Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

The conjugation of heterocyclic compounds often aims to leverage the beneficial properties of multiple compounds, which ultimately motivate the researchers to develop novel medicines with better efficacy, affinity, modified selectivity, dual/various modes of action, reduced side effects, lower cost, or enhanced therapeutic profiles. Hybrid molecules or conjugates for synergistic effect are obtained by combining structural features of two differently active fragments. Due to 1,3,4-oxadiazole’s alternating single and double bonds, each atom providing a -orbital perpendicular to the molecule's plane is stabilized like a drug molecule. The conjugate of 1,3,4-oxadiazole with piperazine moiety exhibits a range of physiological effects such as lowering blood pressure, antimicrobial, antitubercular, antioxidant, anticancer, antiproliferative, etc. Numerous natural molecules with pharmacological importance have also been found to possess conjugation between piperazine and 1,3,4-oxadiazole. As there is a lack of studies that focused on the synthetic protocols, pharmacological potential, and structure-activity relationship of the conjugates of 1,3,4-oxadiazoles and piperazines, the presented article highlights specifically these dimensions which have been reported in the last 10 years (2014-2024) These details assist researchers in designing their studies, and it is hoped that researchers from various scientific fields will find the manuscript beneficial for their future work on the conjugates of 1,3,4-oxadiazoles and piperazine.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064332210241122062159
2024-12-06
2025-12-01
Loading full text...

Full text loading...

References

  1. LuczynskiM. KudelkoA. Synthesis and biological activity of 1, 3, 4-oxadiazoles used in medicine and agriculture.Appl. Sci. (Basel)2022128375610.3390/app12083756
    [Google Scholar]
  2. Pitasse-SantosP. Sueth-SantiagoV. LimaM. 1,2,4- and 1,3,4-oxadiazoles as scaffolds in the development of antiparasitic agents.J. Braz. Chem. Soc.20172943545610.21577/0103‑5053.20170208
    [Google Scholar]
  3. ShiferawD.G. KallurayaB. Synthesis, characterization, biological evaluation, and molecular docking studies of new 1,3,4-oxadiazole-thioether derivative as antioxidants and cytotoxic agents.Heliyon2024107e2863410.1016/j.heliyon.2024.e28634 38576588
    [Google Scholar]
  4. Salahuddin MazumderA. YarM.S. MazumderR. ChakraborthyG.S. AhsanM.J. RahmanM.U. Updates on synthesis and biological activities of 1,3,4-oxadiazole: A review.Synth. Commun.201747201805184710.1080/00397911.2017.1360911
    [Google Scholar]
  5. BalaS. KambojS. KajalA. SainiV. PrasadD.N. 1,3,4-oxadiazole derivatives: synthesis, characterization, antimicrobial potential, and computational studies.BioMed. Res. Int.2014201411810.1155/2014/172791 25147788
    [Google Scholar]
  6. KumarA. SinghA.K. SinghH. VijayanV. KumarD. NaikJ. TharejaS. YadavJ.P. PathakP. GrishinaM. VermaA. KhalilullahH. JaremkoM. EmwasA.H. KumarP. Nitrogen containing heterocycles as anticancer agents: a medicinal chemistry perspective.Pharmaceuticals (Basel)202316229910.3390/ph16020299 37259442
    [Google Scholar]
  7. ChaudharyT. UpadhyayP.K. A bird’s eye review of recent reports on 1,3,4-oxadiazoles’ anti-inflammatory insights perspectives.Curr. Org. Synth.202421559560610.2174/1570179420666230508124847 37157211
    [Google Scholar]
  8. AbdnoorZ.M. JberN.R. Abdul-RazaqA.S. The effect of 1,3,4-oxadiazol and 1,2,4-triazole compounds on urease and pepsin enzymes.ANJS20242714264 https://www.anjs.edu.iq/index.php/anjs/article/view/2649
    [Google Scholar]
  9. ZhangA. HeH. WangR. ShenZ. WuZ. SongR. SongB. Synthesis, bioactivities, and antibacterial mechanism of 5-(thioether)-N-phenyl/benzyl-1,3,4-oxadiazole-2-carboxamide/amine derivatives.J. Agric. Food Chem.20247231444145310.1021/acs.jafc.3c05816 38206812
    [Google Scholar]
  10. SaiyadA.H. MehtaJ.P. MehtaU.P. Synthesis and biological evaluation studies of novel 1,3,4-oxadiazole and benzo[d]imidazole scaffolds as promising antimicrobial agents.Moscow Univ. Chem. Bull.2024791637110.3103/S0027131424010036
    [Google Scholar]
  11. HeB. HuY. MaoP. DengT. WangY. LuoX. ZouH. WangZ. XueW. Design, synthesis and antifungal activity of indole derivatives containing 1,3,4-oxadiazole.Arab. J. Chem.202417510575810.1016/j.arabjc.2024.105758
    [Google Scholar]
  12. WangX. YanL. ZhangJ. ZhangY. ZhangZ. ZhaoQ. ChengQ. ZhangW. Novel quinazolin-4(3H)-one bionic-alkaloids bearing an 1,3,4-oxadiazole fragment as potential fungicides inhibiting Botrytis cinerea: Design, synthesis and bioactive-guided structural optimization.Arab. J. Chem.202417110545510.1016/j.arabjc.2023.105455
    [Google Scholar]
  13. Peter OsarodionO. Conglomerate and analgesic activity of 6-bromo-2-(o-aminophenyl)-3-amino-quinazolin-4(3H)-one from 6-bromo,2-(o-aminophenyl)-3,1-benzoxazin-4(3H)-one.SCIREA J. Mater.2019911210.54647/materials430259
    [Google Scholar]
  14. ElH.I.A. BrandánS.A. MortadaS. ArshadS. RomanoE. RamliY. MagueJ.T. FaouziM.E. KarrouchiK. 2-(allylic)-5-(5-phenyl-1H-pyrazol-3-yl)-1, 3, 4-oxadiazole: Synthesis, single crystal XRD, spectroscopic characterization, antidiabetic activity, DFT and ADMET studies.J. Mol. Struct.2024129513662010.1016/j.molstruc.2023.136620
    [Google Scholar]
  15. ReddyA.B. AvuthuV.S.R. KishoreP.V.V.N. AllakaT.R. NagarajaiahH. New triazole based oxadiazolo/thiadiazolo–phthalazines as potent antimycobacterial agents: Design, synthesis, molecular modelling and in silico ADMET profiles.ChemistrySelect202491e20230402010.1002/slct.202304020
    [Google Scholar]
  16. AlsaiariA.A. AlmehmadiM.M. AsifM. Diverse pharmacological potential of pyridazine analogs against various diseases.Med. Chem.202420324526710.2174/1573406419666230913102835 37711126
    [Google Scholar]
  17. MokrovG.V. BiryukovaV.E. VorobievaT.Y. PantileevA.S. GrigorkevichO.S. ZhmurenkoL.A. RebekoA.G. BayburtskiyF.S. LitvinovaS.A. VoroninaT.A. GudashevaT.A. SeredeninS.B. Design, synthesis and anticonvulsant activity of cinnamoyl derivatives of 3,4,6,7,8,9-hexahydrodibenzo[b,d]furan-1-(2H)-one Oxime.Med. Chem.20242019210710.2174/1573406419666230908121759 37694795
    [Google Scholar]
  18. Al-RubayeI.M. Razzak MahmoodA.A. TahtamouniL.H. AlSakhenM.F. KanaanS.I. SalehK.M. YasinS.R. In silico and in vitro evaluation of novel carbothioamide-based and heterocyclic derivatives of 4-(tert-butyl)-3-methoxybenzoic acid as EGFR tyrosine kinase allosteric site inhibitors.Results Chem.2024710132910.1016/j.rechem.2024.101329
    [Google Scholar]
  19. KapilaI. BharwalA. SharmaP. ChoudharyN. AbbotV. Synthetic marvels in tuberculosis research: An in-depth review of 1,3,4-oxadiazole derivatives as antitubercular agents.Eur. J. Med. Chem. Rep.20241110015010.1016/j.ejmcr.2024.100150
    [Google Scholar]
  20. DatarM. DhanwadR. JaveedM. Gunavanthrao YernaleN. Suliphuldevara MathadaB. Gunavanthrao, Yernale, N.; Suliphuldevara, Mathada, B. Synthesis, structural investigations, DFT calculations, and molecular docking studies of novel 2-(substituted-aryloxymethyl)-5-(pyridin-4-yl)-1, 3, 4-oxadiazoles: Highly potential InhA and cytochrome c peroxidase inhibitors.Polycycl. Aromat. Compd.202444147348710.1080/10406638.2023.2174997
    [Google Scholar]
  21. NakamuraT. OkumuraM. TakamuneN. HirotsuT. SugiuraM. YasunagaJ. NakataH. Conversion of raltegravir carrying a 1,3,4-oxadiazole ring to a hydrolysis product upon pH changes decreases its antiviral activity.PNAS Nexus202331pgad44610.1093/pnasnexus/pgad446 38170115
    [Google Scholar]
  22. ApaydınÇ.B. GöktaşF. NaesensL. KaralıN. Novel 2-indolinone derivatives as promising agents against respiratory syncytial and yellow fever viruses.Future Med. Chem.202416429531010.4155/fmc‑2023‑0179 38288568
    [Google Scholar]
  23. TianX. SunZ. ZhongY. YangH. ChengM. LiuY. Synthesis and antitumor activity evaluation of novel echinatin derivatives with a 1,3,4-oxadiazole moiety.Int. J. Mol. Sci.2024254225410.3390/ijms25042254 38396931
    [Google Scholar]
  24. LingamJ. SahooB.K. MallavarapuB.D. SreenivasuluR. Design, synthesis, anticancer evaluation and molecular docking studies of 1,2,4-oxadiazole incorporated indazole-isoxazole derivatives.Synth. Commun.2024541667610.1080/00397911.2023.2282599
    [Google Scholar]
  25. AlbercaS. Romero-ParraJ. FernándezI. FernándezR. LassalettaJ.M. MongeD. Enantioselective synthesis of α-aryl α-hydrazino phosphonates.Chem. Sci. (Camb.)202415207725773110.1039/D4SC00822G 38784752
    [Google Scholar]
  26. AkbarS. DasS. DewanganR.P. JosephA. AhmedB. Review on the potential of 1,3,4-Oxadiazine derivatives: Synthesis, structure-activity relationship, and future prospects in drug development.Eur. J. Med. Chem. Rep.20241110015210.1016/j.ejmcr.2024.100152
    [Google Scholar]
  27. AlshawabkehD.W. RasrasA.J. AbushattalS. Al ZubiM.S. ShakdofaM.M. YounesE.A. Al-QawasmehR.A. Synthesis and Biological Evaluation of Cholic Acid Tagged Piperazine Derivatives.Curr. Org. Chem.2024281657310.2174/0113852728281288240109113216
    [Google Scholar]
  28. LiaoB.R. HeH.B. YangL.L. GaoL.X. ChangL. TangJ. LiJ.Y. LiJ. YangF. Synthesis and structure–activity relationship of non-phosphorus-based fructose-1,6-bisphosphatase inhibitors: 2,5-Diphenyl-1,3,4-oxadiazoles.Eur. J. Med. Chem.201483152510.1016/j.ejmech.2014.06.011 24946215
    [Google Scholar]
  29. JaiswalS. PandeyS.K. MinochaT. ChandraS. BhartyM.K. YadavS.K. KushwahaD. ButcherR.J. Mn(II) assisted synthesis of N-phenyl-5-(pyridin-3-yl)-1,3,4-oxadiazol-2-amine and evaluation of its antiproliferative activity.J. Mol. Struct.2023128113507510.1016/j.molstruc.2023.135075
    [Google Scholar]
  30. YanL. DengM. ChenA. LiY. ZhangW. DuZ. DongC. MeunierB. ChenH. Synthesis of N-pyrimidin[1,3,4]oxadiazoles and N-pyrimidin[1,3,4]-thiadiazoles from 1,3,4-oxadiazol-2-amines and 1,3,4-thiadiazol-2-amines via Pd-catalyzed heteroarylamination.Tetrahedron Lett.201960201359136210.1016/j.tetlet.2019.04.022
    [Google Scholar]
  31. HalimehjaniA.Z. BayatS. HooshmandS.E. TondroG. MoradiH.R. JalaeiJ. Diversity-oriented synthesis of novel sulfonated piperazine derivatives endowing dual biological activities.J. Mol. Struct.2024130913826310.1016/j.molstruc.2024.138263
    [Google Scholar]
  32. ChaudhriS.K. JainS. A systematic review of piperine as a bioavailability enhancer.J. Drug Deliv. Ther.202313413313610.22270/jddt.v13i4.5781
    [Google Scholar]
  33. RomanelliM.N. BraconiL. GabelliniA. ManettiD. MarottaG. TeodoriE. Synthetic approaches to piperazine-containing drugs approved by FDA in the period of 2011–2023.Molecules20232916810.3390/molecules29010068 38202651
    [Google Scholar]
  34. BajadN.G. SinghR.B. T AG. GuttiG. KumarA. KrishnamurthyS. SinghS.K. Development of multi-targetable chalcone derivatives bearing N-aryl piperazine moiety for the treatment of Alzheimer’s disease.Bioorg. Chem.202414310708210.1016/j.bioorg.2023.107082 38199142
    [Google Scholar]
  35. RizwanM. NoreenS. AsimS. LiaqatZ. ShaheenM. IbrahimH. A comprehensive review on the synthesis of substituted piperazine and its novel bio-medicinal applications.Chem. Inorg. Mater.2024210004110.1016/j.cinorg.2024.100041
    [Google Scholar]
  36. Acar ÇevikU. SağlıkB.N. OsmaniyeD. LeventS. Kaya ÇavuşoğluB. KaradumanA.B. Atlı EklioğluÖ. ÖzkayY. KaplancıklıZ.A. Synthesis, anticancer evaluation and molecular docking studies of new benzimidazole- 1,3,4-oxadiazole derivatives as human topoisomerase types I poison.J. Enzyme Inhib. Med. Chem.20203511657167310.1080/14756366.2020.1806831 32811204
    [Google Scholar]
  37. AretzC.D. KharadeS.V. ChronisterK. Rusconi TriguerosR. Martinez RodriguezE.J. PiermariniP.M. DentonJ.S. HopkinsC.R. Rusconi, Trigueros, R.; Martinez, Rodriguez, E.J.; Piermarini, P.M.; Denton, J.S.; Hopkins, C.R. Further SAR on the (phenylsulfonyl) piperazine scaffold as inhibitors of the Aedes aegypti Kir1 (AeKir) channel and larvicides.ChemMedChem202116231932710.1002/cmdc.202000598 32926544
    [Google Scholar]
  38. DjipmegneD.N. KinyokM.J. Abouem A ZintchemA. BitomboA.N. FerronS. Ngono BikoboD.S. TomasiS. PegnyembD.E. New antiplasmodial piperazine alkaloid derivatives from Rauvolfia mannii Stapf. (Apocynaceae).Biochem. Syst. Ecol.202411210477910.1016/j.bse.2023.104779
    [Google Scholar]
  39. GuoM. WuD. YangH. ZhangX. GaoZ. JianY. XueD. ZhangW. Nongaseous Pd-catalyzed carbonylative annulation: Safe and atomic efficient flavone synthesis.Mol. Catal.202455511386710.1016/j.mcat.2024.113867
    [Google Scholar]
  40. SunG. FengZ. KuangY. FuZ. WangY. ZhaoX. WangF. SunH. YuanH. DaiL. Design, synthesis, and biological evaluation of piperazine derivatives as pan-PPARs agonists for the treatment of liver fibrosis.Eur. J. Med. Chem.202426911634410.1016/j.ejmech.2024.116344 38522113
    [Google Scholar]
  41. StewartC.D. WhiteN.G. BarrowR.A. ReekieT.A. Synthesis and spectroscopic investigation of substituted piperazine-2,5-dione derivatives.Tetrahedron202415313383810.1016/j.tet.2024.133838
    [Google Scholar]
  42. SariS. YilmazM. Synthesis and characterization of piperazine-substituted dihydrofuran derivatives via Mn(OAc)3 mediated radical cyclizations.Turk. J. Chem.20204451303131310.3906/kim‑2003‑23 33488231
    [Google Scholar]
  43. TemplJ. SchnürchM. A guide for mono‐selective N‐methylation, N‐ethylation, and N‐n‐propylation of primary amines, amides, and sulfonamides and their applicability in late‐stage modification.Chemistry20243026e20230420510.1002/chem.202304205 38353032
    [Google Scholar]
  44. SunZ. ChenZ. Chung Lan MowM.C. LiaoX. WeiX. MaG. WangX. YuH. Chloramine disinfection of levofloxacin and sulfaphenazole: Unraveling novel disinfection byproducts and elucidating formation mechanisms for an enhanced understanding of water treatment.Molecules202429239610.3390/molecules29020396 38257310
    [Google Scholar]
  45. Deepti RoyL. RemadyS. KsA. KumarJ. Piperazine tethered heterocyclic hybrids: Synthesis, characterization, and in vitro studies from potent proteinase inhibitors to antiproliferative activity.Eur. J. Med. Chem. Rep.20241010013210.1016/j.ejmcr.2024.100132
    [Google Scholar]
  46. SinghD. PatelR. AggarwalA. DasA. SharmaS. BeheraB. PanigrahyR. KiraneA.R. KharkwalH. KumarP. Prakash BokoliaN. SankaranarayananM. ChanderS. Phenylthiazolidin-4-one piperazine conjugates: Design, synthesis, anticancer and antimicrobial studies.Results Chem.2024710123710.1016/j.rechem.2023.101237
    [Google Scholar]
  47. KarayavuzB. VagoluS. KartD. TønjumT. Unsal-TanO. Synthesis, antimycobacterial and antifungal evaluation of new 4-(furan-2-ylmethyl)-6-methylpyridazin-3(2H)-ones.J. Serb. Chem. Soc.20244010.2298/JSC230424040K
    [Google Scholar]
  48. ChopraB. SainiN. DhingraA.K. A profound insight into the structural modification of natural bioactive compounds containing piperazine moiety: A comprehensive review.Curr. Bioact. Compd.2024202e18072321883510.2174/1573407219666230718105347
    [Google Scholar]
  49. PemawatG. BhatnagarA. KhangarotR.K. Synthesis and biological activities of heterocyclic hybrids containing piperidine and pyridine moieties: Recent developments.Mini Rev. Org. Chem.202421334636910.2174/1570193X20666230213123453
    [Google Scholar]
  50. ChaudharyJ. SharmaV. JainA. SharmaD. ChopraB. DhingraA.K. A profound insight into the structure-activity relationship of ubiquitous scaffold piperazine: An explicative review.Med. Chem.2024201172910.2174/0115734064244117230923172611 37815177
    [Google Scholar]
  51. ReddyrajulaR. EtikyalaU. MangaV. KumarD.U. Discovery of 1,2,3-triazole incorporated indole-piperazines as potent antitubercular agents: Design, synthesis, in vitro biological evaluation, molecular docking and ADME studies.Bioorg. Med. Chem.20249811756210.1016/j.bmc.2023.117562 38184947
    [Google Scholar]
  52. ZhangG.L. WangZ.C. LiC.P. ChenD.P. LiZ.R. LiY. OuyangG.P. Discovery of tryptanthrin analogues bearing F and piperazine moieties as novel phytopathogenic antibacterial and antiviral agents.Pest Manag. Sci.20248031026103810.1002/ps.7834 37842924
    [Google Scholar]
  53. Gnana Ruba PriyaM. Raja SolomonV. HemavathyN. JeyakanthanJ. KumarD. MaheshJ. Design, synthesis, in silico, and pharmacological evaluation of novel quinoline derivatives containing substituted piperazine moieties as potential anti-breast cancer agents.Results in Chemistry2024710135910.1016/j.rechem.2024.101359
    [Google Scholar]
  54. SunW. LiaoA. LeiL. TangX. WangY. WuJ. Research progress on piperidine-containing compounds as agrochemicals.Chin. Chem. Lett.202410985510.1016/j.cclet.2024.109855
    [Google Scholar]
  55. ZhangX. ZhangY. SuY. GuanS. Enhancing the corrosion inhibition performance of Mannich base on mild steel in lactic acid solution through synergistic effect of allicin: Experimental and theoretical study.J. Mol. Struct.2024130413765810.1016/j.molstruc.2024.137658
    [Google Scholar]
  56. RathodB. PawarS. PuriS. DiwanA. KumarK. Recent advancements and developments in the biological importance of 1,3,5‐triazines.ChemistrySelect2024912e20230365510.1002/slct.202303655
    [Google Scholar]
  57. JohnD. GeorgeK. RadhakrishnanE.K. A concise update on the synthetic transformation of aurones via asymmetric cycloaddition, annulation, and Michael/Mannich reactions.RSC Advances20241496339635910.1039/D3RA08575A 38380237
    [Google Scholar]
  58. ChenL. LiT. QiuX. QinY. Amino acid-modified lignin combined with methylation to form novel pH-responsive colloidal spheres with tunable properties.ACS Sustain. Chem. Eng.202412125052506010.1021/acssuschemeng.4c00779
    [Google Scholar]
  59. AbdulaA.M. QarahA.F. AlatawiK. QurbanJ. AbualnajaM.M. KatuahH.A. El-MetwalyN.M. Design, synthesis, and molecular docking of new phenothiazine incorporated N-Mannich bases as promising antimicrobial agents.Heliyon2024107e2857310.1016/j.heliyon.2024.e28573 38571594
    [Google Scholar]
  60. El GhallabY. AainoussA. El MessaoudiM.D. DerfoufiS. Synthesis, antioxidant and antituberculosis evaluation of eugenol derivatives from mannich condensation.ChemistrySelect202491e20230343910.1002/slct.202303439
    [Google Scholar]
  61. BhatiS. KumarV. SinghS. SinghJ. Synthesis, biological activities and docking studies of piperazine incorporated 1, 3, 4-oxadiazole derivatives.J. Mol. Struct.2019119119720510.1016/j.molstruc.2019.04.106
    [Google Scholar]
  62. NayakS. GaonkarS.L. MusadE.A. DawsarA.M.A.L. 1,3,4-Oxadiazole-containing hybrids as potential anticancer agents: Recent developments, mechanism of action and structure-activity relationships.J. Saudi Chem. Soc.202125810128410.1016/j.jscs.2021.101284
    [Google Scholar]
  63. WangF. YangB.X. ZhangT.H. TaoQ.Q. ZhouX. WangP.Y. YangS. Novel 1,3,4-oxadiazole thioether and sulfone derivatives bearing a flexible N-heterocyclic moiety: Synthesis, characterization, and anti-microorganism activity.Arab. J. Chem.202316210447910.1016/j.arabjc.2022.104479
    [Google Scholar]
  64. MaryanL. MartaM. MyroslavaK. IrynaD. StefanH. TarasC. IhorC. VasylM. Approaches for synthesis and chemical modification of non-condensed heterocyclic systems based on 1,3,4-oxadiazole ring and their biological activity: A review.J. Appl. Pharm. Sci.2020101015116510.7324/JAPS.2020.1010016
    [Google Scholar]
  65. PeregrymK. SzczukowskiŁ. WiatrakB. PotyrakK. CzyżnikowskaŻ. ŚwiątekP. In vitro and silico evaluation of new 1, 3, 4-oxadiazole derivatives of pyrrole [3, 4-d] pyridazine as promising cyclooxygenase inhibitors.Int. J. Mol. Sci.20212217913010.3390/ijms22179130 34502040
    [Google Scholar]
  66. WangJ.J. SunW. JiaW.D. BianM. YuL.J. Research progress on the synthesis and pharmacology of 1,3,4-oxadiazole and 1,2,4-oxadiazole derivatives: A mini review.J. Enzyme Inhib. Med. Chem.20223712304231910.1080/14756366.2022.2115036 36000176
    [Google Scholar]
  67. CaneschiW. EnesK.B. Carvalho de MendonçaC. de Souza FernandesF. MiguelF.B. da Silva MartinsJ. Le HyaricM. PinhoR.R. DuarteL.M. Leal de OliveiraM.A. Dos SantosH.F. Paz LopesM.T. DittzD. SilvaH. CostaC.M.R. Synthesis and anticancer evaluation of new lipophilic 1,2,4 and 1,3,4-oxadiazoles.Eur. J. Med. Chem.2019165183010.1016/j.ejmech.2019.01.001 30654237
    [Google Scholar]
  68. ShaikhA. MeshramJ. Novel 1, 3, 4‐oxadiazole derivatives of dihydropyrimidinones: synthesis, anti‐inflammatory, anthelmintic, and antibacterial activity evaluation.J. Heterocycl. Chem.20165341176118210.1002/jhet.2377
    [Google Scholar]
  69. TiwariD. NarangR. SudhakarK. SinghV. LalS. DevgunM. 1,3, 4‐OXADIAZOLE derivatives as potential antimicrobial agents.Chem. Biol. Drug Des.202210061086112110.1111/cbdd.14100 35676800
    [Google Scholar]
  70. SunJ. RenS.Z. LuX.Y. LiJ.J. ShenF.Q. XuC. ZhuH.L. Discovery of a series of 1,3,4-oxadiazole-2(3 H)-thione derivatives containing piperazine skeleton as potential FAK inhibitors.Bioorg. Med. Chem.20172592593260010.1016/j.bmc.2017.03.038 28363444
    [Google Scholar]
  71. Kilic-KurtZ. KonyarD. OkurH. KaplanA. BogaM. Some heterocycles connected to substituted piperazine by 1, 3, 4-oxadiazole linker: Design, synthesis, anticholinesterase and antioxidant activity.J. Mol. Struct.2024132113985410.1016/j.molstruc.2024.139854
    [Google Scholar]
  72. SchobelA. Oral film compositions and dosage forms having precise active dissolution profiles.Patent US-11541002-B22023
  73. YunA. Treatment of dermatological conditions via neuromodulation.Patent US-11285141-B22022
  74. OuyangH. QiuY. Composition and methods for the treatment of myopia.Patent US-11285141-B22022
  75. GiampapaV. Compositions for cellular restoration and methods of making and using same.Patent US-11219643-B22022
  76. GrecoS. Microrna compositions and methods of making and using same.Patent US-11203754B22021
  77. CountsD. Controlled absorption water-soluble pharmaceutically active organic compound formulation for once-daily administration.Patent US-11191719B22021
  78. KwiatkowskiM. SundC. Releasable conjugates.Patent EP-3592393B12021
  79. RauH. KaluzaN. HerselU. KnappeT. LauferB. Hydrogel-linked prodrugs releasing tagged drugs.Patent US-11116849B22021
  80. WoodfolkJ. Compositions and methods for preventing and treating rhinovirus infections.Patent EP- 3258958B12021
  81. MuzyczkaN. GomezH.R. Engineered receptor/ligand system for delivery of therapeutic agents.Patent US-11000597B22021
  82. WaikerD.K. VermaA. SarafP. T AG. KrishnamurthyS. ChaurasiaR.N. ShrivastavaS.K. Development and evaluation of some molecular hybrids of N-(1-benzylpiperidin-4-yl)-2-((5-phenyl-1,3,4-oxadiazol-2-yl)thio) as multifunctional agents to combat Alzheimer’s disease.ACS Omega20238109394941410.1021/acsomega.2c08061 36936338
    [Google Scholar]
  83. CeylanS. BayrakH. DemirbasA. UlkerS. Alpay-KaraogluS. DemirbasN. Synthesis of some new hybrid molecules containing several azole moieties and investigation of their biological activities.Russ. J. Org. Chem.201440314329
    [Google Scholar]
  84. Demi̇rbaşN. Demi̇rbaşA. BektaşH. KaraoğluŞ.A. Şahi̇nD. Synthesis and antimicrobial activities of 2-(5-mercapto)-1,3-oxadiazol-2-ylmethyl-1,2,4-triazol-3-one derivatives.Turk. J. Chem.201034334735810.3906/kim‑0911‑10
    [Google Scholar]
  85. CeylanS. Synthesis and biological evaluation of new Mannich and Schiff bases containing 1,2,4-triazole and 1,3,4-oxadiazole nucleus.Med. Chem. Res.20162591958197010.1007/s00044‑016‑1640‑9
    [Google Scholar]
  86. Abdel RahmanD.E. Synthesis, quantitative structure-activity relationship and biological evaluation of 1,3,4-oxadiazole derivatives possessing diphenylamine moiety as potential anticancer agents.Chem. Pharm. Bull. (Tokyo)201361215115910.1248/cpb.c12‑00637 23370194
    [Google Scholar]
  87. NikaljeA.P. NimbalkarU.D. TupeS.G. Molecular sieves and Ultrasound assisted Synthesis of Novel 1,3,4-oxadiazole-2-thiones derivatives as potential antifungal Agents.The 19th International Electronic Conference on Synthetic Organic Chemistry session Bioorganic, Medicinal and Natural Products Chemistry201510.3390/ecsoc‑19‑b008
    [Google Scholar]
  88. NimbalkarU.D. TupeS.G. Ultrasound-and molecular sieves-assisted synthesis, molecular docking and antifungal evaluation of 5-(4-(Benzyloxy)-substituted phenyl)-3-((phenylamino) methyl)-1, 3, 4-oxadiazole-2 (3 H)-thiones.Molecules201621548410.3390/molecules21050484
    [Google Scholar]
  89. Antibacterial and urease inhibitory activity of new piperazinyl N-4 functionalized ciprofloxacin-oxadiazoles.JMR2019111710.21608/jmr.2019.12650.1001
    [Google Scholar]
  90. TangZ. PengY. LiuF. Design and synthesis of novel quinoline derivatives bearing oxadiazole, isoxazoline, triazolothiadiazole, triazolothiadiazine, and piperazine moieties.J. Heterocycl. Chem.20205762330233810.1002/jhet.3907
    [Google Scholar]
  91. TanT.M.C. ChenY. KongK.H. BaiJ. LiY. LimS.G. AngT.H. LamY. Synthesis and the biological evaluation of 2-benzenesulfonylalkyl-5-substituted-sulfanyl-[1,3,4]-oxadiazoles as potential anti-hepatitis B virus agents.Antiviral Res.200671171410.1016/j.antiviral.2006.02.007 16564099
    [Google Scholar]
  92. MurtyM.S.R. Ramalingeswara RaoB. KatikiM.R. NathL.R. AntoR.J. Synthesis of piperazinyl benzothiazole/benzoxazole derivatives coupled with 1,3,4-oxadiazole-2-thiol: Novel hybrid heterocycles as anticancer agents.Med. Chem. Res.201322104980499110.1007/s00044‑013‑0510‑y
    [Google Scholar]
  93. FoksH. Pancechowska-KsepkoD. JanowiecM. ZwolskaZ. Augustynowicz-KopećE. Synthesis and tuberculostatic activity of some (4-phenylpiperazin-1-ylmethyl)-1,3,4-oxadiazole and (4-phenylpiperazin-1-ylmethyl)-1,2,4-triazole derivatives.Acta Pol. Pharm.2004616473476 15794341
    [Google Scholar]
  94. MurtyM.S.R. RaoR.V. RamK.R. ReddyN.R. YadavJ.S. SridharB. Zinc-Mediated facile and efficient chemoselective S-alkylation of 5-aryl-1, 3, 4-oxadiazole-2-thiols in the absence of base.Synth. Commun.201040192914292110.1080/00397910903340660
    [Google Scholar]
  95. MurtyM.S.R. PenthalaR. NathL. AntoR. R, Nath, L.; John, Anto, R. Synthesis of salicylic acid-based 1, 3, 4-oxadiazole derivatives coupled with chiral oxazolidinones: Novel hybrid heterocycles as antitumor agents.Lett. Drug Des. Discov.201411101133114210.2174/1570180811666140627004607
    [Google Scholar]
  96. PatelA.B. Investigation of the antibacterial activity of new quinazoline derivatives against methicillin and quinolone resistant Staphylococcus aureus.J. Chem. Res.2020445-631532110.1177/1747519819895887
    [Google Scholar]
  97. KhanS.A. AhujaP. HusainA. Oxidative cyclization of isoniazid with fluoroquinolones: Synthesis, antibacterial and antitubercular activity of new 2, 5‐disubstituted‐1, 3, 4‐oxadiazoles.J. Chin. Chem. Soc. (Taipei)201764891892410.1002/jccs.201600199
    [Google Scholar]
  98. MermerA. BayrakH. ŞirinY. EmirikM. DemirbaşN. Synthesis of novel Azol-β-lactam derivatives starting from phenyl piperazine and investigation of their antiurease activity and antioxidant capacity comparing with their molecular docking studies.J. Mol. Struct.2019118927928710.1016/j.molstruc.2019.04.039
    [Google Scholar]
  99. ThriveniK.S. BasavarajP. SiddeshM.B. SandeepC. NageshH.K. MallikarjunS.M. Synthesis and antimicrobial screening of naphthofuran-1, 3, 4-oxadiazole linked piperazine.Univers. J. Pharm.201324129134
    [Google Scholar]
  100. KumarR. KumarA. JainS. KaushikD. Synthesis, antibacterial evaluation and QSAR studies of 7-[4-(5-aryl-1,3,4-oxadiazole-2-yl)piperazinyl] quinolone derivatives.Eur. J. Med. Chem.20114693543355010.1016/j.ejmech.2011.04.035 21689870
    [Google Scholar]
  101. LiL. DingH. WangB. YuS. ZouY. ChaiX. WuQ. Synthesis and evaluation of novel azoles as potent antifungal agents.Bioorg. Med. Chem. Lett.201424119219410.1016/j.bmcl.2013.11.037 24332489
    [Google Scholar]
  102. LamK.W. SyahidaA. Ul-HaqZ. RahmanM.B.A. LajisN.H. Synthesis and biological activity of oxadiazole and triazolothiadiazole derivatives as tyrosinase inhibitors.Bioorg. Med. Chem. Lett.201020123755375910.1016/j.bmcl.2010.04.067 20493688
    [Google Scholar]
  103. GalgeR. RajuA. DeganiM.S. ThoratB.N. Synthesis and in vitro antimicrobial activity of 1,3,4‐oxadiazole‐2‐thiol and its analogs.J. Heterocycl. Chem.201552235235710.1002/jhet.2042
    [Google Scholar]
  104. KhalilN.A. KamalA.M. EmamS.H. Design, synthesis, and antitumor activity of novel 5-pyridyl-1, 3, 4-oxadiazole derivatives against the breast cancer cell line MCF-7.Biol. Pharm. Bull.201538576377310.1248/bpb.b14‑00867 25947922
    [Google Scholar]
  105. MuralikrishnaS. ReddyP.R. RavindranathL.K. Synthesis and screening of some novel 2, 5 substituted (1, 3, 4) oxadiazol containing indole moiety.Chem. Sci. Rev. Lett.20143728734
    [Google Scholar]
  106. BayrakH. DemirbasA. DemirbasN. KaraogluS.A. Synthesis of some new 1,2,4-triazoles starting from isonicotinic acid hydrazide and evaluation of their antimicrobial activities.Eur. J. Med. Chem.200944114362436610.1016/j.ejmech.2009.05.022 19647352
    [Google Scholar]
  107. HarishK.P. MohanaK.N. MalleshaL. KumarP.B.N. Synthesis of novel 1-[5-(4-methoxy-phenyl)-[1,3,4]oxadiazol-2-yl]-piperazine derivatives and evaluation of their in vivo anticonvulsant activity.Eur. J. Med. Chem.20136527628310.1016/j.ejmech.2013.04.054 23727537
    [Google Scholar]
  108. ŞahinZ.S. Özkanİ. KöksalM. IşıkŞ. 5-(3, 4-chlorophenyl)-3-{[4-(2-pyridyl) piperazine-1-yl] methyl}-1, 3, 4-oxadiazole-2 (3H)-one: Synthesis, characterization, X-ray and DFT structures.J. Struct. Chem.20125393894210.1134/S0022476612050162
    [Google Scholar]
  109. KoksalM. YarimM. ErdalA. BozkurtA. Synthesis and anti-inflammatory activities of novel 5-(3,4-dichlorophenyl)-3-[(4-substitutedpiperazin-1-yl)methyl]-1,3,4-oxadiaxole-2(3H)-thiones.Drug Res. (Stuttg.)20146426672 https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0033-1353184 23986309
    [Google Scholar]
  110. LiaoY. BöttcherH. HartingJ. GreinerH. van, Amsterdam, C.; Cremers, T.; Sundell, S.; März, J.; Rautenberg, W.; Wikström, H. New selective and potent 5-HT1B/1D antagonists: Chemistry and pharmacological evaluation of N-piperazinyl phenyl biphenyl carboxamides and biphenylsulfonamides.J. Med. Chem.200043351752510.1021/jm990397l 10669578
    [Google Scholar]
  111. Uygun CebeciY. Synthesis of N-Mannich bases from 5-((4-methylpiperazin-1-yl)methyl)-1,3,4-oxadiazole-2-thiol.Bitlis Eren Üniversitesi Fen Bilimleri Dergisi202312114615010.17798/bitlisfen.1205608
    [Google Scholar]
  112. SinghaiA. GuptaM.K. Synthesis, characterization and pharmacological evaluation of mannich bases of 1, 3, 4-oxadiazole derivative.Int. J. Adv. Sci. Res.202011017076
    [Google Scholar]
  113. GuoY. XuT. BaoC. LiuZ. FanJ. YangR. QinS. Design and synthesis of new norfloxacin-1,3,4-oxadiazole hybrids as antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA).Eur. J. Pharm. Sci.201913610496610.1016/j.ejps.2019.104966 31233865
    [Google Scholar]
  114. MayekarA.N. YathirajanH.S. NarayanaB. SarojiniB.K. KumariN.S. Synthesis and antimicrobial studies on new substituted 1, 3, 4-oxadiazole derivatives bearing 6-bromonaphthalene moiety.Int. J. Chem.2010213810.5539/ijc.v2n1p38
    [Google Scholar]
  115. StrzeleckaM. GlombT. Drąg-ZalesińskaM. KulbackaJ. SzewczykA. SaczkoJ. Kasperkiewicz-WasilewskaP. RembiałkowskaN. WojtkowiakK. JezierskaA. ŚwiątekP. Synthesis, anticancer activity and molecular docking studies of novel N-Mannich bases of 1, 3, 4-oxadiazole based on 4, 6-dimethylpyridine scaffold.Int. J. Mol. Sci.202223191117310.3390/ijms231911173 36232475
    [Google Scholar]
  116. LiY.T. WangJ.H. PanC.W. MengF.F. ChuX.Q. DingY. QuW.Z. LiH. YangC. ZhangQ. BaiC.G. ChenY. Syntheses and biological evaluation of 1,2,3-triazole and 1,3,4-oxadiazole derivatives of imatinib.Bioorg. Med. Chem. Lett.20162651419142710.1016/j.bmcl.2016.01.068 26850004
    [Google Scholar]
  117. CelikI. AyşenI.Ş. ÖzkayY. KaplancıklıZ.A. Design, synthesis, molecular modeling, DFT, ADME and biological evaluation studies of some new 1,3,4-oxadiazole linked benzimidazoles as anticancer agents and aromatase inhibitors.J. Biomol. Struct. Dyn.20234151944195810.21203/rs.3.rs‑975581/v1
    [Google Scholar]
  118. Al-WahaibiL.H. MohamedA.A. TawfikS.S. HassanH.M. El-EmamA.A. 1, 3, 4-Oxadiazole N-Mannich bases: synthesis, antimicrobial, and anti-proliferative activities.Mol.2021268211010.3390/molecules26082110
    [Google Scholar]
  119. RajuG.N. PrathyushaT.G. SowmyaP.L. MounikaS.J. NadendlaR.R. Synthesis, characterization and biological activity of some 1,3,4-oxadiazole derivatives with benzothiazole moiety.Der-Pharmacia Sinica20156618
    [Google Scholar]
  120. GlombT. ŚwiątekP. Antimicrobial activity of 1, 3, 4-oxadiazole derivatives.Int. J. Mol. Sci.20212213697910.3390/ijms22136979 34209520
    [Google Scholar]
  121. MenteseM. DemirbasN. MermerA. DemirciS. DemirbasA. AyazF.A. Novel azole-functionalited flouroquinolone hybrids: Design, conventional and microwave irradiated synthesis, evaluation as antibacterial and antioxidant agents.Lett. Drug Des. Discov.2018151466410.2174/1570180814666170823163540
    [Google Scholar]
  122. Ozkan-DaguyanI. SahinF.I. KoksalM.E. Synthesis, characterization and antimicrobial activity of novel 3, 5-disubstituted-1, 3, 4-oxadiazole-2-ones.Rev. Chim. Orig. Ed.201364534539
    [Google Scholar]
  123. HannounM.H. HagrasM. KotbA. El-AttarA.A.M.M. AbulkhairH.S. Synthesis and antibacterial evaluation of a novel library of 2-(thiazol-5-yl)-1,3,4-oxadiazole derivatives against methicillin-resistant Staphylococcus aureus (MRSA).Bioorg. Chem.20209410336410.1016/j.bioorg.2019.103364 31668461
    [Google Scholar]
  124. PatelV.R. K. PatelJ. KumariP. H. ChikhaliaK. Synthesis of novel quinolone and coumarin based 1, 3, 4-thiadiazolyl and 1, 3, 4-oxadiazolyl N-Mannich bases as potential antimicrobials.Lett. Org. Chem.20129747848610.2174/157017812802139681
    [Google Scholar]
  125. OzyaziciT. GurdalE.E. OrakD. SipahiH. ErcetinT. GulcanH.O. KoksalM. Synthesis, anti‐inflammatory activity, and molecular docking studies of some novel Mannich bases of the 1,3,4‐oxadiazole‐2(3H)‐thione scaffold.Arch. Pharm. (Weinheim)20203537200006110.1002/ardp.202000061 32319141
    [Google Scholar]
  126. KoksalM. Dedeoglu-ErdoganA. BaderM. GurdalE.E. SipplW. ReisR. OzgurbuzM. SipahiH. CelikT. Design, synthesis, and molecular docking of novel 3,5‐disubstituted‐1,3,4‐oxadiazole derivatives as iNOS inhibitors.Arch. Pharm. (Weinheim)20213548200046910.1002/ardp.202000469 33969533
    [Google Scholar]
  127. VivekaS. Dinesha ShamaP. NagarajaG.K. DeepaN. SreenivasaM.Y. Design, synthesis, and pharmacological studies of some new Mannich bases and S-alkylated analogs of pyrazole integrated 1,3,4-oxadiazole.Res. Chem. Intermed.20164232597261710.1007/s11164‑015‑2170‑7
    [Google Scholar]
  128. HarishK.P. MohanaK.N. MalleshaL. VeereshB. Synthesis and In Vivo Anticonvulsant Activity of 2‐Methyl‐2‐[3‐(5‐piperazin‐1‐yl‐[1,3,4]oxadiazol‐2‐yl)‐phenyl]‐propionitrile derivatives.Arch. Pharm. (Weinheim)2014347425626710.1002/ardp.201300225 24395602
    [Google Scholar]
  129. UsluH. SağlikB.N. Osmani̇yeD. Benkli̇K. Novel substituted oxadiazole - piperazine derivatives as potential MAO inhibitors: Design, synthesis, in vitro and in silico studies.J. Res. Pharm.20222611037104410.29228/jrp.99
    [Google Scholar]
/content/journals/mc/10.2174/0115734064332210241122062159
Loading
/content/journals/mc/10.2174/0115734064332210241122062159
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test