Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Introduction

Breast cancer remains a formidable health concern for women, necessitating the development of potent anticancer agents with improved safety profiles. Dihydropyrimidinones (DHPM), pyrazole, and benzofuran scaffolds have emerged as promising targets due to their diverse pharmacological profiles. In this study, we employed a scaffold hopping approach to design a novel DHPM-Pyrazole-Benzofuran core. A series of compounds () were synthesized using the Biginelli protocol, and their characterization was performed using various techniques such as FTIR, 1H NMR, and Mass spectroscopy.

Methods

Molecular docking studies against kinesin spindle protein Eg5 (1Q0B) performed to find superior binding interactions compared to the prototype Eg5 inhibitor Monastrol. Anti breast cancer potential of these compounds was screened against the breast adrenocarcinoma MCF-7 cell line using an SRB assay.

Results

Compound showed good growth inhibitory activity (GI=24.08 μM) compared to Monastrol (GI=32 μM) employed as a positive control. Moreover, Compound exhibited strong interactions with amino acids GLU-116 and ARG-119 with Eg5 protein 1Q0B.

Conclusion

Compound fits well at the allosteric site of Eg5 protein 1QOB. Compound emerged as the most cytotoxic, displaying significant and impressive growth inhibitory activity (GI=24.08 μM).

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064336338241112043509
2024-12-13
2025-12-05
Loading full text...

Full text loading...

References

  1. HanahanD. WeinbergR.A. The hallmarks of cancer.Cell20001001577010.1016/S0092‑8674(00)81683‑910647931
    [Google Scholar]
  2. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell20111145646674
    [Google Scholar]
  3. VogelsteinB. KinzlerK.W. Cancer genes and the pathways they control.Nat. Med.2004108789799
    [Google Scholar]
  4. GiaquintoA.N. SungH. MillerK.D. KramerJ.L. NewmanL.A. MinihanA. JemalA. SiegelR.L. Breast cancer statistics.CA Cancer J. Clin.202272652454110.3322/caac.2175436190501
    [Google Scholar]
  5. DeoS.V.S. SharmaJ. KumarS. GLOBOCAN 2020 report on global cancer burden: challenges and opportunities for surgical oncologists.Ann. Surg. Oncol.202229116497650010.1245/s10434‑022‑12151‑635838905
    [Google Scholar]
  6. CaoW. QinK. LiF. ChenW. Comparative study of cancer profiles between 2020 and 2022 using global cancer statistics (GLOBOCAN).J. Natl. Cancer Cent.202410.1016/j.jncc.2024.05.001
    [Google Scholar]
  7. DeSantisC.E. MaJ. GaudetM.M. NewmanL.A. MillerK.D. GodingS.A. JemalA. SiegelR.L. Breast cancer statistics, 2019.CA Cancer J. Clin.201969643845110.3322/caac.2158331577379
    [Google Scholar]
  8. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  9. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.2183438572751
    [Google Scholar]
  10. HassanM. WatariH. AbuAlmaatyA. OhbaY. SakuragiN. Apoptosis and molecular targeting therapy in cancer.BioMed Res. Int.201420142812310.1155/2014/15084525013758
    [Google Scholar]
  11. GuidoB.C. RamosL.M. NolascoD.O. NobregaC.C. AndradeB.Y.G. Pic-TaylorA. NetoB.A.D. CorrêaJ.R. Impact of kinesin Eg5 inhibition by 3,4-dihydropyrimidin-2(1H)-one derivatives on various breast cancer cell features.BMC Cancer201515128310.1186/s12885‑015‑1274‑125885813
    [Google Scholar]
  12. Garcia-SaezI. SkoufiasD.A. Eg5 targeting agents: From new anti-mitotic based inhibitor discovery to cancer therapy and resistance.Biochem. Pharmacol.202118411436410.1016/j.bcp.2020.11436433310050
    [Google Scholar]
  13. WoodK. CornwellW.D. JacksonJ.R. Past and future of the mitotic spindle as an oncology target.Curr. Opin. Pharmacol.20011437037710.1016/S1471‑4892(01)00064‑911710735
    [Google Scholar]
  14. MayerT.U. KapoorT.M. HaggartyS.J. KingR.W. SchreiberS.L. MitchisonT.J. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen.Science1999286544197110.1126/science.286.5441.971
    [Google Scholar]
  15. JinQ. HuangF. WangX. ZhuH. XianY. LiJ. ZhangS. NiQ. High Eg5 expression predicts poor prognosis in breast cancer.Oncotarget2017837622086221610.18632/oncotarget.1921528977938
    [Google Scholar]
  16. FerhatL. CookC. ChauviereM. HarperM. KressM. LyonsG.E. BaasP.W. Expression of the mitotic motor protein Eg5 in postmitotic neurons: Implications for neuronal development.J. Neurosci.199818197822783910.1523/JNEUROSCI.18‑19‑07822.1998
    [Google Scholar]
  17. CarterB.Z. MakD.H. ShiY. SchoberW.D. WangR.Y. KonoplevaM. KollerE. DeanN.M. AndreeffM. Regulation and targeting of Eg5, a mitotic motor protein in blast crisis CML: Overcoming imatinib resistance.Cell Cycle20065192223222910.4161/cc.5.19.3255
    [Google Scholar]
  18. CastilloA. MorseH.C.III GodfreyV.L. NaeemR. JusticeM.J. Overexpression of Eg5 causes genomic instability and tumor formation in mice.Cancer Res.20076721101381014710.1158/0008‑5472.CAN‑07‑0326
    [Google Scholar]
  19. LiuM. YuH. HuoL. LiuJ. LiM. ZhouJ. Validating the mitotic kinesin Eg5 as a therapeutic target in pancreatic cancer cells and tumor xenografts using a specific inhibitor.Biochem. Pharmacol.200876216917810.1016/j.bcp.2008.04.01818539263
    [Google Scholar]
  20. JoshiH.C. Microtubule dynamics in living cells.Curr. Opin. Cell Biol.1998101354410.1016/S0955‑0674(98)80084‑7
    [Google Scholar]
  21. AttriP. BhatiaR. GaurJ. AroraB. GuptaA. KumarN. ChoiE.H. Triethylammonium acetate ionic liquid assisted one-pot synthesis of dihydropyrimidinones and evaluation of their antioxidant and antibacterial activities.Arab. J. Chem.201710220621410.1016/j.arabjc.2014.05.007
    [Google Scholar]
  22. de VasconcelosA. OliveiraP.S. RitterM. FreitagR.A. RomanoR.L. QuinaF.H. PizzutiL. PereiraC.M.P. StefanelloF.M. BarschakA.G. Antioxidant capacity and environmentally friendly synthesis of dihydropyrimidin‐(2 H)‐ones promoted by naturally occurring organic acids.J. Biochem. Mol. Toxicol.201226415516110.1002/jbt.2042422447704
    [Google Scholar]
  23. GangwarN. KasanaV.K. 3,4-Dihydropyrimidin-2(1H)-one derivatives: Organocatalysed microwave assisted synthesis and evaluation of their antioxidant activity.Med. Chem. Res.201221124506451110.1007/s00044‑012‑9987‑z
    [Google Scholar]
  24. HuangX. TuZ. JiangY. XiaoH. ZhangQ. WangH. Dynamic high pressure microfluidization-assisted extraction and antioxidant activities of lentinan.Int. J. Biol. Macromol.201251592693210.1016/j.ijbiomac.2012.07.01822829052
    [Google Scholar]
  25. BarbosaF.A.R. CantoR.F.S. SabaS. RafiqueJ. BragaA.L. Synthesis and evaluation of dihydropyrimidinone-derived selenoesters as multi-targeted directed compounds against Alzheimer’s disease.Bioorg. Med. Chem.201624225762577010.1016/j.bmc.2016.09.03127681239
    [Google Scholar]
  26. StefaniH.A. OliveiraC.B. AlmeidaR.B. PereiraC.M.P. BragaR.C. CellaR. BorgesV.C. SavegnagoL. NogueiraC.W. Dihydropyrimidin-(2H)-ones obtained by ultrasound irradiation: A new class of potential antioxidant agents.Eur. J. Med. Chem.200641451351810.1016/j.ejmech.2006.01.00716516351
    [Google Scholar]
  27. MatthewsJ.M. LiottaF. HagemanW. RiveroR.A. WestoverL. YangM. XuJ. DemarestK. Discovery of a dihydropyrimidine series of molecules that selectively mimic the biological actions of calcitonin.Bioorg. Med. Chem. Lett.20041451155115910.1016/j.bmcl.2003.12.07114980655
    [Google Scholar]
  28. ChinaR.B. Nageswara RaoR. SumanP. YogeeswariP. SriramD. ShaikT.B. KalivendiS.V. Synthesis, structure–activity relationship of novel substituted 4H-chromen-1,2,3,4-tetrahydropyrimidine-5-carboxylates as potential anti-mycobacterial and anticancer agents.Bioorg. Med. Chem. Lett.201121102855285910.1016/j.bmcl.2011.03.07921507635
    [Google Scholar]
  29. PrasadT. MahapatraA. SharmaT. SahooC.R. PadhyR.N. Dihydropyrimidinones as potent anticancer agents: Insight into the structure–activity relationship.Arch. Pharm. (Weinheim)20233566220066410.1002/ardp.20220066436942985
    [Google Scholar]
  30. DowarahJ. PatelD. MarakB.N. YadavU.C.S. ShahP.K. ShuklaP.K. SinghV.P. Green synthesis, structural analysis and anticancer activity of dihydropyrimidinone derivatives.RSC Advances20211157357373575310.1039/D1RA03969E35492774
    [Google Scholar]
  31. ZhuL. ChengP. LeiN. YaoJ. ShengC. ZhuangC. GuoW. LiuW. ZhangY. DongG. WangS. MiaoZ. ZhangW. Synthesis and biological evaluation of novel homocamptothecins conjugating with dihydropyrimidine derivatives as potent topoisomerase I inhibitors.Arch. Pharm. (Weinheim)20113441172673410.1002/ardp.20100040221956522
    [Google Scholar]
  32. S, T.; Mahendran, H.P.; Bhattacharjee, R.R.; Jeyaraj, S.; Mohanta, K. Assessment of dihydropyrimidinone-based nanocomposites as multifunctional anti-cancer drug.Mater. Adv.20212103385339310.1039/D1MA00017A
    [Google Scholar]
  33. Benazir AliL. SubramaniA. JamalA.V.S. PatelP.V. ShabeerT.K. TamizhduraiP. SyedA. Al-ShwaimanH. SasikumarP. In silico investigation and biological evaluation viz antimicrobial, genotoxic, and anticancer potentials of new dihydropyrimidinones (DHPMs) synthesized by Biginelli reaction.J. Mol. Struct.2024131613875810.1016/j.molstruc.2024.138758
    [Google Scholar]
  34. AdigunR.A. MalanF.P. BalogunM.O. OctoberN. Design, synthesis, and in silico-in vitro antimalarial evaluation of 1,2,3-triazole-linked dihydropyrimidinone quinoline hybrids.Struct. Chem.20233462065208210.1007/s11224‑023‑02142‑y
    [Google Scholar]
  35. RogerioK.R. GraebinC.S. PintoD.L.H. OliveiraL.S. de Souza Fernandes da SilvaV. Daniel-RibeiroC.T. CarvalhoL.J.M. BoechatN. Novel Quinolinyl-pyrrolo[3,4-d]pyrimidine-2,5-dione derivatives against chloroquine-resistant Plasmodium falciparum.Curr. Top. Med. Chem.20202029911010.2174/156802661966619101910071131648638
    [Google Scholar]
  36. ParthK. KaurH. PersoonsL. AndreiG. SinghK. Quinoline‐Dihydropyrimidin‐2(1 H)‐one Hybrids: Synthesis, biological activity, and mechanistic studies.ChemMedChem2022178e20220003110.1002/cmdc.20220003135174629
    [Google Scholar]
  37. RogerioK.R. CarvalhoL.J.M. DominguesL.H.P. NevesB.J. Moreira FilhoJ.T. CastroR.N. BiancoJr. C. Daniel-RibeiroC.T. AndradeC.H. GraebinC.S. Synthesis and molecular modelling studies of pyrimidinones and pyrrolo[3,4-d]-pyrimidinodiones as new antiplasmodial compounds.Mem. Inst. Oswaldo Cruz20181138e17045210.1590/0074‑0276017045229924131
    [Google Scholar]
  38. RadiniI. ElsheikhT. El-TelbaniE. KhidreR. New potential antimalarial agents: Design, synthesis and biological evaluation of some novel quinoline derivatives as antimalarial agents.Molecules201621790910.3390/molecules2107090927428939
    [Google Scholar]
  39. RamachandranV. ArumugasamyK. SinghS.K. EdayadullaN. RameshP. KamarajS.K. Synthesis, antibacterial studies, and molecular modeling studies of 3,4-dihydropyrimidinone compounds.J. Chem. Biol.201691314010.1007/s12154‑015‑0142‑426855679
    [Google Scholar]
  40. SantosS.J. RossattoF.C.P. JardimN.S. ÁvilaD.S. Ligabue-BraunR. FontouraL.A.M. ZimmerK.R. RussowskyD. Chromene-dihydropyrimidinone and xanthene-dihydropyrimidinone hybrids: Design, synthesis, and antibacterial and antibiofilm activities.New J. Chem.202347167500752010.1039/D2NJ05211C
    [Google Scholar]
  41. VenugopalaK. RaoD. BhandaryS. PillayM. ChopraD. AldhubiabB. AttimaradM. AlwassilO. HarshaS. MlisanaK. Design, synthesis, and characterization of (1-(4-aryl)-1H-1,2,3-triazol-4-yl)methyl, substituted phenyl-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylates against Mycobacterium tuberculosis.Drug Des. Devel. Ther.2016102681269010.2147/DDDT.S10976027601885
    [Google Scholar]
  42. El-ShoukrofyM.S. AttaA. FahmyS. SriramD. MahranM.A. LaboutaI.M. New tetrahydropyrimidine-1,2,3-triazole clubbed compounds: Antitubercular activity and Thymidine Monophosphate Kinase (TMPKmt) inhibition.Bioorg. Chem.202313110631210.1016/j.bioorg.2022.10631236528922
    [Google Scholar]
  43. PriyaN. SinghP. BhatiaS. MedhiB. PrasadA.K. ParmarV.S. RajH.G. Characterization of a unique dihydropyrimidinone, ethyl 4-(4′-heptanoyloxyphenyl)-6-methyl-3,4-dihydropyrimidin-2-one-5-carboxylate, as an effective antithrombotic agent in a rat experimental model.J. Pharm. Pharmacol.20116391175118510.1111/j.2042‑7158.2011.01316.x21827490
    [Google Scholar]
  44. ChikhaleR.V. BholeR.P. PatilP.A. KhedekarP.B. BhusariK.P. Synthesis and antimicrobial activity of some ethyl [6-methyl-2-methoxy-3-(substituted phenylethanone)-4-(substituted phenyl)]-1, 2, 3, 4-tetrahydropyrimidine-5-carboxylates.Pharma Chem.200911247257
    [Google Scholar]
  45. AlmansourI. AshrafA.A. AliM. CheeW.A. KengY.Y. IsmailR. OsmanH. Antimycobacterial agents: synthesis and biological evaluation of novel 4-(substituted-phenyl)-6-methyl-2-oxo-N-(pyridin-2-yl)-1, 2, 3, 4-tetrahydropyrimidine-5-carboxamide derivatives by using one-pot multicomponent method.Lett. Drug Des. Discov.201291095395710.2174/1570180811209050953
    [Google Scholar]
  46. KhasimbiS. AliF. MandaK. SharmaA. ChauhanG. WakodeS. Dihydropyrimidinones scaffold as a promising nucleus for synthetic profile and various therapeutic targets: A Review.Curr. Org. Synth.202118327029310.2174/157017941766620120721571033290199
    [Google Scholar]
  47. MoritaI. KunimotoK. TsudaM. TadaS.I. KiseM. KimuraK. Synthesis and antihypertensive activities of 1, 4-dihydropyridine-5-phosphonate derivatives. II.Chem. Pharm. Bull.1987351041444154
    [Google Scholar]
  48. BansalR. NarangG. CalleC. CarronR. PembertonK. HarveyA.L. Synthesis of 4‐(carbonyloxyphenyl)‐1,4‐dihydropyridines as potential antihypertensive agents.Drug Dev. Res.2013741506110.1002/ddr.21056
    [Google Scholar]
  49. AlamO. KhanS.A. SiddiquiN. AhsanW. VermaS.P. GilaniS.J. Antihypertensive activity of newer 1,4-dihydro-5-pyrimidine carboxamides: Synthesis and pharmacological evaluation.Eur. J. Med. Chem.201045115113511910.1016/j.ejmech.2010.08.02220813434
    [Google Scholar]
  50. SakodaR. KamikawajiY. SetoK. Synthesis of 1, 4-dihydropyridine-5-phosphonates and their calcium-antagonistic and antihypertensive activities: Novel calcium-autagonist 2-[benzy (phenyl) amino] ethyl 5-(5, 5-dimethyl-2-oxo-1, 3, 2-dioxaphosphorinan-2-yl)-1, 4-dihydro-2, 6-dimethyl-4-(3-nitrophenyl)-3-phrixinecarboaylate hydrochloride ethanol (NZ-105) and its crystal structure.Chem. Pharm. Bull. (Tokyo)19924092362236910.1248/cpb.40.23621446356
    [Google Scholar]
  51. KimJ. ParkC. OkT. SoW. JoM. SeoM. KimY. SohnJ.H. ParkY. JuM.K. KimJ. HanS.J. KimT.H. CechettoJ. NamJ. SommerP. NoZ. Discovery of 3,4-dihydropyrimidin-2(1H)-ones with inhibitory activity against HIV-1 replication.Bioorg. Med. Chem. Lett.20122252119212410.1016/j.bmcl.2011.12.09022305583
    [Google Scholar]
  52. KimJ. KwonJ. LeeD. JoS. ParkD.S. ChoiJ. ParkE. HwangJ.Y. KoY. ChoiI. JuM.K. Serendipitous discovery of 2-((phenylsulfonyl) methyl)-thieno [3, 2-d] pyrimidine derivatives as novel HIV-1 replication inhibitors.Bioorg. Med. Chem. Lett.2014242354735477
    [Google Scholar]
  53. PaganoN. TerieteP. MattmannM.E. YangL. SnyderB.A. CaiZ. HeilM.L. CosfordN.D.P. An integrated chemical biology approach reveals the mechanism of action of HIV replication inhibitors.Bioorg. Med. Chem.201725236248626510.1016/j.bmc.2017.03.06128442262
    [Google Scholar]
  54. KhanM.M. Saigal; Khan, S.; Shareef, S.; Danish, M. Organocatalyzed synthesis and antifungal activity of fully substituted 1,4‐Dihydropyridines.ChemistrySelect20183246830683510.1002/slct.201800709
    [Google Scholar]
  55. AppnaN.R. NagiriR.K. KorupoluR.B. KanugalaS. ChityalG.K. ThipparapuG. BandaN. Design and synthesis of novel 4-hydrazone functionalized/1,2,4-triazole fused pyrido[2,3-d]pyrimidine derivatives, their evaluation for antifungal activity and docking studies.Med. Chem. Res.20192891509152810.1007/s00044‑019‑02390‑w
    [Google Scholar]
  56. ZhangJ. PengJ.F. WangT. WangP. ZhangZ.T. Synthesis, crystal structure, characterization and antifungal activity of pyrazolo[1,5-a]pyrimidines derivatives.J. Mol. Struct.2016112022823310.1016/j.molstruc.2016.05.026
    [Google Scholar]
  57. CastroJ.M. SilvaA.C.A. RitterM. da SilvaA.F. GonçalvesC.L. dos SantosP.R. BorjaL.S. de PereiraC.M.P. da Silva NascenteP. Dihydropyrimidinones against multiresistant bacteria.Front. Microbiol.20221374321310.3389/fmicb.2022.74321335369453
    [Google Scholar]
  58. SelvinthanujaC. KiruthigaN. PrabhaT. SivakumarT. SubramanianN. Synthesis, characterization, molecular docking and antimicrobial evaluation of azo coupled-3, 4-dihydropyrimidine-2 (1h)-one derivatives.IJPRAS202110639923999
    [Google Scholar]
  59. JacksonJ.R. PatrickD.R. DarM.M. HuangP.S. Targeted anti-mitotic therapies: Can we improve on tubulin agents?Nat. Rev. Cancer20077210711710.1038/nrc204917251917
    [Google Scholar]
  60. YadlapalliR.K. ChourasiaO.P. KiranmayiV. ManjulaS. SridharR. Synthesis and in vitro anticancer and antitubercular activity of diarylpyrazole ligated dihydropyrimidines possessing lipophilic carbamoyl group.Bioorg. Med. Chem. Lett.201222827082711
    [Google Scholar]
  61. NikamD. JainA. Advances in the discovery of DHPMs as Eg5 inhibitors for the management of breast cancer and glioblastoma: A review.Results Chem.20235510071810.1016/j.rechem.2022.100718
    [Google Scholar]
  62. RussowskyD. CantoR.F. SanchesS.A. D’OcaM.G. de FátimaA. PilliR.A. KohnL.K. Anto^nio, M.A.; de Carvalho, J.E. Synthesis and differential antiproliferative activity of Biginelli compounds against cancer cell lines: Monastrol, oxo-monastrol, and oxygenated analogs.Bioorg. Chem.200634417318210.1016/j.bioorg.2006.04.003
    [Google Scholar]
  63. SoumyanarayananU. BhatV.G. KarS.S. MathewJ.A. Monastrol mimic Biginelli dihydropyrimidinone derivatives: Synthesis, cytotoxicity screening against HepG2 and HeLa cell lines and molecular modeling study.Org. Med. Chem. Lett.2012212310.1186/2191‑2858‑2‑2322691177
    [Google Scholar]
  64. El-HamamsyM.H. SharafeldinN.A. El-MoselhyT.F. TawfikH.O. Design, synthesis, and molecular docking study of new monastrol analogues as kinesin spindle protein inhibitors.Arch. Pharm. (Weinheim)20203538200006010.1002/ardp.20200006032452567
    [Google Scholar]
  65. KumarN. SreenivasaS. PrashantA. KumarV. HollaB.S. ChandramohanV. VishwanthaP. N′ YadavA.K. -((3-(substituted phenyl)-1-phenyl-1H-Pyrazol-4-yl)methylene)-(substituted) benzhydrazide: Synthesis, characterization and pharmacological evaluation.Chem. Data Collect.202113210066
    [Google Scholar]
  66. NapiórkowskaM. CieślakM. Kaźmierczak-BarańskaJ. Królewska-GolińskaK. NawrotB. Synthesis of new derivatives of benzofuran as potential anticancer agents.Molecules2019248152910.3390/molecules24081529
    [Google Scholar]
  67. AzimiF. AzizianH. NajafiM. KhodarahmiG. SaghaeiL. HassanzadehM. GhasemiJ.B. FaramarziM.A. LarijaniB. HassanzadehF. MahdaviM. Design, synthesis, biological evaluation, and molecular modeling studies of pyrazole-benzofuran hybrids as new α-glucosidase inhibitor.Sci. Rep.20211112077610.1038/s41598‑021‑99899‑1
    [Google Scholar]
  68. SafariS. GhavimiR. Razzaghi-AslN. SepehriS. Synthesis, biological evaluation and molecular docking study of dihydropyrimidine derivatives as potential anticancer agents.J. Heterocycl. Chem.20205731023103310.1002/jhet.3822
    [Google Scholar]
  69. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  70. BiginelliC.P. Aldehyde-urea derivatives of aceto-and oxaloacetic acids.Gazz. Chim. Ital.1893231360413
    [Google Scholar]
  71. FarooqS. AlharthiF.A. AlsalmeA. HussainA. DarB.A. HamidA. KoulS. Dihydropyrimidinones: Efficient one-pot green synthesis using Montmorillonite-KSF and evaluation of their cytotoxic activity.RSC Advances20201069422214223410.1039/D0RA09072G35516739
    [Google Scholar]
  72. NikamD. JainA. VetaleS. BhangeA. JadhavS. Synthesis and evaluation of novel thiophene-dhpms designed having anti-breast cancer potential.Curr. Chem. Lett.202413471772410.5267/j.ccl.2024.4.002
    [Google Scholar]
  73. NikamD. ChaureP. DhindaleL. BhagatP. Unveiling the impact: A decade review on dihydropyrimidinones (DHPMs) to combat breast cancer.J. Mol. Struct.2024130813813410.1016/j.molstruc.2024.138134
    [Google Scholar]
  74. BeckP.S. LeitãoA.G. SantanaY.B. CorreaJ.R. RodriguesC.V.S. MachadoD.F.S. MatosG.D.R. RamosL.M. GattoC.C. OliveiraS.C.C. AndradeC.K.Z. NetoB.A.D. Revisiting Biginelli-like reactions: Solvent effects, mechanisms, biological applications and correction of several literature reports.Org. Biomol. Chem.202422183630365110.1039/D4OB00272E38652003
    [Google Scholar]
  75. HassanS.F. RashidU. AnsariF.L. Ul-HaqZ. Bioisosteric approach in designing new monastrol derivatives: An investigation on their ADMET prediction using in silico derived parameters.J. Mol. Graph. Model.20134520221010.1016/j.jmgm.2013.09.00224080467
    [Google Scholar]
  76. GourV.K. YahyaS. Shahar YarM. Unveiling the chemistry of 1,3,4‐oxadiazoles and thiadiazols: A comprehensive review.Arch. Pharm. (Weinheim)20243571230032810.1002/ardp.20230032837840397
    [Google Scholar]
/content/journals/mc/10.2174/0115734064336338241112043509
Loading
/content/journals/mc/10.2174/0115734064336338241112043509
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Breast cancer; DHPMs; Eg5 inhibitor; MCF-7; Monastrol; scaffold hopping
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test