Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Introduction

Alzheimer's disease, akin to coronary artery disease of the heart, is a progressive brain disorder driven by nerve cell damage.

Methods

This study utilized computational methods to explore anti-acetylcholinesterase (AChE) derivatives ( ̶ ) as potential treatments. By scrutinizing their interactions with 11 essential target proteins (AChE, Aβ, BChE, GSK-3β, MAO B, PDE-9, Prion, PSEN-1, sEH, Tau, and TDP-43) and comparing them with established drugs such as donepezil, galantamine, memantine, and rivastigmine, ligand emerged as notable. During molecular dynamics simulations, the protein boasting the strongest bond with the critical 1QTI protein and exceeding drug-likeness criteria also exhibited remarkable stability within the enzyme's pocket across diverse temperatures (300- 320 K). In addition, we utilized density functional theory (DFT) to compute dipole moments and molecular orbital properties, including assessing the thermodynamic stability of AChE derivatives.

Results

This finding suggests a well-defined, potentially therapeutic interaction further supported by theoretical and future and investigations.

Conclusion

Ligand thus emerges as a promising candidate in the fight against Alzheimer's disease.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064304100240511112619
2024-05-27
2025-09-29
Loading full text...

Full text loading...

References

  1. MayeuxR. Epidemiology of neurodegeneration.Annu. Rev. Neurosci.20032618110410.1146/annurev.neuro.26.043002.094919 12574495
    [Google Scholar]
  2. WeaverD.F. Alzheimer’s disease as an innate autoimmune disease (AD2): A new molecular paradigm.Alzheimers Dement.20231931086109810.1002/alz.12789 36165334
    [Google Scholar]
  3. BarrioJ.R. SatyamurthyN. HuangS.C. PetričA. SmallG.W. KepeV. Dissecting molecular mechanisms in the living brain of dementia patients.Acc. Chem. Res.200942784285010.1021/ar800189x 19281227
    [Google Scholar]
  4. BlennowK. de LeonM.J. ZetterbergH. Alzheimer’s disease.Lancet2006368953338740310.1016/S0140‑6736(06)69113‑7 16876668
    [Google Scholar]
  5. RafiiM.S. AisenP.S. Advances in Alzheimer’s disease drug development.BMC Med.20151316210.1186/s12916‑015‑0297‑4 25857341
    [Google Scholar]
  6. WimoA. JönssonL. BondJ. PrinceM. WinbladB. The worldwide economic impact of dementia 2010.Alzheimers Dement.201391111.e310.1016/j.jalz.2012.11.006 23305821
    [Google Scholar]
  7. SussmanJ.L. HarelM. FrolowF. OefnerC. GoldmanA. TokerL. SilmanI. Atomic structure of acetylcholinesterase from Torpedo californica: A prototypic acetylcholine-binding protein.Science1991253502287287910.1126/science.1678899 1678899
    [Google Scholar]
  8. KrygerG. HarelM. GilesK. TokerL. VelanB. LazarA. KronmanC. BarakD. ArielN. ShaffermanA. SilmanI. SussmanJ.L. Structures of recombinant native and E202Q mutant human acetylcholinesterase complexed with the snake-venom toxin fasciculin-II.Acta Crystallogr. D Biol. Crystallogr.200056111385139410.1107/S0907444900010659 11053835
    [Google Scholar]
  9. HuangY. MuckeL. Alzheimer mechanisms and therapeutic strategies.Cell201214861204122210.1016/j.cell.2012.02.040 22424230
    [Google Scholar]
  10. GrossbergGT ChristensenDD GriffithPA KerwinDR HuntG HallEJ The art of sharing the diagnosis and management of Alzheimer’s disease with patients and caregivers: Recommendations of an expert consensus panel. Prim. Care Compan. J. Clin. Psychiatry, 20101209cs0083310.4088/PCC.09cs00833ol
    [Google Scholar]
  11. EssaM.M. VijayanR.K. Castellano-GonzalezG. MemonM.A. BraidyN. GuilleminG.J. Neuroprotective effect of natural products against Alzheimer’s disease.Neurochem. Res.20123791829184210.1007/s11064‑012‑0799‑9 22614926
    [Google Scholar]
  12. KimM. KimS.H. YangW. Mechanisms of action of phytochemicals from medicinal herbs in the treatment of Alzheimer’s disease.Planta Med.201480151249125810.1055/s‑0034‑1383038 25210998
    [Google Scholar]
  13. KumarA. DograS. PrakashA. Neuroprotective effect of Cantella Asiatica against intracerebroventricular colchicine-induced cognitive impairment and oxidative stress.Int. J. Alzheimers Dis.200920091810.4061/2009/972178 20798885
    [Google Scholar]
  14. VenkatesanR. JiE. KimS.Y. Phytochemicals that regulate neurodegenerative disease by targeting neurotrophins: A comprehensive review.BioMed Res. Int.2015201512210.1155/2015/814068 26075266
    [Google Scholar]
  15. SitaramN. WeingartnerH. CaineE.D. Christian GillinJ. Choline: selective enhancement of serial learning and encoding of low imagery words in man.Life Sci.197822171555156010.1016/0024‑3205(78)90011‑5 672413
    [Google Scholar]
  16. PowerA. VazdarjanovaA. McGaughJ.L. Muscarinic cholinergic influences in memory consolidation.Neurobiol. Learn. Mem.200380317819310.1016/S1074‑7427(03)00086‑8 14521862
    [Google Scholar]
  17. BocciaM.M. BlakeM.G. AcostaG.B. BarattiC.M. Atropine, an anticholinergic drug, impairs memory retrieval of a high consolidated avoidance response in mice.Neurosci. Lett.200334529710010.1016/S0304‑3940(03)00493‑2 12821180
    [Google Scholar]
  18. AnandP. SinghB. A review on cholinesterase inhibitors for Alzheimer’s disease.Arch. Pharm. Res.201336437539910.1007/s12272‑013‑0036‑3 23435942
    [Google Scholar]
  19. AnandP. SinghB. Synthesis and evaluation of novel 4-[(3H,3aH,6aH)-3-phenyl)-4,6-dioxo-2-phenyldihydro-2H-pyrrolo[3,4-d]isoxazol-5(3H,6H,6aH)-yl]benzoic acid derivatives as potent acetylcholinesterase inhibitors and anti-amnestic agents.Bioorg. Med. Chem.201220152153010.1016/j.bmc.2011.05.027 22172310
    [Google Scholar]
  20. SanadS.M.H. MekkyA.E.M. Ultrasound‐mediated synthesis of new (piperazine‐chromene)‐linked bis(thieno[2,3‐b]pyridine) hybrids as potential anti‐acetylcholinesterase.ChemistrySelect2022741e20220302010.1002/slct.202203020
    [Google Scholar]
  21. CamporaM. CanaleC. GattaE. TassoB. LauriniE. ReliniA. PriclS. CattoM. TonelliM. Multitarget biological profiling of new naphthoquinone and anthraquinone-based derivatives for the treatment of Alzheimer’s Disease.ACS Chem. Neurosci.202112344746110.1021/acschemneuro.0c00624 33428389
    [Google Scholar]
  22. NwadiugwuM. OnwuekweI. EzeanolueE. DengH. Beyond Amyloid: A machine learning-driven approach reveals properties of potent GSK-3β inhibitors targeting neurofibrillary tangles.Int. J. Mol. Sci.2024255264610.3390/ijms25052646
    [Google Scholar]
  23. MartizR.M. PatilS.M. RamuR. Discovery of novel benzophenone integrated derivatives as anti-Alzheimer’s agents targeting presenilin-1 and presenilin-2 inhibition: A computational approach.PLoS One2022174e026502210.1371/journal.pone.0265022
    [Google Scholar]
  24. Griñán-FerréC. Jarné-FerrerJ. Bellver-SanchísA. CodonyS. Puigoriol-IllamolaD. SanfeliuC. OhY. LeeS. VázquezS. PallàsM. Novel molecular mechanism driving neuroprotection after soluble epoxide hydrolase inhibition: Insights for Alzheimer’s disease therapeutics.CNS Neurosci. Ther.2024304e1451110.1111/cns.14511 37905690
    [Google Scholar]
  25. SwethaR. SharmaA. SinghR. GaneshpurkarA. KumarD. KumarA. SinghS.K. Combined ligand-based and structure-based design of PDE 9A inhibitors against Alzheimer’s disease.Mol. Divers.20222652877289210.1007/s11030‑022‑10504‑7 35932437
    [Google Scholar]
  26. MenesesA. KogaS. O’LearyJ. DicksonD.W. BuG. ZhaoN. TDP-43 pathology in Alzheimer’s disease.Mol. Neurodegener.20211618410.1186/s13024‑021‑00503‑x
    [Google Scholar]
  27. LabibaA. Al AbbadS.S. RahmanS. AlodhaybA. PoirierR.A. UddinK.M. Investigating baxdrostat and its derivatives as aldosterone synthase inhibitors for resistant hypertension: An in silico approach.ChemistrySelect202497e20230492910.1002/slct.202304929
    [Google Scholar]
  28. MeemM.H. YusufS.B. Al AbbadS.S. RahmanS. Al-GawatiM. AlbrithenH. AlodhaybA.N. UddinK.M. Exploring the anticancer and antibacterial potential of naphthoquinone derivatives: A comprehensive computational investigation.Front Chem.202412135166910.3389/fchem.2024.1351669 38449478
    [Google Scholar]
  29. FrischM.J. TrucksG.W. SchlegelH.B. ScuseriaG.E. RobbM.A. CheesemanJ.R. ScalmaniG. BaroneV. PeterssonG.A. NakatsujiH. Gaussian 16, Revision C.01.Wallingford, CT, USAGaussian, Inc.2019
    [Google Scholar]
  30. (a) UddinK.M. AlrawashdehA.I. HenryD.J. WarburtonP.L. PoirierR.A. Hydrolytic deamination reactions of amidine and nucleobase derivativesInt. J. Quantum Chem.,20201201e2605910.1002/qua.26059(b) UddinK.M. HenryD.J. AlrawashdehA.I. WarburtonP.L. PoirierR.A. Mechanism for the deamination of ammeline, guanine, and their analoguesStruct. Chem.,20172851467147710.1007/s11224‑017‑0941‑z(c) UddinK.M. AlmatarnehM.H. ShawD.M. PoirierR.A. Mechanistic study of the deamination reaction of guanine: A computational studyJ. Phys. Chem2011115102065207610.1021/jp112080621338176(d) UddinK.M. PoirierR.A. Computational study of the deamination of 8-oxoguanineJ. Phys. Chem.2011115299151915910.1021/jp202098k21678968(e) UddinK.M. FlinnC.G. PoirierR.A. WarburtonP.L. Comparative computational investigation of the reaction mechanism for the hydrolytic deamination of cytosine, cytosine butane dimer and 5,6-saturated cytosine analoguesComput. Theor. Chem.,201410279110210.1016/j.comptc.2013.10.027(f) AlrawashdehA.I. AlmatarnehM.H. PoirierR.A. Computational study on the deamination reaction of adenine with OH−/nH2O (n = 0, 1, 2, 3) and 3H2OCan. J. Chem,20229151852610.1139/cjc‑2012‑0416
    [Google Scholar]
  31. ChamizoJ.A. MorgadoJ. SosaP. Organometallic aromaticity.Organometallics199312125005500710.1021/om00036a047
    [Google Scholar]
  32. GlasstoneS. LaidlerK.J. EyringH. The Theory of Rate Processes: The Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena.McGraw-Hill Book Company, Incorporated1941
    [Google Scholar]
  33. AlbertyR.A. The Foundations of Chemical Kinetics (Benson, Sidney W.).J. Chem. Educ.1960371266010.1021/ed037p660.1
    [Google Scholar]
  34. ParrR.G. SzentpályL. LiuS. Electrophilicity index.J. Am. Chem. Soc.199912191922192410.1021/ja983494x
    [Google Scholar]
  35. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 20177142717https://www.nature.com/articles/srep4271710.1038/srep42717 28256516
    [Google Scholar]
  36. YangH. LouC. SunL. LiJ. CaiY. WangZ. LiW. LiuG. TangY. admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties.Bioinformatics20193561067106910.1093/bioinformatics/bty707 30165565
    [Google Scholar]
  37. DruzhilovskiyD.S. RudikA.V. FilimonovD.A. GloriozovaT.A. LaguninA.A. DmitrievA.V. PogodinP.V. DubovskayaV.I. IvanovS.M. TarasovaO.A. BezhentsevV.M. MurtazalievaK.A. SeminM.I. MaiorovI.S. GaurA.S. SastryG.N. PoroikovV.V. Computational platform Way2Drug: From the prediction of biological activity to drug repurposing. Russ. Chem. Bull. 2017661018321841https://link.springer.com/article/10.1007/s11172-017-1954-x10.1007/s11172‑017‑1954‑x
  38. ZardeckiC. DuttaS. GoodsellD.S. VoigtM. BurleyS.K. RCSB protein data bank: A resource for chemical, biochemical, and structural explorations of large and small biomolecules.J. Chem. Educ.201693356957510.1021/acs.jchemed.5b00404
    [Google Scholar]
  39. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The Protein Data Bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.235 10592235
    [Google Scholar]
  40. DallakyanS. OlsonA.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol.20151263243250https://link.springer.com/protocol/10.1007/978-1-4939-2269-7_1910.1007/978‑1‑4939‑2269‑7_19 25618350
    [Google Scholar]
  41. VaradiM. AnyangoS. DeshpandeM. NairS. NatassiaC. YordanovaG. YuanD. StroeO. WoodG. LaydonA. ŽídekA. GreenT. TunyasuvunakoolK. PetersenS. JumperJ. ClancyE. GreenR. VoraA. LutfiM. FigurnovM. CowieA. HobbsN. KohliP. KleywegtG. BirneyE. HassabisD. VelankarS. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models.Nucleic Acids Res.202250D1D439D44410.1093/nar/gkab1061 34791371
    [Google Scholar]
  42. SipplM.J. Recognition of errors in three‐dimensional structures of proteins.Proteins199317435536210.1002/prot.340170404 8108378
    [Google Scholar]
  43. RathodS. ShindeK. PorlekarJ. ChoudhariP. DhavaleR. MahuliD. TamboliY. BhatiaM. HavalK.P. Al-SehemiA.G. PanniparaM. Computational exploration of anti-cancer potential of flavonoids against cyclin-dependent kinase 8: An in silico molecular docking and dynamic approach.ACS Omega20238139140910.1021/acsomega.2c04837 36643495
    [Google Scholar]
  44. GoddardT.D. HuangC.C. FerrinT.E. Visualizing density maps with UCSF Chimera.J. Struct. Biol.2007157128128710.1016/j.jsb.2006.06.010 16963278
    [Google Scholar]
  45. YuanS. ChanH.C.S. HuZ. Using PYMOL as a platform for computational drug design.Wiley Interdiscip. Rev. Comput. Mol. Sci.201772e129810.1002/wcms.1298
    [Google Scholar]
  46. BarorohU. BiotekM. MuscifaZ.S. DestiaraniW. RohmatullahF.G. YusufM. Molecular interaction analysis and visualization of protein-ligand docking using Biovia Discovery Studio Visualizer.Indonesian J. Comput. Biol.2023212230https://jurnal.unpad.ac.id/ijcb/article/view/46322[IJCB].
    [Google Scholar]
  47. Van Der SpoelD. LindahlE. HessB. GroenhofG. MarkA.E. BerendsenH.J.C. GROMACS: Fast, flexible, and free.J. Comput. Chem.200526161701171810.1002/jcc.20291 16211538
    [Google Scholar]
  48. ShowalterS.A. BrüschweilerR. Validation of molecular dynamics simulations of biomolecules using NMR spin relaxation as benchmarks: Application to the AMBER99SB force field.J. Chem. Theory Comput.20073396197510.1021/ct7000045 26627416
    [Google Scholar]
  49. BrayS.A. LucasX. KumarA. GrüningB.A. The Chemical- Toolbox: reproducible, user-friendly cheminformatics analysis on the Galaxy platform. J. Cheminform. 202012140https://link.springer.com/article/10.1186/s13321-020-00442-710.1186/s13321‑020‑00442‑7 33431029
  50. CuendetM.A. van GunsterenW.F. On the calculation of velocity-dependent properties in molecular dynamics simulations using the leapfrog integration algorithm.J. Chem. Phys.20071271818410210.1063/1.2779878 18020625
    [Google Scholar]
  51. UddinK.M. SakibM. SirajiS. UddinR. RahmanS. AlodhaybA. AlibrahimK.A. KumerA. MatinM.M. BhuiyanM.M.H. Synthesis of New Derivatives of Benzylidinemalononitrile and Ethyl 2-Cyano-3-phenylacrylate: in silico Anticancer Evaluation.ACS Omega2023829258172583110.1021/acsomega.3c01123 37521603
    [Google Scholar]
  52. EshaN.J.I. QuayumS.T. SaifM.Z. AlmatarnehM.H. RahmanS. AlodhaybA. PoirierR.A. UddinK.M. Exploring the potential of fluoro‐flavonoid derivatives as ANTI‐LUNG cancer agents: DFT, molecular docking, and molecular dynamics techniques.Int. J. Quantum Chem.20241241e2727410.1002/qua.27274
    [Google Scholar]
  53. AfganE. BakerD. BatutB. van den BeekM. BouvierD. ČechM. ChiltonJ. ClementsD. CoraorN. GrüningB.A. GuerlerA. Hillman-JacksonJ. HiltemannS. JaliliV. RascheH. SoranzoN. GoecksJ. TaylorJ. NekrutenkoA. BlankenbergD. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update.Nucleic Acids Res.201846W1W537W54410.1093/nar/gky379 29790989
    [Google Scholar]
  54. GrantB.J. RodriguesA.P.C. ElSawyK.M. McCammonJ.A. CavesL.S.D. Bio3d: An R package for the comparative analysis of protein structures.Bioinformatics200622212695269610.1093/bioinformatics/btl461 16940322
    [Google Scholar]
  55. KumarN. AwasthiA. KumariA. SoodD. JainP. SinghT. SharmaN. GroverA. ChandraR. Antitussive noscapine and antiviral drug conjugates as arsenal against COVID-19: A comprehensive chemoinformatics analysis.J. Biomol. Struct. Dyn.202240110111610.1080/07391102.2020.1808072 32815796
    [Google Scholar]
  56. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: s0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  57. VeberD.F. JohnsonS.R. ChengH.Y. SmithB.R. WardK.W. KoppleK.D. Molecular properties that influence the oral bioavailability of drug candidates.J. Med. Chem.200245122615262310.1021/jm020017n 12036371
    [Google Scholar]
  58. RitchieT.J. ErtlP. LewisR. The graphical representation of ADME-related molecule properties for medicinal chemists.Drug Discov. Today2011161-2657210.1016/j.drudis.2010.11.002 21074634
    [Google Scholar]
  59. FukunishiY. NakamuraH. Definition of drug-likeness for compound affinity.J. Chem. Inf. Model.20115151012101610.1021/ci200035q 21524122
    [Google Scholar]
  60. ErtlP. SchuffenhauerA. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions.J. Cheminform.200911810.1186/1758‑2946‑1‑8 20298526
    [Google Scholar]
  61. Adobe Systems Inc. PostScript Language Reference Manual.Reading, MAAddison-Wesley1985
    [Google Scholar]
  62. AllenF.H. BellardS. BriceM.D. CartwrightB.A. DoubledayA. HiggsH. HummelinkT. Hummelink-PetersB.G. KennardO. MotherwellW.D.S. RodgersJ.R. WatsonD.G. The Cambridge Crystallographic Data Centre: Computer-based search, retrieval, analysis and display of information.Acta Crystallogr. B197935102331233910.1107/S0567740879009249
    [Google Scholar]
  63. BernsteinF.C. KoetzleT.F. WilliamsG.J.B. MeyerE.F.Jr BriceM.D. RodgersJ.R. KennardO. ShimanouchiT. TasumiM. The protein data bank: A computer-based archival file for macromolecular structures.J. Mol. Biol.1977112353554210.1016/S0022‑2836(77)80200‑3 875032
    [Google Scholar]
  64. EnghR.A. HuberR. Accurate bond and angle parameters for X-ray protein structure refinement.Acta Crystallogr. A199147439240010.1107/S0108767391001071
    [Google Scholar]
  65. IUPAC-IUB Commission on Biochemical Nomenclature. Abbreviations and symbols for the description of the conformation of polypeptide chains.J. Mol. Biol.197052111710.1016/0022‑2836(70)90173‑7 5485910
    [Google Scholar]
  66. KabschW. SanderC. Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features.Biopolymers198322122577263710.1002/bip.360221211 6667333
    [Google Scholar]
  67. LaskowskiR.A. MacArthurM.W. MossD.S. ThorntonJ.M. PROCHECK: A program to check the stereochemical quality of protein structures.J. Appl. Cryst.199326228329110.1107/S0021889892009944
    [Google Scholar]
  68. MorrisA.L. MacArthurM.W. HutchinsonE.G. ThorntonJ.M. Stereochemical quality of protein structure coordinates.Proteins199212434536410.1002/prot.340120407 1579569
    [Google Scholar]
  69. NishikawaK. OoiT. Radial locations of amino acid residues in a globular protein: Correlation with the sequence.J. Biochem.198610041043104710.1093/oxfordjournals.jbchem.a121783 3818558
    [Google Scholar]
  70. ColovosC. YeatesT.O. Verification of protein structures: Patterns of nonbonded atomic interactions.Protein Sci.1993291511151910.1002/pro.5560020916 8401235
    [Google Scholar]
  71. BowieJ.U. LüthyR. EisenbergD. A method to identify protein sequences that fold into a known three-dimensional structure.Science1991253501616417010.1126/science.1853201 1853201
    [Google Scholar]
  72. LüthyR. BowieJ.U. EisenbergD. Assessment of protein models with three-dimensional profiles.Nature19923566364838510.1038/356083a0 1538787
    [Google Scholar]
  73. TouwWG. BaakmanC. BlackJ. Te BeekTA. KriegerE. JoostenR.P. VriendG. A series of PDB-related databanks for everyday needs.Nucleic Acids Res.201543D1D364D36810.1093/nar/gku1028
    [Google Scholar]
  74. Wikipedia contributors. DSSP (algorithm). In: Wikipedia, The Free Encyclopedia, 2023
    [Google Scholar]
  75. CohenN. BensonS.W. Estimation of heats of formation of organic compounds by additivity methods.Chem. Rev.19939372419243810.1021/cr00023a005
    [Google Scholar]
  76. GurungA.B. BhattacharjeeA. AliM.A. Exploring the physicochemical profile and the binding patterns of selected novel anticancer Himalayan plant derived active compounds with macromolecular targets.Inform. Med. Unlock.2016511410.1016/j.imu.2016.09.004
    [Google Scholar]
  77. ShadrackD.M. NdesendoV.M. Molecular docking and ADMET study of emodin derivatives as anticancer inhibitors of NAT2, COX2 and TOP1 enzymes.Comput. Mol. Biosci.2017711810.4236/cmb.2017.71001
    [Google Scholar]
  78. OzkurtT.E. AkgulT. BaykutS. Principal component analysis of the fractional brownian motion for 0< H< 0.5.2006 IEEE International Conference on Acoustics Speech and Signal Processing ProceedingsToulouse, France2006IIIIII10.1109/ICASSP.2006.1660697
    [Google Scholar]
/content/journals/mc/10.2174/0115734064304100240511112619
Loading
/content/journals/mc/10.2174/0115734064304100240511112619
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Acetylcholinesterase (AChE); ADMET; FMO; molecular docking; molecular dynamics; PCA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test