholar]
  44. MangiapaneL.R. NicotraA. TurdoA. GaggianesiM. BiancaP. Di FrancoS. SardinaD.S. VeschiV. SignoreM. BeyesS. FagnocchiL. FioriM.E. BongiornoM.R. Lo IaconoM. PillitteriI. GanduscioG. GulottaG. MedemaJ.P. ZippoA. TodaroM. De MariaR. StassiG. PI3K-driven HER2 expression is a potential therapeutic target in colorectal cancer stem cells.Gut202271111912810.1136/gutjnl‑2020‑323553 33436496
    [Google Scholar]
  45. SuwaidanA.A. LauD.K. ChauI. HER2 targeted therapy in colorectal cancer: New horizons.Cancer Treat. Rev.202210510236310.1016/j.ctrv.2022.102363 35228040
    [Google Scholar]
  46. AndréF. BachelotT. CamponeM. DalencF. Perez-GarciaJ.M. HurvitzS.A. TurnerN. RugoH. SmithJ.W. DeudonS. ShiM. ZhangY. KayA. Graus PortaD. YovineA. BaselgaJ. Targeting FGFR with dovitinib (TKI258): Preclinical and clinical data in breast cancer.Clin. Cancer Res.201319133693370210.1158/1078‑0432.CCR‑13‑0190 23658459
    [Google Scholar]
  47. ChewN.J. Lim Kam SianT.C.C. NguyenE.V. ShinS.Y. YangJ. HuiM.N. DengN. McLeanC.A. WelmA.L. LimE. GregoryP. NottleT. LangT. VerekerM. RichardsonG. KerrG. MicatiD. JardéT. AbudH.E. LeeR.S. SwarbrickA. DalyR.J. Evaluation of FGFR targeting in breast cancer through interrogation of patient-derived models.Breast Cancer Res.20212318210.1186/s13058‑021‑01461‑4 34344433
    [Google Scholar]
  48. PaciniL. JenksA.D. LimaN.C. HuangP.H. Targeting the fibroblast growth factor receptor (FGFR) family in lung cancer.Cells2021105115410.3390/cells10051154 34068816
    [Google Scholar]
  49. Mehendale-MunjS. SawantS. Breast cancer resistance protein: A potential therapeutic target for Cancer.Curr. Drug Targets202122442042810.2174/1389450121999201125200132 33243119
    [Google Scholar]
  50. LiX. ZhaoL. ChenC. NieJ. JiaoB. Can EGFR be a therapeutic target in breast cancer?Biochim. Biophys. Acta Rev. Cancer20221877518878910.1016/j.bbcan.2022.188789 36064121
    [Google Scholar]
  51. TianX. GuT. LeeM.H. DongZ. Challenge and countermeasures for EGFR targeted therapy in non-small cell lung cancer.Biochim. Biophys. Acta Rev. Cancer20221877118864510.1016/j.bbcan.2021.188645 34793897
    [Google Scholar]
  52. BulutayP. AkyürekN. MemişL. Clinicopathological and prognostic significance of the eml4-alk translocation and igfr1, ttf1, napsin a expression in patients with lung adenocarcinoma.Turk Patoloji Derg.202037171710.5146/tjpath.2020.01503 32876329
    [Google Scholar]
  53. LiuY. ZhuC. TangL. ChenQ. GuanN. XuK. GuanX. MYC dysfunction modulates stemness and tumorigenesis in breast cancer.Int. J. Biol. Sci.202117117818710.7150/ijbs.51458 33390842
    [Google Scholar]
  54. TajrishiM.M. TutejaR. TutejaN. Nucleolin.Commun. Integr. Biol.20114326727510.4161/cib.4.3.14884 21980556
    [Google Scholar]
  55. DimasD.T.H. PerlepeC.D. SergentanisT.N. MisitzisI. KontzoglouK. PatsourisE. KouraklisG. PsaltopoulouT. NonniA. The prognostic significance of hsp70/hsp90 expression in breast cancer: A systematic review and meta-analysis.Anticancer Res.20183831551156210.21873/anticanres.12384 29491085
    [Google Scholar]
  56. ParmaB. WurdakH. CeppiP. Harnessing mitochondrial metabolism and drug resistance in non-small cell lung cancer and beyond by blocking heat-shock proteins.Drug Resist. Updat.20226510088810.1016/j.drup.2022.100888 36332495
    [Google Scholar]
/content/journals/mc/10.2174/0115734064346419241104110015
Loading
/content/journals/mc/10.2174/0115734064346419241104110015
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test