Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Background

The approval of Sucrose Fatty Acid Esters (SFAEs) as food additives/preservatives with antimicrobial potential has triggered enormous interest in discovering new biological applications. Accordingly, many researchers reported that SFAEs consist of various sugar moieties, and hydrophobic side chains are highly active against certain fungal species.

Objective

This study aimed to conduct aregioselective synthesis of SAFE and check the effect of chain length and site of acylation (., C-6 . C-2, C-3, C-4, and long-chain . short-chain) on antimicrobial potency.

Methods

A direct acylation method maintaining several conditions was used for esterification. tests, molecular docking, and studies were conducted using standard procedures.

Results

tests revealed that the fatty acid chain length in mannopyranoside esters significantly affects the antifungal activity, where C12 chains are more potent against Aspergillus species. In terms of acylation site, mannopyranoside esters with a C8 chain substituted at the C-6 position are more active in antifungal inhibition. Molecular docking also revealed that these mannopyranoside esters had comparatively better stable binding energy and hence better inhibition, with the fungal enzymes lanosterol 14-alpha-demethylase (3LD6), urate oxidase (1R51), and glucoamylase (1KUL) than the standard antifungal drug fluconazole. Additionally, the thermodynamic, orbital, drug-likeness, and safety profiles of these mannopyranoside esters were calculated and discussed, along with the Structure-Activity Relationships (SAR).

Conclusion

This study thus highlights the importance of the acylation site and lipid-like fatty acid chain length that govern the antimicrobial activity of mannopyranoside-based SFAE.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064292665240523113515
2024-06-04
2025-09-04
Loading full text...

Full text loading...

References

  1. MoutinhoL.F. MouraF.R. SilvestreR.C. DumaresqR.A.S. Microbial biosurfactants: A broad analysis of properties, applications, biosynthesis, and techno-economical assessment of rhamnolipid production.Biotechnol. Prog.2021372e309310.1002/btpr.3093 33067929
    [Google Scholar]
  2. GumelA.M. AnnuarM.S.M. HeidelbergT. ChistiY. Lipase mediated synthesis of sugar fatty acid esters.Process Biochem.201146112079209010.1016/j.procbio.2011.07.021
    [Google Scholar]
  3. PlatT. LinhardtR.J. Syntheses and applications of sucrose-based esters.J. Surfactants Deterg.20014441542110.1007/s11743‑001‑0196‑y
    [Google Scholar]
  4. RahamanM.L. RahmanM.A. HasnainM.M. AmranM. EmranT.B. KhanM.A.R. PatwaryM.A.M. KaziM. MatinM.M. Efficient synthesis of mannopyranoside-based fatty acyl esters: effects of acyl groups on antimicrobial activities.Preprints2023, 202311036510.20944/preprints202311.0365.v1
    [Google Scholar]
  5. NobmannP. BourkeP. DunneJ. HenehanG. In vitro antimicrobial activity and mechanism of action of novel carbohydrate fatty acid derivatives against Staphylococcus aureus and MRSA.J. Appl. Microbiol.200910862152216110.1111/j.1365‑2672.2009.04622.x 19961546
    [Google Scholar]
  6. ZhaoL. ZhangH. HaoT. LiS. In vitro antibacterial activities and mechanism of sugar fatty acid esters against five food-related bacteria.Food Chem.201518737037710.1016/j.foodchem.2015.04.108 25977039
    [Google Scholar]
  7. ShaoS.Y. ShiY.G. WuY. BianL.Q. ZhuY.J. HuangX.Y. PanY. ZengL.Y. ZhangR.R. Lipase-catalyzed synthesis of sucrose monolaurate and its antibacterial property and mode of action against four pathogenic bacteria.Molecules2018235111810.3390/molecules23051118 29738519
    [Google Scholar]
  8. Staroń J.; Dąbrowski, J.M.; Cichoń E.; Guzik, M. Lactose esters: Synthesis and biotechnological applications.Crit. Rev. Biotechnol.201838224525810.1080/07388551.2017.1332571 28585445
    [Google Scholar]
  9. HuangX. ZhangB. XuH. Synthesis of some monosaccharide-related ester derivatives as insecticidal and acaricidal agents.Bioorg. Med. Chem. Lett.201727184336434010.1016/j.bmcl.2017.08.031 28844385
    [Google Scholar]
  10. OkamotoH. SakaiT. DanjoK. Effect of sucrose fatty acid esters on transdermal permeation of lidocaine and ketoprofen.Biol. Pharm. Bull.20052891689169410.1248/bpb.28.1689 16141541
    [Google Scholar]
  11. El-LaithyH.M. ShoukryO. MahranL.G. Novel sugar esters proniosomes for transdermal delivery of vinpocetine: Preclinical and clinical studies.Eur. J. Pharm. Biopharm.2011771435510.1016/j.ejpb.2010.10.011 21056658
    [Google Scholar]
  12. OkamotoH. SakaiT. TokuyamaC. DanjoK. Sugar ester J-1216 enhances percutaneous permeation of ionized lidocaine.J. Pharm. Sci.2011100104482449010.1002/jps.22644 21626509
    [Google Scholar]
  13. AlamaT. KatayamaH. HiraiS. OnoS. KajiyamaA. KusamoriK. KatsumiH. SakaneT. YamamotoA. Enhanced oral delivery of alendronate by sucrose fatty acids esters in rats and their absorption-enhancing mechanisms.Int. J. Pharm.20165151-247648910.1016/j.ijpharm.2016.10.046 27793710
    [Google Scholar]
  14. PerinelliD.R. LucariniS. FagioliL. CampanaR. VllasaliuD. DurantiA. CasettariL. Lactose oleate as new biocompatible surfactant for pharmaceutical applications.Eur. J. Pharm. Biopharm.2018124556210.1016/j.ejpb.2017.12.008 29258912
    [Google Scholar]
  15. TengY. StewartS.G. HaiY.W. LiX. BanwellM.G. LanP. Sucrose fatty acid esters: Synthesis, emulsifying capacities, biological activities and structure-property profiles.Crit. Rev. Food Sci. Nutr.202161193297331710.1080/10408398.2020.1798346 32746632
    [Google Scholar]
  16. SanaullahA. BhuiyanM. MatinM. Stearoyl glucopyranosides: Selective synthesis, PASS analysis, in vitro antimicrobial, and SAR study.Egypt. J. Chem.202265932933810.21608/ejchem.2022.111831.5080
    [Google Scholar]
  17. AlFindeeM.N. ZhangQ. SubediY.P. ShresthaJ.P. KawasakiY. GrilleyM. TakemotoJ.Y. ChangC.W.T. One-step synthesis of carbohydrate esters as antibacterial and antifungal agents.Bioorg. Med. Chem.201826376577410.1016/j.bmc.2017.12.038 29305296
    [Google Scholar]
  18. WatanabeT. KatayamaS. MatsubaraM. HondaY. KuwaharaM. Antibacterial carbohydrate monoesters suppressing cell growth of Streptococcus mutans in the presence of sucrose.Curr. Microbiol.200041321021310.1007/s002840010121 10915210
    [Google Scholar]
  19. SnochW. Stępień, K.; Prajsnar, J.; Staroń J.; Szaleniec, M.; Guzik, M. Influence of chemical modifications of polyhydroxyalkanoate-derived fatty acids on their antimicrobial properties.Catalysts20199651010.3390/catal9060510
    [Google Scholar]
  20. PetkovaN. VassilevD. GrudevaR. TumbarskiY. VasilevaI. “Green” Synthesis of sucrose octaacetate and characterization of its physicochemical properties and antimicrobial activity.Chem. Biochem. Eng. Q.201831439540210.15255/CABEQ.2017.1117
    [Google Scholar]
  21. MatinM. NathA. SaadO. BhuiyanM. KadirF. HamidA.S. AlhadiA. AliM. YehyeW. Synthesis, PASS-predication and in vitro antimicrobial activity of benzyl 4-O-benzoyl-α-L-rhamnopyranoside derivatives.Int. J. Mol. Sci.2016179141210.3390/ijms17091412 27618893
    [Google Scholar]
  22. MatinM.M. BhattacharjeeS.C. ChakrabortyP. AlamM.S. Synthesis, PASS predication, in vitro antimicrobial evaluation and pharmacokinetic study of novel n-octyl glucopyranoside esters.Carbohydr. Res.201948510781210.1016/j.carres.2019.107812 31585251
    [Google Scholar]
  23. StegemannS. LeveillerF. FranchiD. de JongH. LindénH. When poor solubility becomes an issue: From early stage to proof of concept.Eur. J. Pharm. Sci.200731524926110.1016/j.ejps.2007.05.110 17616376
    [Google Scholar]
  24. AronsonM. MedaliaO. SchoriL. MirelmanD. SharonN. OfekI. Prevention of colonization of the urinary tract of mice with Escherichia coli by blocking of bacterial adherence with methyl alpha-D-mannopyranoside.J. Infect. Dis.1979139332933210.1093/infdis/139.3.329 376757
    [Google Scholar]
  25. MatsumuraS. ImaiK. YoshikawaS. KawadaK. UchiborT. Surface activities, biodegradability and antimicrobial properties of n-alkyl glucosides, mannosides and galactosides.J. Am. Oil Chem. Soc.19906712996100110.1007/BF02541865
    [Google Scholar]
  26. ZhangY. ChenL. WuX. Thermotropic liquid crystalline and surface-active properties of n-alkyl α-d-mannopyranosides.J. Mol. Liq.201826994795510.1016/j.molliq.2018.02.017
    [Google Scholar]
  27. HaneeU. RahmanM.R. MatinM.M. Synthesis, PASS, in silico ADMET, and thermodynamic studies of some galactopyranoside esters.Phys. Chem. Res.20219459160310.22036/pcr.2021.282956.1911
    [Google Scholar]
  28. MatinM.M. BhuiyanM.M.H. KabirE. SanaullahA.F.M. RahmanM.A. HossainM.E. UzzamanM. Synthesis, characterization, ADMET, PASS predication, and antimicrobial study of 6-O-lauroyl mannopyranosides.J. Mol. Struct.2019119518919710.1016/j.molstruc.2019.05.102
    [Google Scholar]
  29. MatinM.M. UzzamanM. ChowdhuryS.A. BhuiyanM.M.H. In vitro antimicrobial, physicochemical, pharmacokinetics and molecular docking studies of benzoyl uridine esters against SARS-CoV-2 main protease.J. Biomol. Struct. Dyn.20224083668368010.1080/07391102.2020.1850358 33297848
    [Google Scholar]
  30. MatinM.M. ChakrabortyP. AlamM.S. IslamM.M. HaneeU. Novel mannopyranoside esters as sterol 14α-demethylase inhibitors: Synthesis, PASS predication, molecular docking, and pharmacokinetic studies.Carbohydr. Res.202049610813010.1016/j.carres.2020.108130 32863019
    [Google Scholar]
  31. ParkK.M. LeeS.J. YuH. ParkJ.Y. JungH.S. KimK. LeeC.J. ChangP.S. Hydrophilic and lipophilic characteristics of non-fatty acid moieties: Significant factors affecting antibacterial activity of lauric acid esters.Food Sci. Biotechnol.201827240140910.1007/s10068‑018‑0353‑x 30263763
    [Google Scholar]
  32. WaghA. ShenS. ShenF.A. MillerC.D. WalshM.K. Effect of lactose monolaurate on pathogenic and nonpathogenic bacteria.Appl. Environ. Microbiol.20127893465346810.1128/AEM.07701‑11 22344640
    [Google Scholar]
  33. NakayamaM. TomiyamaD. IkedaK. KatsukiM. NonakaA. MiyamotoT. Antibacterial effects of monoglycerol fatty acid esters and sucrose fatty acid esters on bacillus spp.Food Sci. Technol. Res.201521343143710.3136/fstr.21.431
    [Google Scholar]
  34. ZhangX. SongF. TaxipalatiM. WeiW. FengF. Comparative study of surface-active properties and antimicrobial activities of disaccharide monoesters.PLoS One2014912e11484510.1371/journal.pone.0114845 25531369
    [Google Scholar]
  35. ZhangX. WeiW. CaoX. FengF. Characterization of enzymatically prepared sugar medium-chain fatty acid monoesters.J. Sci. Food Agric.20159581631163710.1002/jsfa.6863 25103468
    [Google Scholar]
  36. MatinM.M. HasanM.S. UzzamanM. BhuiyanM.M.H. KibriaS.M. HossainM.E. RoshidM.H.O. Synthesis, spectroscopic characterization, molecular docking, and ADMET studies of mannopyranoside esters as antimicrobial agents.J. Mol. Struct.2020122212882110.1016/j.molstruc.2020.128821
    [Google Scholar]
  37. Clinical and Laboratory Standards Institute. In: Methods for antimicrobial susceptibility testing of anaerobic bacteria: Approved standard.8th edWayne, PA2012
    [Google Scholar]
  38. GroverR.K. MooreJ.D. Toximetric studies of fungicides against the brown rot organisms Sclerotinia flucticola and S. laxa.Phytopathology196252876880
    [Google Scholar]
  39. AkashS. KumerA. ChandroA. ChakmaU. MatinM.M. Quantum calculation, docking, ADMET and molecular dynamics of ketal and non-ketal forms of D-glucofuranose against bacteria, black & white fungus, and triple-negative breast cancer.Biointerface Res. Appl. Chem.202213437410.33263/BRIAC134.374
    [Google Scholar]
  40. KumerA. ChakmaU. ChandroA. HowladerD. AkashS. KobirM.E. HossainT. MatinM.M. Modified D-glucofuranose computationally screening for inhibitor of breast cancer and triple breast cancer: Chemical descriptor, molecular docking, molecular dynamics and QSAR.J. Chil. Chem. Soc.20226735623563510.4067/S0717‑97072022000305623
    [Google Scholar]
  41. KumerA. ChakmaU. MatinM.M. Bilastine based drugs as SARS-CoV-2 protease inhibitors: Molecular docking, dynamics, and ADMET related studies.Orbital Elect. J. Chem.2022141152310.17807/orbital.v14i1.1642
    [Google Scholar]
  42. MatinM.M. IbrahimM. AnisaT.R. RahmanM.R. Synthesis, characterization, in silico optimization, and conformational studies of methyl 4-O-pivaloyl-α-l-rhamnopyranosides.Malays. J. Sci. Ser. B Phys. Earth Sci.20224119110510.22452/mjs.vol41no1.6
    [Google Scholar]
  43. GriffinW.C. Calculation of HLB values of non-ionic surfactants.J. Soc. Cosmet. Chem.19545249256
    [Google Scholar]
  44. SyedS.B. AryaH. FuI.H. YehT.K. PeriyasamyL. HsiehH.P. CoumarM.S. Targeting P-glycoprotein: Investigation of piperine analogs for overcoming drug resistance in cancer.Sci. Rep.201771797210.1038/s41598‑017‑08062‑2 28801675
    [Google Scholar]
  45. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  46. MatinM.M. BhuiyanM.M.H. KibriaS.M. HasanM.S. Synthesis, PASS predication of antimicrobial activity and pharmacokinetic properties of hexanoyl galactopyranosides and experimental evaluation of their action against four human pathogenic bacteria and four fungal strains.Pharm. Chem. J.202256562763710.1007/s11094‑022‑02687‑y
    [Google Scholar]
  47. MatinP. HaneeU. AlamM.S. JeongJ.E. MatinM.M. RahmanM.R. MahmudS. AlshahraniM.M. KimB. Novel galactopyranoside esters: Synthesis, mechanism, in vitro antimicrobial evaluation and molecular docking studies.Molecules20222713412510.3390/molecules27134125 35807371
    [Google Scholar]
  48. MatinM.M. SanaullahA.F.M. RahmanM.R. NayeemS.M.A. Acyl glucopyranosides: Synthesis, PASS predication, antifungal activities, and molecular docking.Organic Commun.2022151324310.25135/acg.oc.120.2201.2307
    [Google Scholar]
  49. AhujaR. SidhuA. BalaA. AroraD. SharmaP. Structure based approach for twin-enzyme targeted benzimidazolyl-1,2,4-triazole molecular hybrids as antifungal agents.Arab. J. Chem.20201365832584810.1016/j.arabjc.2020.04.020
    [Google Scholar]
  50. ChugunovaE. ShaekhovT. KhamatgalimovA. GorshkovV. BurilovA. DFT quantum-chemical calculation of thermodynamic parameters and DSC measurement of thermostability of novel benzofuroxan derivatives containing triazidoisobutyl fragments.Int. J. Mol. Sci.2022233147110.3390/ijms23031471 35163391
    [Google Scholar]
  51. RahmanM.A. MatinM.M. KumerA. ChakmaU. RahmanM.R. Modified D-glucofuranoses as new black fungus protease inhibitors: Computational screening, docking, dynamics, and QSAR study.Phy. Chem. Res.202210219520910.22036/pcr.2021.294078.1934
    [Google Scholar]
  52. MunawarA. ZamanF. IshaqM.W. HassanK.A. MasoodS. AliZ. MajeedA.K. AkremA. AliS.A. BetzelC. Comparative study to characterise the pharmaceutical potential of synthesised snake venom Bradykinin-Potentiating peptides in vivo.Curr. Med. Chem.202229426422643210.2174/0929867329666220203153051 35125079
    [Google Scholar]
  53. MuhammadD. MatinM.M. MiahS.M.R. DeviP. Synthesis, antimicrobial, and DFT studies of some benzyl 4-O-acyl-α-L-rhamnopyranosides.Orbital Elect. J. Chem.202113325025810.17807/orbital.v13i3.1614
    [Google Scholar]
  54. SanaullahA.F.M. DeviP. HossainT. SultanS.B. BadhonM.M.U. HossainM.E. UddinJ. PatwaryM.A.M. KaziM. MatinM.M. Rhamnopyranoside-based fatty acid esters as antimicrobials: Synthesis, spectral characterization, PASS, antimicrobial, and molecular docking studies.Molecules202328398610.3390/molecules28030986 36770652
    [Google Scholar]
  55. ChengF. LiW. ZhouY. ShenJ. WuZ. LiuG. LeeP.W. TangY. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties.J. Chem. Inf. Model.201252113099310510.1021/ci300367a 23092397
    [Google Scholar]
  56. AllerS.G. YuJ. WardA. WengY. ChittaboinaS. ZhuoR. HarrellP.M. TrinhY.T. ZhangQ. UrbatschI.L. ChangG. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding.Sci.200932359221718172210.1126/science.1168750 19325113
    [Google Scholar]
  57. NobmannP. SmithA. DunneJ. HenehanG. BourkeP. The antimicrobial efficacy and structure activity relationship of novel carbohydrate fatty acid derivatives against Listeria spp. and food spoilage microorganisms.Int. J. Food Microbiol.2009128344044510.1016/j.ijfoodmicro.2008.10.008 19012983
    [Google Scholar]
  58. LepeshevaG.I. WatermanM.R. Sterol 14α-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms.Biochim. Biophys. Acta, Gen. Subj.20071770346747710.1016/j.bbagen.2006.07.018 16963187
    [Google Scholar]
  59. GhannoumM.A. RiceL.B. Antifungal agents: Mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance.Clin. Microbiol. Rev.199912450151710.1128/CMR.12.4.501 10515900
    [Google Scholar]
/content/journals/mc/10.2174/0115734064292665240523113515
Loading
/content/journals/mc/10.2174/0115734064292665240523113515
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test