Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Introduction

Cholinesterase enzymes play a pivotal role in hydrolyzing acetylcholine, a neurotransmitter crucial for memory and cognition, into its components, acetic acid, and choline. A primary approach in addressing Alzheimer's disease symptoms is by inhibiting the action of these enzymes.

Methods

With this context, our study embarked on a mission to pinpoint potential Cholinesterase (ChE) inhibitors using a comprehensive computational methodology. A total of 49 phytoconstituents derived from underwent screening molecular docking, pharmacokinetic and pharmacotoxicological analysis, to evaluate their ability to inhibit cholinesterase enzymes. Out of these, two specific compounds, namely tetrahydrocannabivarin and Δ-9-tetrahydrocannabinol, belonging to cannabinoids, stood out as prospective therapeutic agents against Alzheimer's due to their potential as cholinesterase inhibitors. These candidates showcased commendable binding affinities with the cholinesterase enzymes, highlighting their interaction with essential enzymatic residues.

Results

They were predicted to exhibit greater binding affinities than Rivastigmine and Galantamine. Their ADMET assessments further classified them as viable oral pharmaceutical drugs. They are not expected to induce any mutagenic or hepatotoxic effects and cannot produce skin sensitization. In addition, these phytoconstituents are predicted to be BBB permeable and can reach the central nervous system (CNS) and exert their therapeutic effects. To delve deeper, we explored molecular dynamics (MD) simulations to examine the stability of the complex formed between the best candidate (Δ-9-tetrahydrocannabinol) and the target proteins under simulated biological conditions. The MD study affirmed that the ligand-ChE recognition is a spontaneous reaction leading to stable complexes.

Conclusion

Our research outcomes provide valuable insights, offering a clear direction for the pharmaceutical sector in the pursuit of effective anti-Alzheimer treatments.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064318657240822064240
2024-09-11
2025-09-08
Loading full text...

Full text loading...

References

  1. McPartlandJ.M. Cannabis systematics at the levels of family, genus, and species.Cannabis Cannabinoid Res.20183120321210.1089/can.2018.0039 30426073
    [Google Scholar]
  2. ZaiachukM. SuryavanshiS.V. PryimakN. KovalchukI. KovalchukO. The anti-inflammatory effects of Cannabis sativa extracts on LPS-induced cytokines release in human macrophages.Molecules20232813499110.3390/molecules28134991 37446655
    [Google Scholar]
  3. AnilS.M. PeeriH. KoltaiH. Medical cannabis activity against inflammation: Active compounds and modes of action.Front. Pharmacol.20221390819810.3389/fphar.2022.908198 35614947
    [Google Scholar]
  4. StackS.K. WheateN.J. SchubertE.A. Medicinal cannabis for the treatment of anxiety disorders: A narrative review.Curr. Treat. Options Psychiatry20229316317310.1007/s40501‑022‑00260‑8
    [Google Scholar]
  5. Zavala-TecuapetlaC. Luna-MunguiaH. López-MerazM.L. Cuellar-HerreraM. Advances and challenges of cannabidiol as an anti-seizure strategy: Preclinical evidence.Int. J. Mol. Sci.202223241618110.3390/ijms232416181 36555823
    [Google Scholar]
  6. LiY. DingY. XiaoW. ZhuJ.B. Investigation on the active ingredient and mechanism of Cannabis sativa L. for treating epilepsy based on network pharmacology.Biotechnol. Biotechnol. Equip.2021351994100910.1080/13102818.2021.1942208
    [Google Scholar]
  7. MahdiO. BaharuldinM.T.H. NorN.H.M. ChiromaS.M. JagadeesanS. MoklasM.A.M. The neuroprotective properties, functions, and roles of cannabis sativa in selected diseases related to the nervous system.Cent. Nerv. Syst. Agents Med. Chem.2021211203810.2174/1871524921666210127110028 33504317
    [Google Scholar]
  8. LawsJ.S.III SmidS.D. Evaluating Cannabis sativa L.’s neuroprotection potential: From bench to bedside.Phytomedicine202210715448510.1016/j.phymed.2022.154485 36209703
    [Google Scholar]
  9. AfsahiK. DarwichS. Hashish in Morocco and Lebanon: A comparative study.Int. J. Drug Policy20163119019810.1016/j.drugpo.2016.02.024 27178873
    [Google Scholar]
  10. AndreC.M. HausmanJ.F. GuerrieroG. Cannabis sativa: The plant of the thousand and one molecules.Front. Plant Sci20167
    [Google Scholar]
  11. WolfJ. UritsI. OrhurhuV. PeckJ. OrhurhuM.S. GiacomazziS. SmootsD. PiermariniC. ManchikantiL. KayeA.D. KayeR.J. ViswanathO. The role of the cannabinoid system in pain control: Basic and clinical implications.Curr. Pain Headache Rep.20202473510.1007/s11916‑020‑00873‑9 32506272
    [Google Scholar]
  12. StanciuC.N. BrunetteM.F. TejaN. BudneyA.J. Evidence for use of cannabinoids in mood disorders, anxiety disorders, and PTSD: A systematic review.Psychiatr. Serv.202172442943610.1176/appi.ps.202000189 33530732
    [Google Scholar]
  13. KirkhamT.C. Endocannabinoids in the regulation of appetite and body weight.Behav. Pharmacol.2005165-629731310.1097/00008877‑200509000‑00004 16148436
    [Google Scholar]
  14. SommanoS.R. ChittasuphoC. RuksiriwanichW. JantrawutP. The cannabis terpenes.Molecules20202524579210.3390/molecules25245792 33302574
    [Google Scholar]
  15. DownerE.J. Anti-inflammatory potential of terpenes present in Cannabis sativa L.ACS Chem. Neurosci.202011565966210.1021/acschemneuro.0c00075 32091871
    [Google Scholar]
  16. FerberS.G. NamdarD. Hen-ShovalD. EgerG. KoltaiH. ShovalG. ShbiroL. WellerA. The “entourage effect”: Terpenes coupled with cannabinoids for the treatment of mood disorders and anxiety disorders.Curr. Neuropharmacol.2020182879610.2174/1570159X17666190903103923 31481004
    [Google Scholar]
  17. Stasiłowicz-KrzemieńA. SipS. SzulcP. Cielecka-PiontekJ. Determining antioxidant activity of cannabis leaves extracts from different varieties—unveiling nature’s treasure trove.Antioxidants2023127139010.3390/antiox12071390 37507928
    [Google Scholar]
  18. GinwalaR. BhavsarR. ChigbuD.G.I. JainP. KhanZ.K. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin.Antioxidants2019823510.3390/antiox8020035 30764536
    [Google Scholar]
  19. NiloyN. HediyalT.A. VichitraC. SonaliS. ChidambaramS.B. GorantlaV.R. MahalakshmiA.M. Effect of cannabis on memory consolidation, learning and retrieval and its current legal status in India: A review.Biomolecules202313116210.3390/biom13010162 36671547
    [Google Scholar]
  20. OrtizY.T. McMahonL.R. WilkersonJ.L. Medicinal cannabis and central nervous system disorders.Front. Pharmacol.20221388181010.3389/fphar.2022.881810 35529444
    [Google Scholar]
  21. VasquezR. BatistaL. CuyaT. Computational study on the enzyme-ligand relationship between cannabis phytochemicals and human acetylcholinesterase: Implications in alzheimer’s disease.J. Phys. Chem. B2023127418780879510.1021/acs.jpcb.3c04315 37815196
    [Google Scholar]
  22. FadakaA.O. TaiwoO.A. DosumuO.A. OwolabiO.P. OjoA.B. SibuyiN.R.S. UllahS. KleinA. MadieheA.M. MeyerM. OjoO.A. Computational prediction of potential drug-like compounds from Cannabis sativa leaf extracts targeted towards Alzheimer therapy.J. Mol. Liq.202236011939310.1016/j.molliq.2022.119393
    [Google Scholar]
  23. PatilN. ChandelV. RanaA. JainM. KaushikP. Investigation of Cannabis sativa phytochemicals as anti-alzheimer’s agents: An in silico study.Plants202312351010.3390/plants12030510 36771595
    [Google Scholar]
  24. DesaS. OsmanA. HyslopR. In silico assessment of drug-like properties of phytocannabinoids in cannabis sativa.Educ. J. Sci. Math. Technol.2017421710.37134/ejsmt.vol4.2.1.2017
    [Google Scholar]
  25. KarimiI. YousofvandN. HusseinB.A. In vitro cholinesterase inhibitory action of Cannabis sativa L. Cannabaceae and in silico study of its selected phytocompounds.In Silico Pharmacol.2021911310.1007/s40203‑021‑00075‑0 33520592
    [Google Scholar]
  26. KalantH. Effects of cannabis and cannabinoids in the human nervous system.Eff. Drug Abus. Hum. Nerv. Syst.2014Jan38742210.1016/B978‑0‑12‑418679‑8.00013‑7
    [Google Scholar]
  27. JiangX. ZhangZ. ZuoJ. WuC. ZhaL. XuY. WangS. ShiJ. LiuX.H. ZhangJ. TangW. Novel cannabidiol−carbamate hybrids as selective BuChE inhibitors: Docking-based fragment reassembly for the development of potential therapeutic agents against Alzheimer’s disease.Eur. J. Med. Chem.202122311373510.1016/j.ejmech.2021.113735 34371367
    [Google Scholar]
  28. PuopoloT. LiuC. MaH. SeeramN.P. Inhibitory effects of cannabinoids on acetylcholinesterase and butyrylcholinesterase enzyme activities.Med. Cannabis Cannabinoids202251859410.1159/000524086 35702400
    [Google Scholar]
  29. BreijyehZ. KaramanR. Comprehensive review on alzheimer’s disease: Causes and treatment.Molecules20202524578910.3390/molecules25245789 33302541
    [Google Scholar]
  30. KnopmanD.S. AmievaH. PetersenR.C. ChételatG. HoltzmanD.M. Alzheimer disease.Nat. Rev. Dis. Primers20217112110.1038/s41572‑021‑00269‑y
    [Google Scholar]
  31. AbubakarM.B. SanusiK.O. UgusmanA. MohamedW. KamalH. IbrahimN.H. KhooC.S. KumarJ. Alzheimer’s disease: An update and insights into pathophysiology.Front. Aging Neurosci.20221474240810.3389/fnagi.2022.742408 35431894
    [Google Scholar]
  32. YiannopoulouK.G. PapageorgiouS.G. Current and future treatments in alzheimer disease: An update.J. Cent. Nerv. Syst. Dis.20201210.1177/1179573520907397 32165850
    [Google Scholar]
  33. ColovićM.B. KrstićD.Z. Lazarević-PaštiT.D. BondžićA.M. VasićV.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology.Curr. Neuropharmacol.201311331533510.2174/1570159X11311030006 24179466
    [Google Scholar]
  34. GrossbergG.T. Cholinesterase inhibitors for the treatment of Alzheimer’s disease: Getting on and staying on.Curr. Ther. Res. Clin. Exp.200364421623510.1016/S0011‑393X(03)00059‑6 24944370
    [Google Scholar]
  35. PerryE.K. PerryR.H. BlessedG. TomlinsonB.E. Changes in brain cholinesterases in senile dementia of Alzheimer type.Neuropathol. Appl. Neurobiol.19784427327710.1111/j.1365‑2990.1978.tb00545.x 703927
    [Google Scholar]
  36. MesulamM. GuillozetA. ShawP. QuinnB. Widely spread butyrylcholinesterase can hydrolyze acetylcholine in the normal and Alzheimer brain.Neurobiol. Dis.200291889310.1006/nbdi.2001.0462 11848688
    [Google Scholar]
  37. ArendtT. BrücknerM.K. LangeM. BiglV. Changes in acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease resemble embryonic development—A study of molecular forms.Neurochem. Int.199221338139610.1016/0197‑0186(92)90189‑X 1303164
    [Google Scholar]
  38. YangH. YangX. YanS. SunZ. Effect of acetylcholine deficiency on neural oscillation in a brainstem-thalamus-cortex neurocomputational model related with Alzheimer’s disease.Sci. Rep.20221211496110.1038/s41598‑022‑19304‑3 36056083
    [Google Scholar]
  39. WeinstockM. Selectivity of cholinesterase inhibition: Clinical implications for the treatment of Alzheimer’s disease.CNS Drugs199912430732310.2165/00023210‑199912040‑00005
    [Google Scholar]
  40. AksuK. TopalF. Gulcinİ. TümerF. GöksuS. Acetylcholinesterase inhibitory and antioxidant activities of novel symmetric sulfamides derived from phenethylamines.Arch. Pharm.2015348644645510.1002/ardp.201500035 25914190
    [Google Scholar]
  41. BingolZ. KızıltaşH. GörenA.C. KoseL.P. TopalM. DurmazL. AlwaselS.H. Gulcinİ. Antidiabetic, anticholinergic and antioxidant activities of aerial parts of shaggy bindweed (Convulvulus betonicifolia Miller subsp.) - profiling of phenolic compounds by LC-HRMS.Heliyon202175e0698610.1016/j.heliyon.2021.e06986 34027185
    [Google Scholar]
  42. TranJ. ElkinsA.C. SpangenbergG.C. RochfortS.J. High-throughput quantitation of cannabinoids by liquid chromatography triple-quadrupole mass spectrometry.Molecules202227374210.3390/molecules27030742 35164007
    [Google Scholar]
  43. DawidowiczA.L. Olszowy-TomczykM. TypekR. CBG, CBD, Δ9-THC, CBN, CBGA, CBDA and Δ9-THCA as antioxidant agents and their intervention abilities in antioxidant action.Fitoterapia202115210491510.1016/j.fitote.2021.104915 33964342
    [Google Scholar]
  44. KrillC. RochfortS. SpangenbergG. A high-throughput method for the comprehensive analysis of terpenes and terpenoids in medicinal cannabis biomass.Metabolites202010727610.3390/metabo10070276 32640707
    [Google Scholar]
  45. HazekampA. FischedickJ.T. Cannabis ‐ from cultivar to chemovar.Drug Test. Anal.201247-866066710.1002/dta.407 22362625
    [Google Scholar]
  46. SalehiA. PuchalskiK. ShokoohiniaY. ZolfaghariB. AsgaryS. Differentiating cannabis products: Drugs, food, and supplements.Front. Pharmacol.20221390603810.3389/fphar.2022.906038 35833025
    [Google Scholar]
  47. AgnieszkaS. MagdalenaR. JanB. KatarzynaW. MalgorzataB. KrzysztofH. Phytotoxic effect of fiber hemp essential oil on germination of some weeds and crops.J. Essent. Oil-Bear. Plants201619226227610.1080/0972060X.2015.1137236
    [Google Scholar]
  48. TomkoA.M. WhynotE.G. EllisL.D. DupréD.J. Anti-cancer potential of cannabinoids, terpenes, and flavonoids present in cannabis.Cancers 2020127198510.3390/cancers12071985 32708138
    [Google Scholar]
  49. NourH. AbdouA. BelaidiS. JamalJ.E. ElmakssoudiA. DakirM. ChtitaS. Discovery of promising cholinesterase inhibitors for Alzheimer’s disease treatment through DFT, docking, and molecular dynamics studies of eugenol derivatives.J. Chin. Chem. Soc. 20226991534155110.1002/jccs.202200195
    [Google Scholar]
  50. NourH. AbchirO. BelaidiS. ChtitaS. Research of new acetylcholinesterase inhibitors based on QSAR and molecular docking studies of benzene-based carbamate derivatives.Struct. Chem.20223361935194610.1007/s11224‑022‑01966‑4
    [Google Scholar]
  51. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.21334 19499576
    [Google Scholar]
  52. BIOVIA Discovery Studio - BIOVIA - Dassault Systèmes®.Available from: https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-discovery-studio/ (accessed Oct. 13, 2021).
  53. HalgrenT.A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94.J. Comput. Chem.1996175-649051910.1002/(SICI)1096‑987X(199604)17:5/6<490:AID‑JCC1>3.0.CO;2‑P
    [Google Scholar]
  54. HalgrenT.A. Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data, and empirical rules.J. Comput. Chem.1996175-661664110.1002/(SICI)1096‑987X(199604)17:5/6<616:AID‑JCC5>3.0.CO;2‑X
    [Google Scholar]
  55. HalgrenT.A. Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions.J. Comput. Chem.1996175-652055210.1002/(SICI)1096‑987X(199604)17:5/6<520:AID‑JCC2>3.0.CO;2‑W
    [Google Scholar]
  56. HanwellM.D. CurtisD.E. LonieD.C. VandermeerschT. ZurekE. HutchisonG.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform.J. Cheminform.2012411710.1186/1758‑2946‑4‑17 22889332
    [Google Scholar]
  57. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.21256 19399780
    [Google Scholar]
  58. ADT/AutoDockTools — AutoDockAvailable from: http://autodock.scripps.edu/resources/adt (accessed Sep. 18, 2021)
  59. Van Der SpoelD. LindahlE. HessB. GroenhofG. MarkA.E. BerendsenH.J.C. GROMACS: Fast, flexible, and free.J. Comput. Chem.200526161701171810.1002/jcc.20291 16211538
    [Google Scholar]
  60. BjelkmarP. LarssonP. CuendetM.A. HessB. LindahlE. Implementation of the CHARMM force field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water models.J. Chem. Theory Comput.20106245946610.1021/ct900549r 26617301
    [Google Scholar]
  61. ZoeteV. CuendetM.A. GrosdidierA. MichielinO. SwissParam: A fast force field generation tool for small organic molecules.J. Comput. Chem.201132112359236810.1002/jcc.21816 21541964
    [Google Scholar]
  62. ParrinelloM. RahmanA. Polymorphic transitions in single crystals: A new molecular dynamics method.J. Appl. Phys.198152127182719010.1063/1.328693
    [Google Scholar]
  63. PiresD.E.V. BlundellT.L. AscherD.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures.J. Med. Chem.20155894066407210.1021/acs.jmedchem.5b00104 25860834
    [Google Scholar]
  64. ZimmerA. ZimmerA.M. HohmannA.G. HerkenhamM. BonnerT.I. Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice.Proc. Natl. Acad. Sci. USA199996105780578510.1073/pnas.96.10.5780 10318961
    [Google Scholar]
  65. Wojtunik-KuleszaK.A. Targowska-DudaK. KlimekK. GinalskaG. JóźwiakK. Waksmundzka-HajnosM. CieślaŁ. Volatile terpenoids as potential drug leads in Alzheimer’s disease.Open Chem.201715133234310.1515/chem‑2017‑0040
    [Google Scholar]
  66. NourH. AbchirO. BelaidiS. QaisF.A. ChtitaS. BelaaouadS. 2D‐QSAR and molecular docking studies of carbamate derivatives to discover novel potent anti‐butyrylcholinesterase agents for Alzheimer’s disease treatment.Bull. Korean Chem. Soc.202243227729210.1002/bkcs.12449
    [Google Scholar]
  67. AsgharA. YousufM. FareedG. NazirR. HassanA. MaalikA. NoorT. IqbalN. RasheedL. Synthesis, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities, and molecular docking studies of a novel compound based on combination of flurbiprofen and isoniazide.RSC Advances20201033193461935210.1039/D0RA02339F 35515452
    [Google Scholar]
  68. MounadiN. NourH. ErrouguiA. TalbiM. El KoualiM. ChtitaS. Discovery of eugenol-derived drug candidates for the treatment of COVID-19 by applying molecular docking, molecular dynamics, and pharmacokinetic analysis.Phys. Chem. Res.202412228930310.22036/PCR.2023.409956.2390
    [Google Scholar]
  69. KhedraouiM. NourH. YamariI. AbchirO. ErrouguiA. ChtitaS. Design of a new potent Alzheimer’s disease inhibitor based on QSAR, molecular docking and molecular dynamics investigations.Chemical Physics Impact2023710036110.1016/j.chphi.2023.100361
    [Google Scholar]
  70. AbchirO. NourH. DaouiO. YamariI. ElKhattabiS. El KoualiM. TalbiM. ErrouguiA. ChtitaS. Structure-based virtual screening, ADMET analysis, and molecular dynamics simulation of Moroccan natural compounds as candidates for the SARS-CoV-2 inhibitors.Nat. Prod. Res.20231810.1080/14786419.2023.2281002 37966948
    [Google Scholar]
  71. AbchirO. YamariI. NourH. DaouiO. ElkhattabiS. ErrouguiA. ChtitaS. Structure‐based virtual screening, ADMET analysis, and molecular dynamics simulation of moroccan natural compounds as candidates α‐amylase inhibitors.ChemistrySelect2023826e20230109210.1002/slct.202301092
    [Google Scholar]
  72. KarimE.M. Discovery of a potential inhibitor against lung cancer: Computational approaches and molecular dynamics study.Phys. Chem. Res.202412357958910.22036/PCR.2023.415502.2423
    [Google Scholar]
  73. NourH. DaouiO. AbchirO. ElKhattabiS. BelaidiS. ChtitaS. Combined computational approaches for developing new anti-Alzheimer drug candidates: 3D-QSAR, molecular docking and molecular dynamics studies of liquiritigenin derivatives.Heliyon2022812e1199110.1016/j.heliyon.2022.e11991 36544815
    [Google Scholar]
  74. FouedjouR.T. In silico approach for designing novel SARS-CoV-2 inhibitors from medicinal plants.Phys. Chem. Res.202311358960410.22036/PCR.2022.349693.2138
    [Google Scholar]
/content/journals/mc/10.2174/0115734064318657240822064240
Loading
/content/journals/mc/10.2174/0115734064318657240822064240
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test