Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Catechins, the main active components of tea polyphenols, boast remarkable antioxidant activities because of their unique structures. This translates to a range of potential health benefits, including fighting antibacterial, inflammation, and even cancers. However, extracting these beneficial compounds can be tricky as they're prone to degradation. Thankfully, recent advancements have yielded successful methods for isolating and purifying catechins, allowing us to obtain them in their purest form. The power of catechins isn't just theoretical. and studies have demonstrated promising results in treating various conditions like inflammation, cancer, neurodegenerative diseases, cardiovascular diseases, diabetes, and more. This review dives deep into the methods used to extract, isolate, and purify catechins. Additionally, it explores their potent antioxidant activities and exciting possibilities for future applications.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064353669241212064640
2025-01-06
2025-12-20
Loading full text...

Full text loading...

References

  1. WangL. HuangX. JingH. YeX. JiangC. ShaoJ. MaC. WangH. Separation of epigallocatechin gallate and epicatechin gallate from tea polyphenols by macroporous resin and crystallization.Anal. Methods202113683284210.1039/D0AY02118K 33507177
    [Google Scholar]
  2. SamantaS. Potential bioactive components and health promotional benefits of tea (Camellia sinensis).J. Am. Nutr. Assoc.2022411659310.1080/07315724.2020.1827082 33216711
    [Google Scholar]
  3. HigdonJ.V. FreiB. Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions.Crit. Rev. Food Sci. Nutr.20034318914310.1080/10408690390826464 12587987
    [Google Scholar]
  4. Dos SantosA.N. de L NascimentoT.R. GondimB.L.C. VeloM.M.A.C. de A RêgoR.I. do C NetoJ.R. MachadoJ.R. da SilvaM.V. de AraújoH.W.C. FonsecaM.G. CastellanoL.R.C. Catechins as model bioactive compounds for biomedical applications.Curr. Pharm. Des.202026334032404710.2174/1381612826666200603124418 32493187
    [Google Scholar]
  5. PedroA.C. MacielG.M. Rampazzo RibeiroV. HaminiukC.W.I. Fundamental and applied aspects of catechins from different sources: A review.Int. J. Food Sci. Technol.202055242944210.1111/ijfs.14371
    [Google Scholar]
  6. ChenJ. ThilakarathnaW.P.D.W. AstatkieT. RupasingheH.P.V. Optimization of catechin and proanthocyanidin recovery from grape seeds using microwave-assisted extraction.Biomolecules202010224325710.3390/biom10020243 32033405
    [Google Scholar]
  7. MendesT.M.N. MurayamaY. YamaguchiN. SampaioG.R. FontesL.C.B. TorresE.A.F.S. TamuraH. YonekuraL. Guaraná (Paullinia cupana) catechins and procyanidins: Gastrointestinal/colonic bioaccessibility, Caco-2 cell permeability and the impact of macronutrients.J. Funct. Foods20195535236110.1016/j.jff.2019.02.026
    [Google Scholar]
  8. SantanaÁ.L. MacedoG.A. Effects of hydroalcoholic and enzyme-assisted extraction processes on the recovery of catechins and methylxanthines from crude and waste seeds of guarana (Paullinia cupana).Food Chem.201928122223010.1016/j.foodchem.2018.12.091 30658751
    [Google Scholar]
  9. AlbuquerqueB.R. PrietoM.A. BarrosL. FerreiraI.C.F.R. Assessment of the stability of catechin-enriched extracts obtained from Arbutus unedo L. fruits: Kinetic mathematical modeling of pH and temperature properties on powder and solution systems.Ind. Crops Prod.20179915016210.1016/j.indcrop.2017.02.002
    [Google Scholar]
  10. ArtsI.C.W. HollmanP.C.H. KromhoutD. Chocolate as a source of tea flavonoids.Lancet1999354917748810.1016/S0140‑6736(99)02267‑9 10465183
    [Google Scholar]
  11. SuzukiT. SomeyaS. HuF. TanokuraM. Comparative study of catechin compositions in five Japanese persimmons.Food Chem.200593114915210.1016/j.foodchem.2004.10.017
    [Google Scholar]
  12. Tsanova-SavovaS. RibarovaF. GerovaM. (+)-Catechin and (−)-epicatechin in Bulgarian fruits.J. Food Compos. Anal.200518769169810.1016/j.jfca.2004.06.008
    [Google Scholar]
  13. YilmazY. ToledoR.T. Major flavonoids in grape seeds and skins: Antioxidant capacity of catechin, epicatechin, and gallic acid.J. Agric. Food Chem.200452225526010.1021/jf030117h 14733505
    [Google Scholar]
  14. BronnerW.E. BeecherG.R. Method for determining the content of catechins in tea infusions by high-performance liquid chromatography.J. Chromatogr. A19988051-213714210.1016/S0021‑9673(98)00040‑5 9618918
    [Google Scholar]
  15. RoyM.K. KoideM. RaoT.P. OkuboT. OgasawaraY. JunejaL.R. ORAC and DPPH assay comparison to assess antioxidant capacity of tea infusions: Relationship between total polyphenol and individual catechin content.Int. J. Food Sci. Nutr.201061210912410.3109/09637480903292601 20109129
    [Google Scholar]
  16. TalebiM. TalebiM. FarkhondehT. MishraG. İlgünS. SamarghandianS. New insights into the role of the Nrf2 signaling pathway in green tea catechin applications.Phytother. Res.20213563078311210.1002/ptr.7033 33569875
    [Google Scholar]
  17. ChenI.J. LiuC.Y. ChiuJ.P. HsuC.H. Therapeutic effect of high-dose green tea extract on weight reduction: A randomized, double-blind, placebo-controlled clinical trial.Clin. Nutr.201635359259910.1016/j.clnu.2015.05.003 26093535
    [Google Scholar]
  18. WolframS. WangY. ThieleckeF. Anti‐obesity effects of green tea: From bedside to bench.Mol. Nutr. Food Res.200650217618710.1002/mnfr.200500102 16470636
    [Google Scholar]
  19. KimH.M. KimJ. The effects of green tea on obesity and type 2 diabetes.Diabetes Metab. J.201337317317510.4093/dmj.2013.37.3.173 23807919
    [Google Scholar]
  20. LinY. ShiD. SuB. WeiJ. GămanM.A. Sedanur MacitM. Borges do NascimentoI.J. GuimaraesN.S. The effect of green tea supplementation on obesity: A systematic review and DOSE–RESPONSE META‐ANALYSIS of randomized controlled trials.Phytother. Res.202034102459247010.1002/ptr.6697 32372444
    [Google Scholar]
  21. KaoY. HiipakkaR.A. LiaoS. Modulation of obesity by a green tea catechin.Am. J. Clin. Nutr.20007251232123310.1093/ajcn/72.5.1232 11063454
    [Google Scholar]
  22. SuzukiT. PervinM. GotoS. IsemuraM. NakamuraY. Beneficial effects of tea and the green tea catechin epigallocatechin-3-gallate on obesity.Molecules20162110130510.3390/molecules21101305 27689985
    [Google Scholar]
  23. AuvichayapatP. PrapochanungM. TunkamnerdthaiO. SripanidkulchaiB. AuvichayapatN. ThinkhamropB. KunhasuraS. WongpratoomS. SinawatS. HongprapasP. Effectiveness of green tea on weight reduction in obese Thais: A randomized, controlled trial.Physiol. Behav.200893348649110.1016/j.physbeh.2007.10.009 18006026
    [Google Scholar]
  24. BaranwalA. AggarwalP. RaiA. KumarN. Pharmacological actions and underlying mechanisms of catechin: A review.Mini Rev. Med. Chem.202222582183310.2174/1389557521666210902162120 34477517
    [Google Scholar]
  25. ChenB. ZhangW. LinC. ZhangL. A comprehensive review on beneficial effects of catechins on secondary mitochondrial diseases.Int. J. Mol. Sci.202223191156910.3390/ijms231911569 36232871
    [Google Scholar]
  26. WenL. WuD. TanX. ZhongM. XingJ. LiW. LiD. CaoF. The role of catechins in regulating diabetes: An update review.Nutrients20221421468110.3390/nu14214681 36364943
    [Google Scholar]
  27. ReygaertW.C. Green tea catechins: Their use in treating and preventing infectious diseases.BioMed Res. Int.201820181910.1155/2018/9105261 30105263
    [Google Scholar]
  28. GadkariP.V. BalaramanM. Catechins: Sources, extraction and encapsulation: A review.Food Bioprod. Process.20159312213810.1016/j.fbp.2013.12.004
    [Google Scholar]
  29. López-MirandaS. Serrano-MartínezA. Hernández-SánchezP. GuardiolaL. Pérez-SánchezH. ForteaI. GabaldónJ.A. Núñez-DelicadoE. Use of cyclodextrins to recover catechin and epicatechin from red grape pomace.Food Chem.201620337938510.1016/j.foodchem.2016.02.100 26948628
    [Google Scholar]
  30. López-BascónM.A. De CastroM.D.L. Soxhlet extraction. Liquid-Phase Extraction.Elsevier202032735410.1016/B978‑0‑12‑816911‑7.00011‑6
    [Google Scholar]
  31. GeorgeK.O. MosetiK.O. WanyokoJ.K. KinyanjuiT. WachiraF.N. Quantitation of the total catechin content in oils extracted from seeds of selected tea (Camellia sinensis (L) O. Kuntze, Theaceae) clones by RP-HPLC.Am. J. Plant Sci.2015671080108910.4236/ajps.2015.67112
    [Google Scholar]
  32. TiwariB.K. Ultrasound: A clean, green extraction technology.Trends Analyt. Chem.20157110010910.1016/j.trac.2015.04.013
    [Google Scholar]
  33. ZuY. LiC. FuY. ZhaoC. Simultaneous determination of catechin, rutin, quercetin kaempferol and isorhamnetin in the extract of sea buckthorn (Hippophae rhamnoides L.) leaves by RP-HPLC with DAD.J. Pharm. Biomed. Anal.200641371471910.1016/j.jpba.2005.04.052 16520013
    [Google Scholar]
  34. RoutrayW. OrsatV. Microwave-assisted extraction of flavonoids: A review.Food Bioprocess Technol.20125240942410.1007/s11947‑011‑0573‑z
    [Google Scholar]
  35. NkhiliE. TomaoV. El HajjiH. El BoustaniE.S. ChematF. DanglesO. Microwave‐assisted water extraction of green tea polyphenols.Phytochem. Anal.200920540841510.1002/pca.1141 19609884
    [Google Scholar]
  36. AlbuquerqueB.R. PrietoM.A. BarreiroM.F. RodriguesA. CurranT.P. BarrosL. FerreiraI.C.F.R. Catechin-based extract optimization obtained from Arbutus unedo L. fruits using maceration/microwave/ultrasound extraction techniques.Ind. Crops Prod.20179540441510.1016/j.indcrop.2016.10.050
    [Google Scholar]
  37. da SilvaR.P.F.F. Rocha-SantosT.A.P. DuarteA.C. Supercritical fluid extraction of bioactive compounds.Trends Analyt. Chem.201676405110.1016/j.trac.2015.11.013
    [Google Scholar]
  38. RuslanM.S.H. IdhamZ. Nian YianL. Ahmad ZainiM.A. Che YunusM.A. Effect of operating conditions on catechin extraction from betel nuts using supercritical CO2-methanol extraction.Sep. Sci. Technol.201853466267010.1080/01496395.2017.1406947
    [Google Scholar]
  39. PutraN.R. RizkiyahD.N. YunusM.A.C. Abdul AzizA.H. PamungkasA. Utilizing subcritical methanol extraction for catechin and epicatechin recovery from peanut skin as agricultural waste.Separations2023102829710.3390/separations10020082
    [Google Scholar]
  40. KhanS.A. AslamR. MakrooH.A. High pressure extraction and its application in the extraction of bio‐active compounds: A review.J. Food Process Eng.2019421e12896e1291010.1111/jfpe.12896
    [Google Scholar]
  41. MrabtiH. JaradatN. FichtaliI. OuedrhiriW. JodehS. AyeshS. CherrahY. FaouziM. Separation, identification, and antidiabetic activity of catechin isolated from Arbutus unedo L. plant roots.Plants201872313910.3390/plants7020031 29649130
    [Google Scholar]
  42. Płotka-WasylkaJ. SzczepańskaN. de la GuardiaM. NamieśnikJ. Modern trends in solid phase extraction: New sorbent media.Trends Analyt. Chem.201677234310.1016/j.trac.2015.10.010
    [Google Scholar]
  43. MaW. DaiY. RowK.H. Molecular imprinted polymers based on magnetic chitosan with different deep eutectic solvent monomers for the selective separation of catechins in black tea.Electrophoresis201839152039204610.1002/elps.201800034 29450897
    [Google Scholar]
  44. MaW. RowK.H. Solid-phase extraction of catechins from green tea with deep eutectic solvent immobilized magnetic molybdenum disulfide molecularly imprinted polymer.Molecules202025228029110.3390/molecules25020280 31936680
    [Google Scholar]
  45. CoskunO. Separation techniques: Chromatography.North. Clin. Istanb.201632156160 28058406
    [Google Scholar]
  46. GlavnikV. SimonovskaB. VovkI. Densitometric determination of (+)-catechin and (−)-epicatechin by 4-dimethylaminocinnam-aldehyde reagent.J. Chromatogr. A20091216204485449110.1016/j.chroma.2009.03.026 19339019
    [Google Scholar]
  47. NianB. ChenL. YiC. ShiX. JiangB. JiaoW. LiuQ. LvC. MaY. ZhaoM. A high performance liquid chromatography method for simultaneous detection of 20 bioactive components in tea extracts.Electrophoresis201940212837284410.1002/elps.201900154 31353482
    [Google Scholar]
  48. RahimA.A. NofrizalS. SaadB. Rapid tea catechins and caffeine determination by HPLC using microwave-assisted extraction and silica monolithic column.Food Chem.201414726226810.1016/j.foodchem.2013.09.131 24206716
    [Google Scholar]
  49. ŠilarováP. ČeslováL. MelounM. Fast gradient HPLC/MS separation of phenolics in green tea to monitor their degradation.Food Chem.201723747148010.1016/j.foodchem.2017.05.133 28764022
    [Google Scholar]
  50. Kalai SelviI. NagarajanS. Separation of catechins from green tea (Camellia sinensis L.) by microwave assisted acetylation, evaluation of antioxidant potential of individual components and spectroscopic analysis.Lebensm. Wiss. Technol.20189139139710.1016/j.lwt.2018.01.042
    [Google Scholar]
  51. GargiS. NilanjanS. MoutusiN. SubhasisM. Bioactive components of tea.Arch Food Nutr Sci20204100100910.29328/journal.afns.1001020
    [Google Scholar]
  52. XuD.P. LiY. MengX. ZhouT. ZhouY. ZhengJ. ZhangJ.J. LiH.B. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources.Int. J. Mol. Sci.20171819612710.3390/ijms18010096 28067795
    [Google Scholar]
  53. ZanwarA.A. BadoleS.L. ShendeP.S. HegdeM.V. BodhankarS.L. Antioxidant role of catechin in health and disease.Polyphenols Hum Health Dis2014126727110.1016/B978‑0‑12‑398456‑2.00021‑9
    [Google Scholar]
  54. ChengA.W. TanX. SunJ.Y. GuC.M. LiuC. GuoX. Catechin attenuates TNF-α induced inflammatory response via AMPK-SIRT1 pathway in 3T3-L1 adipocytes.PLoS One2019145e0217090e021710410.1371/journal.pone.0217090 31100089
    [Google Scholar]
  55. YounS.H. KwonJ.H. YinJ. TamL.T. AhnH.S. MyungS.C. LeeM.W. Anti-inflammatory and anti-urolithiasis effects of polyphenolic compounds from Quercus gilva Blume.Molecules20172271121113310.3390/molecules22071121 28678204
    [Google Scholar]
  56. TasneemS. LiuB. LiB. ChoudharyM.I. WangW. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents.Pharmacol. Res.201913912614010.1016/j.phrs.2018.11.001 30395947
    [Google Scholar]
  57. ReddyA.T. LakshmiS.P. Maruthi PrasadE. VaradacharyuluN.C. KodidhelaL.D. Epigallocatechin gallate suppresses inflammation in human coronary artery endothelial cells by inhibiting NF-κB.Life Sci.202025811813611816010.1016/j.lfs.2020.118136 32726662
    [Google Scholar]
  58. FanF.Y. SangL.X. JiangM. Catechins and their therapeutic benefits to inflammatory bowel disease.Molecules201722348451210.3390/molecules22030484 28335502
    [Google Scholar]
  59. AglanH.A. AhmedH.H. El-ToumyS.A. MahmoudN.S. Gallic acid against hepatocellular carcinoma: An integrated scheme of the potential mechanisms of action from in vivo study.Tumour Biol.2017396101042831769912710.1177/1010428317699127 28618930
    [Google Scholar]
  60. TruongV.L. JeongW.S. Antioxidant and anti-inflammatory roles of tea polyphenols in inflammatory bowel diseases.Food Sci. Hum. Wellness202211350251110.1016/j.fshw.2021.12.008
    [Google Scholar]
  61. ShirakamiY. ShimizuM. Possible mechanisms of green tea and its constituents against cancer.Molecules20182392284229710.3390/molecules23092284 30205425
    [Google Scholar]
  62. SinsinwarS. VadivelV. Catechin isolated from cashew nut shell exhibits antibacterial activity against clinical isolates of MRSA through ROS-mediated oxidative stress.Appl. Microbiol. Biotechnol.2020104198279829710.1007/s00253‑020‑10853‑z 32857200
    [Google Scholar]
  63. LaX. ZhangL. LiZ. LiH. YangY. (−)-Epigallocatechin Gallate (EGCG) enhances the sensitivity of colorectal cancer cells to 5-FU by inhibiting GRP78/NF-κB/miR-155-5p/MDR1 pathway.J. Agric. Food Chem.20196792510251810.1021/acs.jafc.8b06665 30741544
    [Google Scholar]
  64. WangJ. LiuW. ChenZ. ChenH. Physicochemical characterization of the oolong tea polysaccharides with high molecular weight and their synergistic effects in combination with polyphenols on Hepatocellular carcinoma.Biomed. Pharmacother.20179016017010.1016/j.biopha.2017.03.059 28355590
    [Google Scholar]
  65. ChiainoE. MicucciM. DuranteM. BudriesiR. GottiR. MarzettiC. ChiariniA. FrosiniM. Apoptotic-induced effects of Acacia catechu Willd. Extract in human colon cancer cells.Int. J. Mol. Sci.20202162102211810.3390/ijms21062102 32204339
    [Google Scholar]
  66. LuoK.W. Wei Chen LungW.Y. WeiX.Y. ChengB.H. CaiZ.M. HuangW.R. EGCG inhibited bladder cancer SW780 cell proliferation and migration both in vitro and in vivo via down-regulation of NF-κB and MMP-9.J. Nutr. Biochem.201741566410.1016/j.jnutbio.2016.12.004 28040581
    [Google Scholar]
  67. SunilM.A. SunithaV.S. SanthakumaranP. MohanM.C. JoseM.S. RadhakrishnanE.K. MathewJ. Protective effect of (+)–catechin against lipopolysaccharide-induced inflammatory response in RAW 264.7 cells through downregulation of NF-κB and p38 MAPK.Inflammopharmacology20212941139115510.1007/s10787‑021‑00827‑6 34115226
    [Google Scholar]
  68. WangL. LeeW. CuiY.R. AhnG. JeonY.J. Protective effect of green tea catechin against urban fine dust particle-induced skin aging by regulation of NF-κB, AP-1, and MAPKs signaling pathways.Environ. Pollut.2019252Pt B1318132410.1016/j.envpol.2019.06.02931252129
    [Google Scholar]
  69. LiP. LiuA. XiongW. LinH. XiaoW. HuangJ. ZhangS. LiuZ. Catechins enhance skeletal muscle performance.Crit. Rev. Food Sci. Nutr.202060351552810.1080/10408398.2018.1549534 30633538
    [Google Scholar]
  70. HuangH.T. ChengT.L. LinS.Y. HoC.J. ChyuJ.Y. YangR.S. ChenC.H. ShenC.L. Osteoprotective roles of green tea catechins.Antioxidants20209111136116010.3390/antiox9111136 33207822
    [Google Scholar]
  71. RashidinejadA. BoostaniS. BabazadehA. RehmanA. RezaeiA. Akbari-AlavijehS. ShaddelR. JafariS.M. Opportunities and challenges for the nanodelivery of green tea catechins in functional foods.Food Res. Int.202114211018611020610.1016/j.foodres.2021.110186 33773663
    [Google Scholar]
  72. DaiW. RuanC. ZhangY. WangJ. HanJ. ShaoZ. SunY. LiangJ. Bioavailability enhancement of EGCG by structural modification and nano-delivery: A review.J. Funct. Foods20206510373210374010.1016/j.jff.2019.103732
    [Google Scholar]
  73. ChanphaiP. Tajmir-RiahiH.A. Conjugation of tea catechins with chitosan nanoparticles.Food Hydrocoll.20188456157010.1016/j.foodhyd.2018.06.043
    [Google Scholar]
  74. QiC. LiuG. PingY. YangK. TanQ. ZhangY. ChenG. HuangX. XuD. A comprehensive review of nano-delivery system for tea polyphenols: Construction, applications, and challenges.Food Chem. X20231710057110.1016/j.fochx.2023.100571 36845473
    [Google Scholar]
  75. LiY.J. LuoL.J. HarrounS.G. WeiS.C. UnnikrishnanB. ChangH.T. HuangY.F. LaiJ.Y. HuangC.C. Synergistically dual-functional nano eye-drops for simultaneous anti-inflammatory and anti-oxidative treatment of dry eye disease.Nanoscale201911125580559410.1039/C9NR00376B 30860532
    [Google Scholar]
  76. YusufM. MohammadF. ShabbirM. KhanM.A. Eco-dyeing of wool with Rubia cordifolia root extract: Assessment of the effect of Acacia catechu as biomordant on color and fastness properties. Textiles Cloth.Sustainability2017219
    [Google Scholar]
  77. CerempeiA. MureşanE.I. CimpoeşuN. Carp-CărareC. RimbuC. Dyeing and antibacterial properties of aqueous extracts from quince (Cydonia oblonga) leaves.Ind. Crops Prod.20169421622510.1016/j.indcrop.2016.08.018
    [Google Scholar]
  78. CaoH. HuZ. ZhangQ. Dyeing and function modification of silk fabric with eriocarpous glochidion.J. Silk202158202610.3969/j.issn.1001‑7003.2021.07.004
    [Google Scholar]
  79. ZhaoP. FangJ. ZhaoY. WangY. ChenX. CaoH. Color matching and functional modification of silk by curcuminoids and luteolin.Yinran202450242810.3969/j.yinran.202403006
    [Google Scholar]
  80. ZhangC. LiuJ. CaoH. Pigment extraction from loquat leaves as natural dye for functional modification of cotton fabric.Shanghai Textile Sci. Technol202250212310.16549/j.cnki.issn.1001‑2044.2022.12.058
    [Google Scholar]
  81. FangJ. ZhaoP. DengS. ChenX. CaoH. Preparation of tea stem catechins and their staining and functional modification of silk fabrics.Adv. Textile Technol.2024321810.19398/j.att.202311009
    [Google Scholar]
  82. ImK.M. JeonJ-R. Synthesis of plant phenol-derived polymeric dyes for direct or mordant-based hair dyeing.J. Vis. Exp.201611854772 27929473
    [Google Scholar]
  83. WangF. GongJ. RenY. ZhangJ. Eco-dyeing with biocolourant based on natural compounds.R. Soc. Open Sci.20185117113410.1098/rsos.171134 29410827
    [Google Scholar]
  84. SamantL. JoseS. RoseN.M. ShakyawarD.B. Antimicrobial and UV protection properties of cotton fabric using enzymatic pretreatment and dyeing with Acacia catechu.J. Nat. Fibers20221962243225310.1080/15440478.2020.1807443
    [Google Scholar]
  85. IbrahimH.M. MashalyH.M. El-HawaryN.S. KamelM.M. El-AlfyE.A. Effect of catechu natural dye extracts on coloration and antibacterial protection factor for different cellulosic fabrics.Pharma Chem201798488
    [Google Scholar]
  86. RenY. FuR. FangK. ChenW. HaoL. XieR. ShiZ. Dyeing cotton with tea extract based on in-situ polymerization: An innovative mechanism of coloring cellulose fibers by industrial crop pigments.Ind. Crops Prod.201914211186311187110.1016/j.indcrop.2019.111863
    [Google Scholar]
  87. Latos-BrozioM. MasekA. The application of (+)-catechin and polydatin as functional additives for biodegradable polyesters.Int. J. Mol. Sci.202021241443110.3390/ijms21020414 31936484
    [Google Scholar]
  88. TanC. CelliG.B. SeligM.J. AbbaspourradA. Catechin modulates the copigmentation and encapsulation of anthocyanins in polyelectrolyte complexes (PECs) for natural colorant stabilization.Food Chem.201826434234910.1016/j.foodchem.2018.05.018 29853386
    [Google Scholar]
  89. LiuS. WangZ. SongP. Free radical graft copolymerization strategy to prepare catechin-modified chitosan loose nanofiltration (NF) membrane for dye desalination.ACS Sustain. Chem.& Eng.2018634253426310.1021/acssuschemeng.7b04699
    [Google Scholar]
  90. KaraosmanogluH. KilmartinP. Tea extracts as antioxidants for food preservation. Handbook of Antioxidants for Food Preservation.Elsevier201521923310.1016/B978‑1‑78242‑089‑7.00009‑9
    [Google Scholar]
  91. OusjiO. SlenoL. Structural elucidation of novel stable and reactive metabolites of green tea catechins and alkyl gallates by LC-MS/MS.Antioxidants202211916351165010.3390/antiox11091635 36139709
    [Google Scholar]
  92. KhanongnuchC. UnbanK. KanpiengjaiA. SaenjumC. Recent research advances and ethno-botanical history of miang, a traditional fermented tea (Camellia sinensis var. assamica) of northern Thailand.J. Ethnic Foods20174313514410.1016/j.jef.2017.08.006
    [Google Scholar]
  93. JaniakM.A. AmarowiczR. RostekD. Influence of catechin fraction and high molecular fraction from green tea extract on Lactobacillus, Bifidobacterium and Streptococcus strains.Nat. Prod. Commun.20181361934578X180130061510.1177/1934578X1801300615
    [Google Scholar]
  94. MaY. DingS. FeiY. LiuG. JangH. FangJ. Antimicrobial activity of anthocyanins and catechins against foodborne pathogens Escherichia coli and Salmonella.Food Control201910610671210.1016/j.foodcont.2019.106712
    [Google Scholar]
  95. YilmazY. Novel uses of catechins in foods.Trends Food Sci. Technol.2006172647110.1016/j.tifs.2005.10.005
    [Google Scholar]
  96. TakamiS. ImaiT. HasumuraM. ChoY.M. OnoseJ. HiroseM. Evaluation of toxicity of green tea catechins with 90-day dietary administration to F344 rats.Food Chem. Toxicol.20084662224222910.1016/j.fct.2008.02.023 18400353
    [Google Scholar]
  97. ArrietaM.P. Castro-LópezM.M. RayónE. Barral-LosadaL.F. López-VilariñoJ.M. LópezJ. González-RodríguezM.V. Plasticized poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends incorporated with catechin intended for active food-packaging applications.J. Agric. Food Chem.20146241101701018010.1021/jf5029812 25255375
    [Google Scholar]
  98. LeeJ.Y. KimY. HerJ.Y. KimM.K. LeeK.G. Reduction of biogenic amine contents in fermented soybean paste using food additives.Lebensm. Wiss. Technol.20189847047610.1016/j.lwt.2018.09.015
    [Google Scholar]
  99. SugimotoK. MatsuokaY. SakaiK. FujiyaN. FujiiH. ManoJ. Catechins in green tea powder (matcha) are heat-stable scavengers of acrolein, a lipid peroxide-derived reactive carbonyl species.Food Chem.202135512940312941210.1016/j.foodchem.2021.129403 33773455
    [Google Scholar]
  100. WuQ. MinY. XiaoJ. FengN. ChenY. LuoQ. ZhouM. LiD. HuZ. WangC. Liquid state fermentation vinegar enriched with catechin as an antiglycative food product.Food Funct.20191084877488710.1039/C8FO01892H 31334505
    [Google Scholar]
/content/journals/mc/10.2174/0115734064353669241212064640
Loading
/content/journals/mc/10.2174/0115734064353669241212064640
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test