Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Introduction/Objective

Biguanide derivatives are small molecules with promising anti-tumor activity. However, the effect of different carbon rings at the end of one guanide group of these compounds on anti-proliferation activity is unknown. Therefore, we synthesized novel fluorine-containing biguanide compounds with various carbon rings, evaluated their anticancer activities, and explored their anti-proliferative mechanisms.

Methods

Guanidine derivatives containing trifluoromethoxy or 3,4-difluorophenyl with nine different carbon rings were synthesized using established chemical methods. The phenyl side chain was fixed to trifluoromethoxy or 3,4-difluorophenyl with changes in the number of cyclic aminocyclic carbons. The effects of these derivatives were evaluated using MTT and clonogenic assays, while the underlying mechanisms were investigated by analyzing protein expression levels western blotting.

Results

This study analyzed the effects of new biguanide derivatives on cell growth in three different cell lines: HepG2, Ovcar3, and T24. The results showed that T24 cells were the most sensitive cell line to these biguanides. All biguanide derivatives significantly inhibited the growth of T24 cells, while compound exhibited the strongest inhibition in all three cell lines by MTT assay. The inhibitory effects of were further confirmed using colony formation experiments. Western blotting results indicated that the representative biguanide derivative, , inhibited the EGFR signaling pathway, thereby inhibiting tumor growth.

Conclusion

- and -, the cyclooctyl-containing 3,4-difluorophenyl biguanide analogs, have demonstrated significant potential in developing novel anticancer drugs. The 3,4-difluorophenyl biguanide containing cyclooctyl showed the best antitumor activity among the nine derivatives. This finding offers a novel perspective in developing anticancer drugs and a further improvement in biguanide activity in the future.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064323679240904112446
2024-09-18
2025-11-14
Loading full text...

Full text loading...

References

  1. SiegelR.L. GiaquintoA.N. JemalA. Cancer statistics, 2024.CA Cancer J. Clin.2024741124910.3322/caac.2182038230766
    [Google Scholar]
  2. NikolaouV. SyrigosK. SaifM.W. Incidence and implications of chemotherapy related hand-foot syndrome.Expert Opin. Drug Saf.201615121625163310.1080/14740338.2016.123806727718746
    [Google Scholar]
  3. MillerK.K. GorceyL. McLellanB.N. Chemotherapy-induced hand-foot syndrome and nail changes: A review of clinical presentation, etiology, pathogenesis, and management.J. Am. Acad. Dermatol.201471478779410.1016/j.jaad.2014.03.01924795111
    [Google Scholar]
  4. DaviesM.J. ArodaV.R. CollinsB.S. GabbayR.A. GreenJ. MaruthurN.M. RosasS.E. Del PratoS. MathieuC. MingroneG. RossingP. TankovaT. TsapasA. BuseJ.B. Management of hyperglycaemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD).Diabetologia202265121925196610.1007/s00125‑022‑05787‑236151309
    [Google Scholar]
  5. KathuriaD. RaulA.D. WanjariP. BharatamP.V. Biguanides: Species with versatile therapeutic applications.Eur. J. Med. Chem.202121911337810.1016/j.ejmech.2021.11337833857729
    [Google Scholar]
  6. TorunogluS.T. ZajdaA. TampioJ. Markowicz-PiaseckaM. HuttunenK.M. Metformin derivatives – Researchers’ friends or foes?Biochem. Pharmacol.202321511574310.1016/j.bcp.2023.11574337591450
    [Google Scholar]
  7. AshinumaH. TakiguchiY. KitazonoS. Kitazono-SaitohM. KitamuraA. ChibaT. TadaY. KurosuK. SakaidaE. SekineI. TanabeN. IwamaA. YokosukaO. TatsumiK. Antiproliferative action of metformin in human lung cancer cell lines.Oncol. Rep.2012281814[PMID: 22576795
    [Google Scholar]
  8. MogaveroA. MaioranaM.V. ZanuttoS. VarinelliL. BozziF. BelfioreA. VolpiC.C. GloghiniA. PierottiM.A. GariboldiM. Metformin transiently inhibits colorectal cancer cell proliferation as a result of either AMPK activation or increased ROS production.Sci. Rep.2017711599210.1038/s41598‑017‑16149‑z29167573
    [Google Scholar]
  9. Cunha JúniorA.D. BragagnoliA.C. CostaF.O. CarvalheiraJ.B.C. Repurposing metformin for the treatment of gastrointestinal cancer.World J. Gastroenterol.202127171883190410.3748/wjg.v27.i17.188334007128
    [Google Scholar]
  10. IsakovicA. HarhajiL. StevanovicD. MarkovicZ. Sumarac-DumanovicM. StarcevicV. MicicD. TrajkovicV. Dual antiglioma action of metformin: Cell cycle arrest and mitochondria-dependent apoptosis.Cell. Mol. Life Sci.200764101290130210.1007/s00018‑007‑7080‑417447005
    [Google Scholar]
  11. SahraI.B. LaurentK. LoubatA. Giorgetti-PeraldiS. ColosettiP. AubergerP. TantiJ.F. Le Marchand-BrustelY. BostF. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level.Oncogene200827253576358610.1038/sj.onc.121102418212742
    [Google Scholar]
  12. GotliebW.H. SaumetJ. BeauchampM.C. GuJ. LauS. PollakM.N. BruchimI. In vitro metformin anti-neoplastic activity in epithelial ovarian cancer.Gynecol. Oncol.2008110224625010.1016/j.ygyno.2008.04.00818495226
    [Google Scholar]
  13. CantrellL.A. ZhouC. MendivilA. MalloyK.M. GehrigP.A. Bae-JumpV.L. Metformin is a potent inhibitor of endometrial cancer cell proliferation—implications for a novel treatment strategy.Gynecol. Oncol.20101161929810.1016/j.ygyno.2009.09.02419822355
    [Google Scholar]
  14. ChaeY.K. AryaA. MalecekM.K. ShinD.S. CarneiroB. ChandraS. KaplanJ. KalyanA. AltmanJ.K. PlataniasL. GilesF. Repurposing metformin for cancer treatment: Current clinical studies.Oncotarget2016726407674078010.18632/oncotarget.819427004404
    [Google Scholar]
  15. KohM. LeeJ.C. MinC. MoonA. A novel metformin derivative, HL010183, inhibits proliferation and invasion of triple-negative breast cancer cells.Bioorg. Med. Chem.20132182305231310.1016/j.bmc.2013.02.01523490148
    [Google Scholar]
  16. ChenY.C. LiH. WangJ. Mechanisms of metformin inhibiting cancer invasion and migration.Am. J. Transl. Res.202012948854901[PMID: 33042396
    [Google Scholar]
  17. DowlingR.J.O. NiraulaS. StambolicV. GoodwinP.J. Metformin in cancer: Translational challenges.J. Mol. Endocrinol.2012483R31R4310.1530/JME‑12‑000722355097
    [Google Scholar]
  18. HeL. WondisfordF.E. Metformin action: Concentrations matter.Cell Metab.201521215916210.1016/j.cmet.2015.01.00325651170
    [Google Scholar]
  19. ZhouS. XuL. CaoM. WangZ. XiaoD. XuS. DengJ. HuX. HeC. TaoT. WangW. GuanA. YangX. Anticancer properties of novel pyrazole‐containing biguanide derivatives with activating the adenosine monophosphate‐activated protein kinase signaling pathway.Arch. Pharm. (Weinheim)20193529190007510.1002/ardp.20190007531339189
    [Google Scholar]
  20. WangW. XiaoD. ZhouS. XuS. TangX. ZhouX. LiuJ. XuC. PengM. YangX. Synthesis, anticancer activities, and mechanism of N-heptyl-containing biguanide derivatives.Med. Chem.202218889590210.2174/157340641866622021011145835142271
    [Google Scholar]
  21. KimH.S. KimJ.H. JangH.J. LeeJ. The addition of metformin to systemic anticancer therapy in advanced or metastatic cancers: A meta-analysis of randomized controlled trials.Int. J. Med. Sci.202017162551256010.7150/ijms.5033833029097
    [Google Scholar]
  22. BrancherS. RibeiroA.E. ToporcovT.N. WeiderpassE. The role of metformin on lung cancer survival: The first systematic review and meta-analysis of observational studies and randomized clinical trials.J. Cancer Res. Clin. Oncol.2021147102819283610.1007/s00432‑021‑03728‑x34264392
    [Google Scholar]
  23. LerouxF.R. ManteauB. VorsJ.P. PazenokS. Trifluoromethyl ethers – synthesis and properties of an unusual substituent.Beilstein J. Org. Chem.200841310.3762/bjoc.4.1318941485
    [Google Scholar]
  24. KosobokovM. Importance of a Fluorine Substituent for the Preparation of meta- and para-Pentafluoro-λ6-sulfanyl-Substituted Pyridines.Angewandte. Chem.201655361078110785
    [Google Scholar]
  25. XuS. CaoY. LuoY. XiaoD. WangW. WangZ. YangX. Synthesis, anti-proliferative evaluation and mechanism of 4-trifluoro methoxy proguanil derivatives with various carbon chain length.Molecules20212619577510.3390/molecules2619577534641319
    [Google Scholar]
  26. XiaoD. Synthesis, biological evaluation and anti-proliferative mechanism of fluorine-containing proguanil derivatives.Bioorg. Med. Chem.2020282115258
    [Google Scholar]
  27. ArrietaO. BarrónF. PadillaM.Á.S. Avilés-SalasA. Ramírez-TiradoL.A. Arguelles JiménezM.J. VergaraE. Zatarain-BarrónZ.L. Hernández-PedroN. CardonaA.F. Cruz-RicoG. Barrios-BernalP. YamamotoR.M. RosellR. Effect of metformin plus tyrosine kinase inhibitors compared with tyrosine kinase inhibitors alone in patients with epidermal growth factor receptor–mutated lung adenocarcinoma.JAMA Oncol.2019511e19255310.1001/jamaoncol.2019.255331486833
    [Google Scholar]
  28. MazzoneP.J. RaiH. BeukemannM. XuM. JainA. SasidharM. The effect of metformin and thiazolidinedione use on lung cancer in diabetics.BMC Cancer201212141010.1186/1471‑2407‑12‑41022978440
    [Google Scholar]
  29. XiaoD. HuX. PengM. DengJ. ZhouS. XuS. WuJ. YangX. Inhibitory role of proguanil on the growth of bladder cancer via enhancing EGFR degradation and inhibiting its downstream signaling pathway to induce autophagy.Cell Death Dis.202213549910.1038/s41419‑022‑04937‑z35614042
    [Google Scholar]
/content/journals/mc/10.2174/0115734064323679240904112446
Loading
/content/journals/mc/10.2174/0115734064323679240904112446
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): 3,4-difluorophenyl; anti-cancer; Biguanides; cyclooctyl; EGFR; tumor growth
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test