Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Introduction

Epilepsy encompasses numerous syndromes characterized by spontaneous, intermittent, and abnormal electrical activity in the brain. Affecting about 1-2% of the population, it is estimated that approximately 30-40% of patients experience refractory epilepsy, which does not respond to traditional anticonvulsant drugs.

Methods

Therefore, developing novel, safe, and effective antiepileptic drugs remains a medical need. In this study, we synthesized a series of isoindoline-1,3-dione derivatives and evaluated their anticonvulsant effects.

Results

Compounds (-) and () were obtained with yields ranging from 52-97%. These compounds were assessed for their protective effects on the following parameters: a) time to first seizure (seizure latency), b) seizure duration, and c) mortality rate post-seizure. The most active compound, (), increased seizure latency, reduced seizure duration, and lowered the mortality rate.

Conclusion

These findings indicate that compound () is a promising new anticonvulsant prototype, offering an alternative to current anticonvulsant drugs.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064336758241113180402
2025-01-09
2025-12-01
Loading full text...

Full text loading...

References

  1. BergA.T. BerkovicS.F. BrodieM.J. BuchhalterJ. CrossJ.H. Van Emde BoasW. EngelJ. FrenchJ. GlauserT.A. MathernG.W. MoshéS.L. NordliD. PlouinP. SchefferI.E. Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005–2009.Epilepsia201051467668510.1111/j.1528‑1167.2010.02522.x 20196795
    [Google Scholar]
  2. ThijsR.D. SurgesR. O’BrienT.J. SanderJ.W. Epilepsy in adults.Lancet20193931017268970110.1016/S0140‑6736(18)32596‑0 30686584
    [Google Scholar]
  3. DevinskyO. VezzaniA. O’BrienT.J. JetteN. SchefferI.E. de CurtisM. PeruccaP. Epilepsy.Nat. Rev. Dis. Primers2018411802410.1038/nrdp.2018.24 29722352
    [Google Scholar]
  4. NgugiA.K. BottomleyC. KleinschmidtI. SanderJ.W. NewtonC.R. Estimation of the burden of active and life‐time epilepsy: A meta‐analytic approach.Epilepsia201051588389010.1111/j.1528‑1167.2009.02481.x 20067507
    [Google Scholar]
  5. FiestK.M. SauroK.M. WiebeS. PattenS.B. KwonC.S. DykemanJ. PringsheimT. LorenzettiD.L. JettéN. Prevalence and incidence of epilepsy.Neurology201788329630310.1212/WNL.0000000000003509 27986877
    [Google Scholar]
  6. SchefferI.E. BerkovicS. CapovillaG. ConnollyM.B. FrenchJ. GuilhotoL. HirschE. JainS. MathernG.W. MoshéS.L. NordliD.R. PeruccaE. TomsonT. WiebeS. ZhangY.H. ZuberiS.M. ILAE classification of the epilepsies: Position paper of the ILAE commission for classification and terminology.Epilepsia201758451252110.1111/epi.13709 28276062
    [Google Scholar]
  7. LercheH. Drug-resistant epilepsy — Time to target mechanisms.Nat. Rev. Neurol.2020161159559610.1038/s41582‑020‑00419‑y 33024326
    [Google Scholar]
  8. LöscherW. PotschkaH. SisodiyaS.M. VezzaniA. Drug resistance in epilepsy: Clinical impact, potential mechanisms, and new innovative treatment options.Pharmacol. Rev.202072360663810.1124/pr.120.019539 32540959
    [Google Scholar]
  9. FernandesG.F.S. LopesJ.R. Dos SantosJ.L. ScarimC.B. Phthalimide as a versatile pharmacophore scaffold: Unlocking its diverse biological activities.Drug Dev. Res.20238471346137510.1002/ddr.22094 37492986
    [Google Scholar]
  10. PalenciaG. Martinez-JuarezI.E. CalderonA. ArtigasC. SoteloJ. Thalidomide for treatment of refractory epilepsy.Epilepsy Res.2010922-325325710.1016/j.eplepsyres.2010.10.003 21035311
    [Google Scholar]
  11. BailleuxV. ValléeL. NuytsJ.P. VamecqJ. Anticonvulsant activity of some 4-amino-N-phenylphthalimides and N-(3-amino-2-methylphenyl)phthalimides.Biomed. Pharmacother.19944829510110.1016/0753‑3322(94)90083‑3 7919112
    [Google Scholar]
  12. AhujaP. HusainA. SiddiquiN. Essential aminoacid incorporated GABA–phthalimide derivatives: Synthesis and anticonvulsant evaluation.Med. Chem. Res.20142394085409810.1007/s00044‑014‑0949‑5
    [Google Scholar]
  13. AmanlouM. AsadollahiA. AsadiM. HosseiniF.S. EkhtiariZ. BiglarM. Synthesis, molecular docking, and antiepileptic activity of novel phthalimide derivatives bearing amino acid conjugated anilines.Res. Pharm. Sci.201914653454310.4103/1735‑5362.272562 32038733
    [Google Scholar]
  14. de OliveiraM.C.V.A. VianaD.C.F. SilvaA.A. PereiraM.C. DuarteF.S. PittaM.G.R. PittaI.R. PittaM.G.R. Synthesis of novel thiazolidinic-phthalimide derivatives evaluated as new multi-target antiepileptic agents.Bioorg. Chem.202211910554810.1016/j.bioorg.2021.105548 34959174
    [Google Scholar]
  15. Cumbres-VargasI.M. ZamudioS.R. Pichardo-MacíasL.A. Ramírez-San JuanE. Thalidomide attenuates epileptogenesis and seizures by decreasing brain inflammation in lithium pilocarpine rat model.Int. J. Mol. Sci.2023247648810.3390/ijms24076488 37047461
    [Google Scholar]
  16. KamaliA.N. ZianZ. BautistaJ.M. HamedifarH. Hossein-KhannazerN. HosseinzadehR. YazdaniR. AziziG. The potential role of pro-inflammatory and anti-inflammatory cytokines in epilepsy pathogenesis.Endocr. Metab. Immune Disord. Drug Targets202121101760177410.2174/22123873MTEx2NTUz4 33200702
    [Google Scholar]
  17. de MeloT.R.F. DulmovitsB.M. FernandesG.F.S. de SouzaC.M. LanaroC. HeM. Al AbedY. ChungM.C. BlancL. CostaF.F. dos SantosJ.L. Synthesis and pharmacological evaluation of pomalidomide derivatives useful for sickle cell disease treatment.Bioorg. Chem.202111410507710.1016/j.bioorg.2021.105077 34130111
    [Google Scholar]
  18. LanaroC. Franco-PenteadoC.F. SilvaF.H. FertrinK.Y. dos SantosJ.L. WadeM. YerigenahallyS. de MeloT.R. ChinC.M. KutlarA. MeilerS.E. CostaF.F. A thalidomide–hydroxyurea hybrid increases HbF production in sickle cell mice and reduces the release of proinflammatory cytokines in cultured monocytes.Exp. Hematol.201858353810.1016/j.exphem.2017.10.003 29108926
    [Google Scholar]
  19. DeyA. KangX. QiuJ. DuY. JiangJ. Anti-inflammatory small molecules to treat seizures and epilepsy: From bench to bedside.Trends Pharmacol. Sci.201637646348410.1016/j.tips.2016.03.001 27062228
    [Google Scholar]
  20. TerroneG. SalamoneA. VezzaniA. Inflammation and epilepsy: Preclinical findings and potential clinical translation.Curr. Pharm. Des.201823375569557610.2174/1381612823666170926113754 28950818
    [Google Scholar]
  21. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  22. ClementinoL.C. FernandesG.F.S. ProkopczykI.M. LaurindoW.C. ToyamaD. MottaB.P. BavieraA.M. Henrique-SilvaF. SantosJ.L. GraminhaM.A.S. Design, synthesis and biological evaluation of N-oxide derivatives with potent in vivo antileishmanial activity.PLoS One20211611e025900810.1371/journal.pone.0259008 34723989
    [Google Scholar]
  23. de-ParisF. NevesG. SalgueiroJ.B. QuevedoJ. IzquierdoI. RatesS.M.K. Psychopharmacological screening of Pfaffia glomerata Spreng. (Amarathanceae) in rodents.J. Ethnopharmacol.2000731-226126910.1016/S0378‑8741(00)00329‑9 11025164
    [Google Scholar]
  24. PalenciaG. CalderonA. SoteloJ. Thalidomide inhibits pentylenetetrazole-induced seizures.J. Neurol. Sci.20072581-212813110.1016/j.jns.2007.03.010 17449064
    [Google Scholar]
  25. PintérÁ. HaberhauerG. Hyla-KryspinI. GrimmeS. Configurationally stable propeller-like triarylphosphine and triarylphosphine oxide.Chem. Commun. (Camb.)200738363711371310.1039/b709655k 17851603
    [Google Scholar]
  26. BialerM. WhiteH.S. Key factors in the discovery and development of new antiepileptic drugs.Nat. Rev. Drug Discov.201091688210.1038/nrd2997 20043029
    [Google Scholar]
  27. LöscherW. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs.Seizure201120535936810.1016/j.seizure.2011.01.003 21292505
    [Google Scholar]
  28. WhiteH.S. SrivastavaA. KleinB. ZhaoB. ChoiY.M. GordonR. LeeS.J. The novel investigational neuromodulator RWJ-333369 displays a broadspectrum anticonvulsant profile in rodent seizure and epilepsy models.Epilepsia Abstr200637320
    [Google Scholar]
  29. CarmodyS. BrennanL. Effects of pentylenetetrazole-induced seizures on metabolomic profiles of rat brain.Neurochem. Int.201056234034410.1016/j.neuint.2009.11.004 19913064
    [Google Scholar]
  30. MacDonaldR.L. BarkerJ.L. Pentylenetetrazol and penicillin are selective antagonists of GABA-mediated post-synaptic inhibition in cultured mammalian neurones.Nature1977267561372072110.1038/267720a0 195224
    [Google Scholar]
  31. SquiresR.F. SaederupE. CrawleyJ.N. SkolnickP. PaulS.M. Convulsant potencies of tetrazoles are highly correlated with actions on GABA/benzodiazepine/picrotoxin receptor complexes in brain.Life Sci.198435141439144410.1016/0024‑3205(84)90159‑0 6090836
    [Google Scholar]
  32. HuangR.Q. Bell-HornerC.L. DibasM.I. CoveyD.F. DreweJ.A. DillonG.H. Pentylenetetrazole-induced inhibition of recombinant gamma-aminobutyric acid type A (GABA(A)) receptors: Mechanism and site of action.J. Pharmacol. Exp. Ther.20012983986995 11504794
    [Google Scholar]
  33. AmanlouA. NassireslamiE. HosseiniF.S. DehpourA.R. RashidianA. ChamanaraM. Synthesis, docking and antiepileptic activity of new 2-((1,5-diphenyl-1 H -1,2,4-triazol-3-yl)thio)- N-phenylacetamide derivatives.Polycycl. Aromat. Compd.20224296429644310.1080/10406638.2021.1983616
    [Google Scholar]
/content/journals/mc/10.2174/0115734064336758241113180402
Loading
/content/journals/mc/10.2174/0115734064336758241113180402
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): anticonvulsant; cognitive; Epilepsy; genetics; phthalimide; seizure
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test