Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Azaaurones are formed by the replacement of intra-cyclic oxygen of the central core of a five-membered furan ring or any other carbon of aurones by a nitrogen atom. However, 1-azaaurone obtained by the replacement of intra-cyclic oxygen is the most prominent and desirable. They are the bioactive compounds acting as potential anti-inflammatory, anticancer, antibacterial, and antiviral agents. They comprise relatively less explored, pharmacologically active compounds exhibiting diverse biological activities that can act as potential lead compounds in the context of drug development. This review represents a comprehensive and updated overview of the synthetic protocols and biological activities of 1-azaaurones and their derivatives, enabling the readers to know about the vast medicinal potential of azaaurones and their derivatives in different areas and prompt the medicinal chemists to emphasize their further exploration. Furthermore, this review also covers some important Structure-Activity Relationships (SAR), highlighting the most potential compounds in each series, providing pivotal scope for further improvisation.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064357796250120060204
2025-03-23
2025-12-21
Loading full text...

Full text loading...

References

  1. AtanasovA.G. ZotchevS.B. DirschV.M. SupuranC.T. Natural products in drug discovery: Advances and opportunities.Nat. Rev. Drug Discov.202120320021610.1038/s41573‑020‑00114‑z33510482
    [Google Scholar]
  2. AggarwalR. KumarP. KumarS. SadanaR. LwangaR. CampbellJ. ChaubalV. Design, synthesis, and in vitro cytotoxic studies of some novel arylidene-hydrazinyl-thiazoles as anticancer and apoptosis-inducing agents.ACS Omega2024937388323884510.1021/acsomega.4c0492439310139
    [Google Scholar]
  3. AggarwalR. KumarP. HoodaM. SinghR. KumarP. Efficient synthesis of promising antidiabetic triazinoindole analogues via a solvent-free method: investigating the reaction of 1,3-diketones and 2,5-dihydro-3H-[1,2,4]triazino[5,6-b]indole-3-thione.Org. Biomol. Chem.202514148710.1039/D4OB01487A39540780
    [Google Scholar]
  4. BorahP. HazarikaS. ChettriA. SharmaD. DekaS. VenugopalaK.N. ShinuP. Al-Shar’iN.A. BardaweelS.K. DebP.K. Heterocyclic Compounds as Antimicrobial Agents.Viral, Parasitic, Bacterial, and Fungal Infections.Elsevier202378180410.1016/B978‑0‑323‑85730‑7.00068‑0
    [Google Scholar]
  5. QadirT. AminA. SharmaP.K. JeelaniI. AbeH. A review on medicinally important heterocyclic compounds.Open Med. Chem. J.2022161e18741045220228010.2174/18741045‑v16‑e2202280
    [Google Scholar]
  6. SarohaB. KumarG. KumarR. KumariM. KumarS. A minireview of 1,2,3‐triazole hybrids with O‐heterocycles as leads in medicinal chemistry.Chem. Biol. Drug Des.2022100684386910.1111/cbdd.1396634592059
    [Google Scholar]
  7. BiswasT. MittalR.K. SharmaV. Kanupriya; Mishra, I. Nitrogen-fused heterocycles: Empowering anticancer drug discovery.Med. Chem.202420436938410.2174/011573406427833423121105405338192143
    [Google Scholar]
  8. SuiG. LiT. ZhangB. WangR. HaoH. ZhouW. Recent advances on synthesis and biological activities of aurones.Bioorg. Med. Chem.20212911589510.1016/j.bmc.2020.11589533271454
    [Google Scholar]
  9. LathwalE. KumarS. A review of the various synthetic approaches to access aurone derivatives and their biological activities.Curr. Org. Chem.202327430835110.2174/1385272827666230407110607
    [Google Scholar]
  10. LathwalE. KumarS. SahooP.K. GhoshS. MahataS. NasareV.D. KapavarapuR. KumarS. Pyrazole-based and N,N-diethylcarbamate functionalized some novel aurone analogs: Design, synthesis, cytotoxic evaluation, docking and SAR studies, against AGS cancer cell line.Heliyon2024105e2684310.1016/j.heliyon.2024.e2684338463825
    [Google Scholar]
  11. BoumendjelA. Aurones: A subclass of flavones with promising biological potential.Curr. Med. Chem.200310232621263010.2174/092986703345646814529476
    [Google Scholar]
  12. ChalkhaM. BakhouchM. AkhazzaneM. BourassM. NicolasY. Al HouariG. El YazidiM. Design, synthesis and characterization of functionalized pyrazole derivatives bearing amide and sulfonamide moieties from aza-aurones.J. Chem. Sci.202013218610.1007/s12039‑020‑01792‑3
    [Google Scholar]
  13. MazziottiI. PetraroloG. La MottaC. Aurones: A golden resource for active compounds.Molecules2021271210.3390/molecules2701000235011233
    [Google Scholar]
  14. GeissmanT.A. HeatonC.D. Anthochlor Pigments. IV. The pigments of Coreopsis grandiflora.Nutt. I. J. Am. Chem. Soc.194365467768310.1021/ja01244a050
    [Google Scholar]
  15. BandgarB.P. PatilS.A. KorbadB.L. BiradarS.C. NileS.N. KhobragadeC.N. Synthesis and biological evaluation of a novel series of 2,2-bisaminomethylated aurone analogues as anti-inflammatory and antimicrobial agents.Eur. J. Med. Chem.20104573223322710.1016/j.ejmech.2010.03.04520430485
    [Google Scholar]
  16. ZhuQ. ZhengX. TanY. LuoZ. YaoX. ChenH. Biological activities of aurones: A brief summary.Mini Rev. Org. Chem.202422222624310.2174/0118756298277226231128032502
    [Google Scholar]
  17. AlsayariA. MuhsinahA.B. HassanM.Z. AhsanM.J. AlshehriJ.A. BegumN. Aurone: A biologically attractive scaffold as anticancer agent.Eur. J. Med. Chem.201916641743110.1016/j.ejmech.2019.01.07830739824
    [Google Scholar]
  18. KumarG. SarohaB. KumariB. GhoshS. NassareV.D. KumarS. Exploring the antiproliferative potential of morpholine‐functionalized aurones: Design, synthesis, SAR, DFT, hirshfeld surface, 3D energy frameworks and molecular docking analysis.ChemistrySelect2024920e20240074910.1002/slct.202400749
    [Google Scholar]
  19. DemirayakS. YurttasL. Gundogdu-KaraburunN. KaraburunA.C. KayagilI. Synthesis and anti-cancer activity evaluation of new aurone derivatives.J. Enzyme Inhib. Med. Chem.201530581682510.3109/14756366.2014.97656825716125
    [Google Scholar]
  20. AlsaifG. AlmosnidN. HawkinsI. TaylorZ. KnottD.L.T. HandyS. AltmanE. GaoY. Evaluation of fourteen aurone derivatives as potential anti-cancer agents.Curr. Pharm. Biotechnol.201718538439010.2174/138920101866617050211230328464771
    [Google Scholar]
  21. JardoshH.H. PatelM.P. Antimicrobial and antioxidant evaluation of new quinolone based aurone analogs.Arab. J. Chem.201710S3781S379110.1016/j.arabjc.2014.05.014
    [Google Scholar]
  22. ZhengY.Z. DengG. ZhangY.C. Multiple free radical scavenging reactions of aurones.Phytochemistry202119011285310.1016/j.phytochem.2021.11285334214923
    [Google Scholar]
  23. OlleikH. YahiaouiS. RoulierB. Courvoisier-DezordE. PerrierJ. PérèsB. HijaziA. BaydounE. RaymondJ. BoumendjelA. MarescaM. HaudecoeurR. Aurone derivatives as promising antibacterial agents against resistant Gram-positive pathogens.Eur. J. Med. Chem.201916513314110.1016/j.ejmech.2019.01.02230665143
    [Google Scholar]
  24. HassanG.S. GeorgeyH.H. GeorgeR.F. MohamedE.R. Aurones and furoaurones: Biological activities and synthesis.Bull. Fac. Pharm. Cairo Univ.201856212112710.1016/j.bfopcu.2018.06.002
    [Google Scholar]
  25. SuttonC.L. TaylorZ.E. FaroneM.B. HandyS.T. Antifungal activity of substituted aurones.Bioorg. Med. Chem. Lett.201727490190310.1016/j.bmcl.2017.01.01228094180
    [Google Scholar]
  26. CaleffiG.S. RosaA.S. de SouzaL.G. AvelarJ.L.S. NascimentoS.M.R. de AlmeidaV.M. TucciA.R. FerreiraV.N. da SilvaA.J.M. Santos-FilhoO.A. MirandaM.D. CostaP.R.R. Aurones: A promising scaffold to inhibit SARS-COV-2 replication.J. Nat. Prod.20238661536154910.1021/acs.jnatprod.3c0024937257024
    [Google Scholar]
  27. MeguellatiA. Ahmed-BelkacemA. YiW. HaudecoeurR. CrouillèreM. BrilletR. PawlotskyJ.M. BoumendjelA. PeuchmaurM. B-ring modified aurones as promising allosteric inhibitors of hepatitis C virus RNA-dependent RNA polymerase.Eur. J. Med. Chem.20148057959210.1016/j.ejmech.2014.04.00524835816
    [Google Scholar]
  28. SamraR.M. DarwishM.S. Abou-ZeidN.A. KhojahE. ImiejeV.O. ZakiA.A. Aurones as antidiabetic agents and their prebiotic activities.Future Pharmacol.20233362563610.3390/futurepharmacol3030040
    [Google Scholar]
  29. AyazM. Ali ShahS.W. ShoaibM. ShahF.A. AhmedF. Synthesis, characterization and biological evaluation of aurones as potential neuroprotective agents.Future Med. Chem.202416161649166310.1080/17568919.2024.236371338940451
    [Google Scholar]
  30. NguyenP.T.V. HuynhH.A. TruongD.V. TranT.D. VoC.V.T. Exploring aurone derivatives as potential human pancreatic lipase inhibitors through molecular docking and molecular dynamics simulations.Molecules20202520465710.3390/molecules2520465733066044
    [Google Scholar]
  31. KumarS. LathwalE. SarohaB. KumarG. BhardwajA. BishnoiP. RaniM. RaghavN. KumarR. KumarS. Design, synthesis, molecular docking and biological studies of some novel pyrrolidine-triazole-aurone hybrids against digestive enzymes.Res. Chem. Intermed.20245031249127110.1007/s11164‑023‑05221‑1
    [Google Scholar]
  32. RoussakiM. Costa LimaS. KypreouA.M. KefalasP. Cordeiro da SilvaA. DetsiA. Aurones: A promising heterocyclic scaffold for the development of potent antileishmanial agents.Int. J. Med. Chem.201220121810.1155/2012/19692125374683
    [Google Scholar]
  33. HaudecoeurR. BoumendjelA. Recent advances in the medicinal chemistry of aurones.Curr. Med. Chem.201219182861287510.2174/09298671280067208522519399
    [Google Scholar]
  34. KumarG. LathwalE. SarohaB. KumarS. KumarS. ChauhanN.S. KumarT. Synthesis and biological evaluation of quinoline‐based novel aurones.ChemistrySelect20205123539354310.1002/slct.201904912
    [Google Scholar]
  35. SarohaB. KumarG. AryaP. RaghavN. KumarS. Some morpholine tethered novel aurones: Design, synthesis, biological, kinetic and molecular docking studies.Bioorg. Chem.202314010680510.1016/j.bioorg.2023.10680537634269
    [Google Scholar]
  36. SarohaB. KumarG. KumarS. KumariM. RaniM. RaghavN. SahooP.K. GhoshS. MahataS. NasareV.D. Novel 1,2,3-triazole-aurone hybrids as cathepsin B inhibitors: One-pot synthesis, anti-proliferative, and drug modeling studies.Eur. J. Med. Chem. Rep.2022510005610.1016/j.ejmcr.2022.100056
    [Google Scholar]
  37. PopovaA.V. BondarenkoS.P. FrasinyukM.S. Aurones: Synthesis and properties.Chem. Heterocycl. Compd.2019554-528529910.1007/s10593‑019‑02457‑x
    [Google Scholar]
  38. LazinskiL.M. RoyalG. RobinM. MarescaM. HaudecoeurR. Bioactive aurones, indanones, and other hemiindigoid scaffolds: medicinal chemistry and photopharmacology perspectives.J. Med. Chem.20226519125941262510.1021/acs.jmedchem.2c0115036126323
    [Google Scholar]
  39. ZwergelC. GaaschtF. ValenteS. DiederichM. BagrelD. KirschG. Aurones: Interesting natural and synthetic compounds with emerging biological potential.Nat. Prod. Commun.20127338939410.1177/1934578X1200700322
    [Google Scholar]
  40. AggarwalR. HoodaM. KumarP. JainN. DubeyG.P. ChughH. ChandraR. Visible-light-prompted synthesis and binding studies of 5,6-dihydroimidazo[2,1-b]thiazoles with BSA and DNA using biophysical and computational methods.J. Org. Chem.20228763952396610.1021/acs.joc.1c0247135235320
    [Google Scholar]
  41. AggarwalR. HoodaM. KumarP. KumarS. SinghS. ChandraR. An expeditious on-water regioselective synthesis of novel arylidene-hydrazinyl-thiazoles as DNA targeting agents.Bioorg. Chem.202313610652410.1016/j.bioorg.2023.10652437079989
    [Google Scholar]
  42. AggarwalR. KumarP. HoodaM. KumarS. SerendipitousN. SerendipitousN. S -difunctionalization of triazoles with trifluoromethyl-β-diketones: access to regioisomeric 1-trifluoroacetyl-3-aryl-5-(2-oxo-2-arylethylthio)-1,2,4-triazoles as DNA-groove binders.RSC Advances202414106738675110.1039/D4RA00083H38405072
    [Google Scholar]
  43. SouardF. OkombiS. BeneyC. ChevalleyS. ValentinA. BoumendjelA. 1-Azaaurones derived from the naturally occurring aurones as potential antimalarial drugs.Bioorg. Med. Chem.201018155724573110.1016/j.bmc.2010.06.00820630767
    [Google Scholar]
  44. BrownN. Bioisosteres and scaffold hopping in medicinal chemistry.Mol. Inform.2014336-745846210.1002/minf.20140003727485983
    [Google Scholar]
  45. BakhouchM. Es-SounniB. NakkabiA. El YazidiM. Thioaurones: Recent advances in synthesis, reactivity, and biological activity.Mini Rev. Org. Chem.202118331332710.2174/1570193X17999200719135019
    [Google Scholar]
  46. DasB. BaidyaA.T.K. MathewA.T. YadavA.K. KumarR. Structural modification aimed for improving solubility of lead compounds in early phase drug discovery.Bioorg. Med. Chem.20225611661410.1016/j.bmc.2022.11661435033884
    [Google Scholar]
  47. MeanwellN.A. The influence of bioisosteres in drug design: tactical applications to address developability problems.In: Tactics in Contemporary Drug Design; Springer: Berlin, Heidelberg,2013928338110.1007/7355_2013_29
    [Google Scholar]
  48. MeanwellN.A. Applications of bioisosteres in the design of biologically active compounds.J. Agric. Food Chem.20237147180871812210.1021/acs.jafc.3c0076536961953
    [Google Scholar]
  49. LawsonM.A. MariotteA.M. BoumendjelA. A short method for the synthesis of 4,6-dimethoxy-1-azaaurones.Heterocycl. Commun.20039210.1515/HC.2003.9.2.149
    [Google Scholar]
  50. FriedländerP. Ueber schwefelhaltige analoga der indigogruppe.Ber. Dtsch. Chem. Ges.19063911060106610.1002/cber.190603901167
    [Google Scholar]
  51. BaeyerA. Ueber die verbindungen der indigogruppe.Ber. Dtsch. Chem. Ges.18831622188220410.1002/cber.188301602130
    [Google Scholar]
  52. ZweigJ.E. NewhouseT.R. Isomer-specific hydrogen bonding as a design principle for bidirectionally quantitative and redshifted hemithioindigo photoswitches.J. Am. Chem. Soc.201713932109561095910.1021/jacs.7b0444828749144
    [Google Scholar]
  53. PetermayerC. DubeH. Indigoid photoswitches: Visible light responsive molecular tools.Acc. Chem. Res.20185151153116310.1021/acs.accounts.7b0063829694014
    [Google Scholar]
  54. ErdélyiM. KarlénA. GogollA. A new tool in peptide engineering: A photoswitchable stilbene-type beta-hairpin mimetic.Chemistry200612240341210.1002/chem.20050064816187380
    [Google Scholar]
  55. ErdélyiM. VaredianM. SköldC. NiklassonI.B. NurboJ. PerssonÅ. BergquistJ. GogollA. Chemistry and folding of photomodulable peptides – stilbene and thioaurone-type candidates for conformational switches.Org. Biomol. Chem.20086234356437310.1039/b812001c19005595
    [Google Scholar]
  56. CampaniçoA. CarrascoM.P. NjorogeM. SeldonR. ChibaleK. PerdigãoJ. PortugalI. WarnerD.F. MoreiraR. LopesF. Azaaurones as potent antimycobacterial agents active against MDR‐ and XDR‐TB.ChemMedChem201914161537154610.1002/cmdc.20190028931294529
    [Google Scholar]
  57. BaiceanuE. NguyenK.A. Gonzalez-LobatoL. NasrR. Baubichon-CortayH. LoghinF. Le BorgneM. ChowL. BoumendjelA. PeuchmaurM. FalsonP. 2-Indolylmethylene-benzofuranones as first effective inhibitors of ABCC2.Eur. J. Med. Chem.201612240841810.1016/j.ejmech.2016.06.03927393949
    [Google Scholar]
  58. ZhangM. LiT. QianM. LiK. QinY. ZhaoT. YangL.Q. Synthesis and biological activities of 1‐azaaurone derivatives.J. Heterocycl. Chem.20185571574157810.1002/jhet.3190
    [Google Scholar]
  59. LiY. QiangX. LuoL. YangX. XiaoG. LiuQ. AiJ. TanZ. DengY. Aurone Mannich base derivatives as promising multifunctional agents with acetylcholinesterase inhibition, anti-β-amyloid aggragation and neuroprotective properties for the treatment of Alzheimer’s disease.Eur. J. Med. Chem.201712676277510.1016/j.ejmech.2016.12.00927951485
    [Google Scholar]
  60. ZhangM. XuX.H. CuiY. XieL.G. KongC.H. Synthesis and herbicidal potential of substituted aurones.Pest Manag. Sci.201268111512152210.1002/ps.333922718431
    [Google Scholar]
  61. GerbyB. BoumendjelA. BlancM. BringuierP.P. ChampelovierP. FortunéA. RonotX. BoutonnatJ. 2-Arylidenedihydroindole-3-ones: Design, synthesis, and biological activity on bladder carcinoma cell lines.Bioorg. Med. Chem. Lett.200717120821310.1016/j.bmcl.2006.09.05717049235
    [Google Scholar]
  62. ShuC. LiL. XiaoX.Y. YuY.F. PingY.F. ZhouJ.M. YeL.W. Flexible and practical synthesis of 3-oxyindoles through gold-catalyzed intermolecular oxidation of o-ethynylanilines.Chem. Commun. (Camb.)201450638689869210.1039/C4CC03565H24958270
    [Google Scholar]
  63. AboniaR. CuervoP. CastilloJ. InsuastyB. QuirogaJ. NoguerasM. CoboJ. Unexpected intramolecular cyclization of some 2′-aminochalcones to indolin-3-ones mediated by Amberlyst®-15.Tetrahedron Lett.200849345028503110.1016/j.tetlet.2008.06.047
    [Google Scholar]
  64. MalbariK. SahaP. Chawla-SarkarM. DuttaS. RaiS. JoshiM. KanyalkarM. In quest of small-molecules as potent non-competitive inhibitors against influenza.Bioorg. Chem.202111410513910.1016/j.bioorg.2021.10513934243071
    [Google Scholar]
  65. GenelotM. BendjeriouA. DufaudV. DjakovitchL. Optimised procedures for the one-pot selective syntheses of indoxyls and 4-quinolones by a carbonylative Sonogashira/cyclisation sequence.Appl. Catal. A Gen.20093691-212513210.1016/j.apcata.2009.09.016
    [Google Scholar]
  66. GenelotM. DufaudV. DjakovitchL. Heterogeneous metallo-organocatalysis for the selective one-pot synthesis of 2-benzylidene-indoxyl and 2-phenyl-4-quinolone.Tetrahedron201167597698110.1016/j.tet.2010.11.112
    [Google Scholar]
  67. XiongW. WuB. ZhuB. TanX. WangL. WuW. QiC. JiangH. One‐pot palladium‐catalyzed carbonylative sonogashira coupling using carbon dioxide as carbonyl source.ChemCatChem202113122843285110.1002/cctc.202100051
    [Google Scholar]
  68. SongX. ZhaoX. ZengZ. RomingerF. RudolphM. HashmiA.S.K. Protecting group‐free gold‐catalyzed synthesis of 2‐acylidene‐3‐oxindoles and azaaurones via a double oxidation strategy.Isr. J. Chem.2023639e20230009410.1002/ijch.202300094
    [Google Scholar]
  69. AnZ. CatellaniM. ChiusoliG.P. A new palladium-catalyzed synthesis of indoxyl derivatives.J. Organomet. Chem.19903972C31C3210.1016/0022‑328X(90)80248‑X
    [Google Scholar]
  70. ZhuY.L. DongY.F. WangS.R. LiY.G. WuX. YeL.W. Nucleophile-controlled trapping of gold carbene by nitriles and water: Synthesis of 5 H -Pyrimido[5,4-b]indoles and 2-Benzylidene-3-indolinones.Org. Lett.202426363163510.1021/acs.orglett.3c0385638214532
    [Google Scholar]
  71. La MonicaG. AlamiaF. BonoA. LauriaA. MartoranaA. Scaffold-hopping strategies in aurone optimization: A comprehensive review of synthetic procedures and biological activities of nitrogen and sulfur analogues.Molecules20242912281310.3390/molecules2912281338930878
    [Google Scholar]
  72. LeiteF.F. de SousaN.F. de OliveiraB.H.M. DuarteG.D. FerreiraM.D.L. ScottiM.T. FilhoJ.M.B. RodriguesL.C. de MouraR.O. Mendonça-JuniorF.J.B. ScottiL. Anticancer activity of chalcones and its derivatives: review and in silico studies.Molecules20232810400910.3390/molecules2810400937241750
    [Google Scholar]
  73. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  74. ThunM.J. DeLanceyJ.O. CenterM.M. JemalA. WardE.M. The global burden of cancer: Priorities for prevention.Carcinogenesis201031110011010.1093/carcin/bgp26319934210
    [Google Scholar]
  75. Chunarkar-PatilP. KaleemM. MishraR. RayS. AhmadA. VermaD. BhayyeS. DubeyR. SinghH. KumarS. Anticancer drug discovery based on natural products: from computational approaches to clinical studies.Biomedicines202412120110.3390/biomedicines1201020138255306
    [Google Scholar]
  76. SzumilakM. Wiktorowska-OwczarekA. StanczakA. Hybrid drugs: A strategy for overcoming anticancer drug resistance?Molecules2021269260110.3390/molecules2609260133946916
    [Google Scholar]
  77. FortinS. BérubéG. Advances in the development of hybrid anticancer drugs.Expert Opin. Drug Discov.2013881029104710.1517/17460441.2013.79829623646979
    [Google Scholar]
  78. HadjeriM. BarbierM. RonotX. MariotteA.M. BoumendjelA. BoutonnatJ. Modulation of P-glycoprotein-mediated multidrug resistance by flavonoid derivatives and analogues.J. Med. Chem.200346112125213110.1021/jm021099i12747785
    [Google Scholar]
  79. BoumendjelA. BeneyC. DekaN. MariotteA.M. LawsonM.A. TrompierD. Baubichon-CortayH. PietroA.D. 4-Hydroxy-6-methoxyaurones with high-affinity binding to cytosolic domain of P-glycoprotein.Chem. Pharm. Bull. (Tokyo)200250685485610.1248/cpb.50.85412045348
    [Google Scholar]
  80. Vo NguyenT.T. WatanabeY. ShibaA. NoguchiM. ItohS. KatoM. TMEPAI / PMEPA 1 enhances tumorigenic activities in lung cancer cells.Cancer Sci.2014105333434110.1111/cas.1235524438557
    [Google Scholar]
  81. LiY. WangJ. SongN. ZengF. ZhaoM. WangA. ChenY. JingL. YuP. DiaoA. 2‐(2‐nitrobenzylidene) indolin‐3‐one compound inhibits transmembrane prostate androgen‐induced protein (TMEPAI) expression and cancer cell proliferation.Cell Prolif.2018515e1246910.1111/cpr.1246930069967
    [Google Scholar]
  82. HeQ. ChenJ. YanJ. CaiS. XiongH. LiuY. PengD. MoM. LiuZ. Tumor microenvironment responsive drug delivery systems.Asian J. Pharm. Sci.202015441644810.1016/j.ajps.2019.08.00332952667
    [Google Scholar]
  83. LiY. GuoA. FengY. ZhangY. WangJ. JingL. YanY. JingL. LiuZ. MaL. DiaoA. Sp1 transcription factor promotes TMEPAI gene expression and contributes to cell proliferation.Cell Prolif.201649671071910.1111/cpr.1229227625141
    [Google Scholar]
  84. TóthS. SzepesiÁ. Tran-NguyenV.K. SarkadiB. NémetK. FalsonP. Di PietroA. SzakácsG. BoumendjelA. Synthesis and anticancer cytotoxicity of azaaurones overcoming multidrug resistance.Molecules202025376410.3390/molecules2503076432050702
    [Google Scholar]
  85. YenH.L. HoffmannE. TaylorG. ScholtissekC. MontoA.S. WebsterR.G. GovorkovaE.A. Importance of neuraminidase active-site residues to the neuraminidase inhibitor resistance of influenza viruses.J. Virol.200680178787879510.1128/JVI.00477‑0616912325
    [Google Scholar]
  86. KimC.U. ChenX. MendelD.B. Neuraminidase inhibitors as anti-influenza virus agents.Antivir. Chem. Chemother.199910414115410.1177/09563202990100040110480735
    [Google Scholar]
  87. GarciaL.S. Malaria.Clin. Lab. Med.20103019312910.1016/j.cll.2009.10.00120513543
    [Google Scholar]
  88. Global technical strategy for malaria 2016–20302015Available from: https://www.who.int/docs/default-source/documents/global-technical-strategy-for-malaria-2016-2030.pdf
  89. CarrascoM.P. MachadoM. GonçalvesL. SharmaM. GutJ. LukensA.K. WirthD.F. AndréV. DuarteM.T. GuedesR.C. dos SantosD.J.V.A. RosenthalP.J. MazitschekR. PrudêncioM. MoreiraR. Probing the azaaurone scaffold against the hepatic and erythrocytic stages of malaria parasites.ChemMedChem201611192194220410.1002/cmdc.20160032727538856
    [Google Scholar]
  90. MiaoY. HuY. YangJ. LiuT. SunJ. WangX. Natural source, bioactivity and synthesis of benzofuran derivatives.RSC Advances2019947275102754010.1039/C9RA04917G35529241
    [Google Scholar]
  91. HoltonS. MerckxA. BurgessD. DoerigC. NobleM. EndicottJ. Structures of P. falciparum PfPK5 test the CDK regulation paradigm and suggest mechanisms of small molecule inhibition.Structure200311111329133710.1016/j.str.2003.09.02014604523
    [Google Scholar]
  92. Praveen KumarS. GutJ. GuedesR.C. RosenthalP.J. SantosM.M.M. MoreiraR. Design, synthesis and evaluation of 3-methylene-substituted indolinones as antimalarials.Eur. J. Med. Chem.201146392793310.1016/j.ejmech.2011.01.00821295887
    [Google Scholar]
  93. MottaI. BoereeM. ChesovD. DhedaK. GüntherG. HorsburghC.R.Jr KherabiY. LangeC. LienhardtC. McIlleronH.M. PatonN.I. StaggH.R. ThwaitesG. UdwadiaZ. Van CrevelR. VelásquezG.E. WilkinsonR.J. GuglielmettiL. MottaI. KherabiY. Van CrevelR. GuglielmettiL. Recent advances in the treatment of tuberculosis.Clin. Microbiol. Infect.20243091107111410.1016/j.cmi.2023.07.01337482332
    [Google Scholar]
  94. World Health OrganizationGlobal Tuberculosis Report.2022Available from: [https://www.who.int/teams/global-tuberculosis-programme/tb-reports]
    [Google Scholar]
  95. CampaniçoA. MoreiraR. LopesF. Drug discovery in tuberculosis. New drug targets and antimycobacterial agents.Eur. J. Med. Chem.201815052554510.1016/j.ejmech.2018.03.02029549838
    [Google Scholar]
  96. World Health Organization; The End TB Strategy: Geneva201516
    [Google Scholar]
  97. CampaniçoA. HarjivanS.G. FreitasE. SerafiniM. GasparM.M. CapelaR. GomesP. JordaanA. MadureiraA.M. AndréV. SilvaA.B. DuarteM.T. PortugalI. PerdigãoJ. MoreiraR. WarnerD.F. LopesF. Structural optimization of antimycobacterial azaaurones towards improved solubility and metabolic stability.ChemMedChem20231824e20230041010.1002/cmdc.20230041037845182
    [Google Scholar]
  98. YangD. TaylorZ.E. HandyS. LiS. LiuJ. StabenowJ. ZalduondoL. JonssonC.B. AltmanE. KongY. Identification of anti-tuberculosis compounds from aurone analogs.Front. Microbiol.202011100410.3389/fmicb.2020.0100432508798
    [Google Scholar]
  99. GetahunH. GunnebergC. GranichR. NunnP. HIV infection-associated tuberculosis: the epidemiology and the response.Clin. Infect. Dis.201050Suppl. 3S201S20710.1086/65149220397949
    [Google Scholar]
  100. Azevedo-PereiraJ.M. PiresD. CaladoM. MandalM. Santos-CostaQ. AnesE. HIV/Mtb co-infection: from the amplification of disease pathogenesis to an “emerging syndemic”.Microorganisms202311485310.3390/microorganisms1104085337110276
    [Google Scholar]
  101. LeiteD.I. CampaniçoA. CostaP.A.G. CorreaI.A. da CostaL.J. BastosM.M. MoreiraR. LopesF. JordaanA. WarnerD.F. BoechatN. New azaaurone derivatives as potential multitarget agents in HIV‐TB coinfection.Arch. Pharm.20243572230056010.1002/ardp.20230056038032154
    [Google Scholar]
/content/journals/mc/10.2174/0115734064357796250120060204
Loading
/content/journals/mc/10.2174/0115734064357796250120060204
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test