Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Aim

There is an urgent need for new antimicrobial compounds with alternative modes of action for the treatment of drug-resistant bacterial and fungal pathogens.

Background

Carbohydrates and their derivatives are essential for biochemical and medicinal research because of their efficacy in the synthesis of biologically active drugs.

Objective

In the present study, a series of methyl α-D-mannopyranoside (MMP) derivatives () were prepared direct acylation, and their biological properties were characterized.

Methods

The structures of synthesized compounds were established by analyzing their physicochemical, elemental, and spectroscopic data and evaluating their antimicrobial activities through studies.

Results

In the antibacterial study, compound was found to be mostly active toward most of the organisms, exhibiting maximum inhibition of and minimum inhibition of . However, the MIC and MBC values revealed that this compound is highly effective against (MIC of 0.5 µg/L and MBC of 256 µg/L). In terms of antifungal activity, and showed the most promising activity toward with an inhibition of 95.90 ± 1.0% for compound and 96.72 ± 1.1% for compound . Moreover, density functional theory (DFT) in conjunction with the BLYP/6-311G (d) basis sets was used to calculate the dipole moment and total energy for each compound, and the molecular electrostatic potential and Mulliken charge were considered to study the electrophilicity and nucleophilicity of the groups in each compound. For dipole moment calculations, the dipole moments are in the following order: < < < < < inferring that compounds and possess a high dipole moment in comparison with the other inhibitor systems. Furthermore, molecular docking was performed against threonine synthase from ATCC 6633 (PDB: 6CGQ) to identify the active site of the compounds, with compound showing a maximum binding energy of -10.3 kcal/mol and compound exhibiting a binding energy of -10.2 kcal/mol. In addition, a 100 ns MD simulation was performed, and the results revealed a stable conformation and binding pattern within the stimulating environment.

Conclusion

Our synthetic, antimicrobial, and experiments revealed that MMP derivatives exhibit potential activity, providing a therapeutic target for bacteria and fungi.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064339243241027024304
2025-01-02
2025-11-01
Loading full text...

Full text loading...

References

  1. ErnstB. MagnaniJ.L. From carbohydrate leads to glycomimetic drugs.Nat. Rev. Drug Discov.20098866167710.1038/nrd2852 19629075
    [Google Scholar]
  2. FinkelsteinJ. Glycochemistry & Glycobiology.Nature2007446713999910.1038/446999a
    [Google Scholar]
  3. MantovaniV. GaleottiF. MaccariF. VolpiN. Recent advances in capillary electrophoresis separation of monosaccharides, oligosaccharides, and polysaccharides.Electrophoresis201839117918910.1002/elps.201700290 28857216
    [Google Scholar]
  4. SchjoldagerK.T. NarimatsuY. JoshiH.J. ClausenH. Global view of human protein glycosylation pathways and functions.Nat. Rev. Mol. Cell Biol.2020211272974910.1038/s41580‑020‑00294‑x 33087899
    [Google Scholar]
  5. KolbH.C. ErnstB. Recent progresses in the glycodrug area.Pure Appl. Chem.19976991879188410.1351/pac199769091879
    [Google Scholar]
  6. PersidisA. The carbohydrate-based drug industry.Nat. Biotechnol.199715547948010.1038/nbt0597‑479 9131631
    [Google Scholar]
  7. SimanekE.E. McGarveyG.J. JablonowskiJ.A. WongC.H. Selectin-carbohydrate interactions: From natural ligands to designed mimics.Chem. Rev.199898283386210.1021/cr940226i 11848916
    [Google Scholar]
  8. CaoX. DuX. JiaoH. AnQ. ChenR. FangP. WangJ. YuB. Carbohydrate-based drugs launched during 2000-2021.Acta Pharm. Sin. B202212103783382110.1016/j.apsb.2022.05.020 36213536
    [Google Scholar]
  9. NogueiraC.M. ParmanhanB.R. FariasP.P. CorrêaA.G. A importância crescente dos carboidratos em química medicinal. Rev.Virtual Quím20091214915910.5935/1984‑6835.20090017
    [Google Scholar]
  10. WongC-H. Carbohydrate-Based Drug Discovery.Weinheim, GermanyWiley-VCH200310.1002/3527602437
    [Google Scholar]
  11. MatsumotoR. FujiiY. KawsarS.M.A. KanalyR.A. YasumitsuH. KoideY. HasanI. IwaharaC. OgawaY. ImC.H. SugawaraS. HosonoM. NittaK. HamakoJ. MatsuiT. OzekiY. Cytotoxicity and glycan-binding properties of an 18 kDa lectin isolated from the marine sponge Halichondria okadai.Toxins (Basel)20124532333810.3390/toxins4050323 22778903
    [Google Scholar]
  12. KawsarS.M.A. TakeuchiT. KasaiK. FujiiY. MatsumotoR. YasumitsuH. OzekiY. Glycan-binding profile of a D-galactose binding lectin purified from the annelid, Perinereis nuntia ver. vallata.Comp. Biochem. Physiol. B Biochem. Mol. Biol.2009152438238910.1016/j.cbpb.2009.01.009 19266618
    [Google Scholar]
  13. FujiiY. KawsarS.M.A. MatsumotoR. YasumitsuH. IshizakiN. DogasakiC. HosonoM. NittaK. HamakoJ. TaeiM. OzekiY. A d-galactose-binding lectin purified from coronate moon turban, Turbo (Lunella) coreensis, with a unique amino acid sequence and the ability to recognize lacto-series glycosphingolipids.Comp. Biochem. Physiol. B Biochem. Mol. Biol.20111581303710.1016/j.cbpb.2010.09.002 20837158
    [Google Scholar]
  14. KawsarS.M.A. MostafaG. HuqE. NaharN. OzekiY. Chemical constituents and hemolytic activity of Macrotyloma uniflorum L.Int. J. Biol. Chem.200831424810.3923/ijbc.2009.42.48
    [Google Scholar]
  15. OlennikovD.N. TankhaevaL.M. NikolaevaG.G. TsyrenzhapovA.V. NikolaevS.M. ChekhirovaG.V. Biologically active substances from Cacalia hastate Leaves. 1. Carbohydrates from leaves and their hypoglycemic activity.Chem. Nat. Compd.20044011510.1023/B:CONC.0000025454.35355.db
    [Google Scholar]
  16. VarkiA. Biological roles of oligosaccharides: All of the theories are correct.Glycobiology1993329713010.1093/glycob/3.2.97 8490246
    [Google Scholar]
  17. BertozziC.R. KiesslingL.L. Chemical Glycobiology.Science200129155122357236410.1126/science.1059820 11269316
    [Google Scholar]
  18. WangD. LiuS. TrummerB.J. DengC. WangA. Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells.Nat. Biotechnol.200220327528110.1038/nbt0302‑275 11875429
    [Google Scholar]
  19. YukiN. SusukiK. KogaM. NishimotoY. OdakaM. HirataK. TaguchiK. MiyatakeT. FurukawaK. KobataT. YamadaM. Carbohydrate mimicry between human ganglioside GM1 and Campylobacter jejuni lipooligosaccharide causes Guillain–Barré syndrome.Proc. Natl. Acad. Sci. USA200410131114041140910.1073/pnas.0402391101 15277677
    [Google Scholar]
  20. de MatosA.M. Recent advances in the development and synthesis of carbohydrate-based molecules with promising antibacterial activity.Eur. J. Org. Chem.2023264e20220091910.1002/ejoc.202200919
    [Google Scholar]
  21. SeebergerP.H. WerzD.B. Synthesis and medical applications of oligosaccharides.Nature200744671391046105110.1038/nature05819 17460666
    [Google Scholar]
  22. LuH. WeiT. LouH. ShuX. ChenQ. A critical review on communication mechanism within plant-endophytic fungi interactions to cope with biotic and abiotic stresses.J. Fungi (Basel)20217971910.3390/jof7090719 34575757
    [Google Scholar]
  23. LaiW-F. Non-conjugated polymers with intrinsic luminescence for drug delivery.J. Drug Deliv. Sci. Technol.20205910191610.1016/j.jddst.2020.101916
    [Google Scholar]
  24. ChenS. FukudaM. Cell type-specific roles of carbohydrates in tumor metastasis. Methods Enzymol. 200641637138010.1016/S0076‑6879(06)16024‑3 17113879
    [Google Scholar]
  25. Ben-HaimS. EllP. 18F-FDG PET and PET/CT in the evaluation of cancer treatment response.J. Nucl. Med.2009501889910.2967/jnumed.108.054205 19139187
    [Google Scholar]
  26. KurthJ.M. Op den CampH.J.M. WelteC.U. Several ways one goal—methanogenesis from unconventional substrates.Appl. Microbiol. Biotechnol.2020104166839685410.1007/s00253‑020‑10724‑7 32542472
    [Google Scholar]
  27. TemmeJ.S. ButlerD.L. GildersleeveJ.C. Anti-glycan antibodies: Roles in human disease.Biochem. J.202147881485150910.1042/BCJ20200610 33881487
    [Google Scholar]
  28. WangX. RamströmO. YanM. Glyconanomaterials: Synthesis, characterization, and ligand presentation.Adv. Mater.201022171946195310.1002/adma.200903908 20301131
    [Google Scholar]
  29. CruchoC.I.C. BarrosM.T. Stimuli-responsive glyconanomaterials for sensing applications.Nanomater. Des. Sens2019825727910.1016/B978‑0‑12‑814505‑0.00008‑4
    [Google Scholar]
  30. SenanayakeT.H. WarrenG. VinogradovS.V. Novel anticancer polymeric conjugates of activated nucleoside analogues.Bioconjug. Chem.201122101983199310.1021/bc200173e 21863885
    [Google Scholar]
  31. DelormeV. LichonL. MahindadH. HungerS. LarouiN. DauratM. GodefroyA. CoudaneJ. Gary-BoboM. Van Den BergheH. Reverse poly(ε;-caprolactone)-g-dextran graft copolymers. Nano-carriers for intracellular uptake of anticancer drugs.Carbohydr. Polym.202023211576411577210.1016/j.carbpol.2019.115764 31952581
    [Google Scholar]
  32. KabirA.K.M.S. KawsarS.M.A. BhuiyanM.M.R. IslamM.R. RahmanM.S. Biological evaluation of some mannopyranoside derivatives.Bull. Pure Appl. Sci.20042328391
    [Google Scholar]
  33. KabirA.K.M.S. KawsarS.M.A. BhuiyanM.M.R. BilkissB. Biological evaluation of some octanoyl derivatives of methyl 4,6-O-cyclohexylidene-α-D-glucopyranoside.Chittagong Univ. J. Biol. Sci.200831&25364
    [Google Scholar]
  34. SahaS. PalD. NimseS.B. Indazole derivatives effective against gastrointestinal diseases.Curr. Top. Med. Chem.202222141189121410.2174/1568026621666211209155933 34886775
    [Google Scholar]
  35. BulbulM.Z.H. ChowdhuryT.S. MisbahM.M.H. FerdousJ. DeyS. HasanI. FujiiY. OzekiY. KawsarS.M.A. Synthesis of new series of pyrimidine nucleoside derivatives bearing the acyl moieties as potential antimicrobial agents.Pharmacia2021681233410.3897/pharmacia.68.e56543
    [Google Scholar]
  36. KawsarS.M.A. MatsumotoR. FujiiY. MatsuokaH. MasudaN. ChihiroI. YasumitsuH. KanalyR.A. SugawaraS. HosonoM. NittaK. IshizakiN. DogasakiC. HamakoJ. MatsuiT. OzekiY. Cytotoxicity and glycan-binding profile of a D-galactose-binding lectin from the eggs of a Japanese sea hare (Aplysia kurodai).Protein J.201130750951910.1007/s10930‑011‑9356‑7 21953532
    [Google Scholar]
  37. MisbahM.M.H. FerdousJ. BulbulM.Z.H. ChowdhuryT.S. DeyS. HasanI. KawsarS.M.A. Evaluation of MIC, MBC, MFC and anticancer activities of acylated methyl β-D-galactopyranoside esters.Int. J. Biosci.202016429930910.12692/ijb/16.4.299‑309
    [Google Scholar]
  38. ChowdhuryS.A. BhuiyanM.M.R. OzekiY. KawsarS.M.A. Simple and rapid synthesis of some nucleoside derivatives: Structural and spectral characterization.Curr. Chem. Lett.201652839210.5267/j.ccl.2015.12.001
    [Google Scholar]
  39. RanaK.M. MaowaJ. AlamA. DeyS. HosenA. HasanI. FujiiY. OzekiY. KawsarS.M.A. In silico DFT study, molecular docking, and ADMET predictions of cytidine analogs with antimicrobial and anticancer properties.In Silico Pharmacol.2021914210.1007/s40203‑021‑00102‑0 33294307
    [Google Scholar]
  40. YasminF. AminM.R. HosenA. SarkarM.A.K. Bromobenzoylation of methyl α-D-mannopyranoside: Synthesis and spectral characterization.J. Siberian Federal Univ. Chem.202114217118310.17516/1998‑2836‑0226
    [Google Scholar]
  41. DeviS.R. JesminS. RahmanM. ManchurM.A. FujiiY. OzekiY. KawsarS.M.A. KawsarS.M.A. Microbial efficacy and two step synthesis of uridine derivatives with spectral characterization.ACTA Pharm. Sci.2019571476810.23893/1307‑2080.APS.05704
    [Google Scholar]
  42. AminM.R. YasminF. HosenM.A. DeyS. MahmudS. SalehM.A. EmranT.B. HasanI. FujiiY. YamadaM. OzekiY. KawsarS.M.A. Synthesis, antimicrobial, anticancer, PASS, molecular docking, molecular dynamic simulations and pharmacokinetic predictions of some methyl β-D-galactopyranoside analogs.Molecules20212622701610.3390/molecules26227016 34834107
    [Google Scholar]
  43. MaowaJ. HosenM.A. AlamA. RanaK.M. FujiiY. OzekiY. KawsarS.M.A. Pharmacokinetics and molecular docking studies of uridine derivatives as SARS-CoV-2 Mpro inhibitors.Phys. Chem. Res.20219338541210.22036/pcr.2021.264541.1869
    [Google Scholar]
  44. IslamM. Arı̇fuzzaman, A.; Rahman, M.; Rahman, M.A.; Kawsar, S.M.A.K. Novel methyl 4,6-O-benzylidene-α-D-glucopyranoside derivatives: Synthesis, structural characterization and evaluation of antibacterial activities.Hacettepe. J. Biol. Chem.201947215316410.15671/hjbc.622038
    [Google Scholar]
  45. IslamA.U. HadniH. AliF. AbuzredaA. KawsarS.M.A. Synthesis, antimicrobial activity, molecular docking, molecular dynamics simulation, and ADMET properties of the mannopyranoside derivatives as antimicrobial agents.J. Taibah Univ. Sci.2024181232710110.1080/16583655.2024.2327101
    [Google Scholar]
  46. AgamennoneV. LeN.G. van StraalenN.M. BrouwerA. RoelofsD. Antimicrobial activity and carbohydrate metabolism in the bacterial metagenome of the soil-living invertebrate Folsomia candida.Sci. Rep.201991730810.1038/s41598‑019‑43828‑w 31086216
    [Google Scholar]
  47. GrzywaczD. LiberekB. MyszkaH. Synthesis, modification and biological activity of diosgenyl β-d-glycosaminosides: An overview.Molecules20202522543310.3390/molecules25225433 33233558
    [Google Scholar]
  48. BauerA.W. PerryD.M. KirbyW.M.M. Single-disk antibiotic-sensitivity testing of staphylococci; an analysis of technique and results.AMA Arch. Intern. Med.1959104220821610.1001/archinte.1959.00270080034004 13669774
    [Google Scholar]
  49. CLSI Global Laboratory Standards for a Healthier World.2012Available from: www.clsi.org
    [Google Scholar]
  50. GroverR.K. MooreJ.D. In vitro efficacy of certain essential oils and plant extracts against three major pathogens of Jatropha curcas L.Phytopathology196252876879
    [Google Scholar]
  51. HuntW.A. The effects of aliphatic alcohols on the biophysical and biochemical correlates of membrane function.Adv. Exp. Med. Biol.19755619521010.1007/978‑1‑4684‑7529‑6_9 167555
    [Google Scholar]
  52. KimY. FarrahS. BaneyR.H. Structure–antimicrobial activity relationship for silanols, a new class of disinfectants, compared with alcohols and phenols.Int. J. Antimicrob. Agents200729221722210.1016/j.ijantimicag.2006.08.036 17137754
    [Google Scholar]
  53. LeeC. YangW. ParrR.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.Phys. Rev. B Condens. Matter198837278578910.1103/PhysRevB.37.785 9944570
    [Google Scholar]
  54. FrischM.J. TrucksG.W. SchlegelH.B. ScuseriaG.E. RobbM.A. CheesemanJ.R. ScalmaniG. BaroneV. MennucciB. Revision D.01.Wallingford, CTGaussian. Inc.2009
    [Google Scholar]
  55. DenningtonR. KeithT.A. MillamJ.M. GaussView, Version 6.Shawnee Mission, KSSemichem Inc.2019
    [Google Scholar]
  56. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.21334 19499576
    [Google Scholar]
  57. PetronikolouN. OrtegaM.A. BorisovaS.A. NairS.K. MetcalfW.W. Molecular basis of Bacillus subtilis ATCC 6633 self-resistance to the phosphono-oligopeptide antibiotic Rhizocticin.ACS Chem. Biol.201914474275010.1021/acschembio.9b00030 30830751
    [Google Scholar]
  58. KawsarS.M.A. MuniaN.S. SahaS. OzekiY. In silico pharmacokinetics, molecular docking and molecular dynamics simulation studies of nucleoside analogs for drug discovery- a mini review.Mini Rev. Med. Chem.202424111070108810.2174/0113895575258033231024073521 37957918
    [Google Scholar]
  59. KumariR. KumarR. LynnA. g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations.J. Chem. Inf. Model.20145471951196210.1021/ci500020m 24850022
    [Google Scholar]
  60. AkterN. SahaS. HossainM.A. UddinK.M. BhatA.R. AhmedS. KawsarS.M.A. Acylated glucopyranosides: FTIR, NMR, FMO, MEP, molecular docking, dynamics simulation, ADMET and antimicrobial activity against bacterial and fungal pathogens.Chem.Phys. Impact2024910070010.1016/j.chphi.2024.100700
    [Google Scholar]
  61. IslamS. HosenM.A. AhmadS. ul Qamar, M.T.; Dey, S.; Hasan, I.; Fujii, Y.; Ozeki, Y.; Kawsar, S.M.A. Synthesis, antimicrobial, anticancer activities, PASS prediction, molecular docking, molecular dynamics and pharmacokinetic studies of designed methyl α-D-glucopyranoside esters.J. Mol. Struct.2022126013276110.1016/j.molstruc.2022.132761
    [Google Scholar]
  62. KabirA.K.M.S. DuttaP. KawsarS.M.A. BhuiyanM.M.R. AnwarM.N. Biological evaluation of some derivatives of methyl-α-D-mannopyranoside.Bull. Pure Appl. Sci.200423C13945
    [Google Scholar]
  63. MuniaN.S. HosenM.A. AzzamK.M.A. Al-GhorbaniM. BaashenM. HossainM.K. AliF. MahmudS. ShimuM.S.S. AlmalkiF.A. HaddaT.B. LaaroussiH. NaimiS. KawsarS.M.A. Synthesis, antimicrobial, SAR, PASS, molecular docking, molecular dynamics and pharmacokinetics studies of 5'- O -uridine derivatives bearing acyl moieties: POM study and identification of the pharmacophore sites.Nucleosides Nucleotides Nucleic Acids202241101036108310.1080/15257770.2022.2096898 35797068
    [Google Scholar]
  64. SahaT. SappatiS. DasS. An insight into the mixed quantum mechanical-molecular dynamics simulation of a ZnII-Curcumin complex with a chosen DNA sequence that supports experimental DNA binding investigations.Int. J. Biol. Macromol.202324512530510.1016/j.ijbiomac.2023.125305 37315676
    [Google Scholar]
  65. SafnaH.K.P. ShahinT.M. RajanV.K. MuraleedharanK. DFT studies on global parameters, antioxidant mechanism and molecular docking of amlodipine besylate.Comput. Biol. Chem.201980465310.1016/j.compbiolchem.2019.03.006 30897526
    [Google Scholar]
  66. GassoumiB. DlalaN.A. EchabaaneM. GhallaH. ZhouY. CastroM.E. MelendezF.J. LeilaN. MadiF. ChaabaneR.B. Adsorption of toxic and non-toxic metals with new model of CX[4]: Experimental and computational investigation, Spectroscopic, QTAIM, and Antibacterial activity analyses.J. Mol. Struct.2022126813361810.1016/j.molstruc.2022.133618
    [Google Scholar]
  67. ElangovanN. SowrirajanS. ArumugamN. RajeswariB. MathewS. PriyaC.G. VenkatramanB.R. MahalingamS.M. Theoretical investigation on solvents effect in molecular structure (TD-DFT, MEP, HOMO-LUMO), topological analysis and molecular docking studies of N-(5-((4-ethylpiperazin-1-yl)methyl) Pyridin-2-yl)-5-fluoro-4-(4-fluoro-1-isopropyl-2-methyl-1H-benzo[d] imidazol-6-yl) pyrimidin-2-amine.Polycycl. Aromat. Compd.20244474467449010.1080/10406638.2023.2254896
    [Google Scholar]
  68. ÖzgeÖ. Avcı D.; Sönmez, F.; Tamer, Ö.; Dege, N.;Başoğlu, A.; Atalay, Y.; Kurt, B.Z. Synthesis, DFT calculations, α‐glucosidase inhibitor activity, and docking studies on Schiff base metal complexes containing isothiocyanate.Appl. Organomet. Chem.2023375e708410.1002/aoc.7084
    [Google Scholar]
  69. ShalabyM.A. FahimA.M. RizkS.A. Antioxidant activity of novel nitrogen scaffold with docking investigation and correlation of DFT stimulation.RSC Advances20231321145801459310.1039/D3RA02393A 37197676
    [Google Scholar]
  70. TeotiaJ. KumarV. AnnuS. BhardwajS. RathiI. Experimental (FT-Raman, FT-IR and NMR) and theoretical (DFT) calculations, thermodynamic parameters, molecular docking and NLO (non-linear optical) properties of N-(2,6-dimethylphenyl)-1-piperazineacetamide.Int. J. Mater. Res.20231147-853655410.1515/ijmr‑2021‑8747
    [Google Scholar]
  71. KitchenD.B. DecornezH. FurrJ.R. BajorathJ. Docking and scoring in virtual screening for drug discovery: Methods and applications.Nat. Rev. Drug Discov.200431193594910.1038/nrd1549 15520816
    [Google Scholar]
  72. LengauerT. RareyM. Computational methods for biomolecular docking.Curr. Opin. Struct. Biol.19966340240610.1016/S0959‑440X(96)80061‑3 8804827
    [Google Scholar]
  73. SahaS. YeomG.S. NimseS.B. PalD. Combination therapy of ledipasvir and itraconazole in the treatment of COVID-19 patients coinfected with black fungus: An in silico statement.BioMed Res. Int.2022202211010.1155/2022/5904261 35463967
    [Google Scholar]
  74. SersegT. LinaniA. BenarousK. Goumri-SaidS. Repurposing antibiotics as potent multi-drug candidates for SARS-CoV-2 delta and omicron variants: Molecular docking and dynamics.J. Biomol. Struct. Dyn.20234120103771038710.1080/07391102.2022.2157876 36541102
    [Google Scholar]
  75. HosenM.A. AlamA. IslamM. FujiiY. OzekiY. KawsarS.M.A. Geometrical optimization, PASS prediction, molecular docking, and in silico ADMET studies of thymidine derivatives against FimH adhesin of Escherichia coli.Izv. Him.202153332734210.34049/bcc.53.3.5375
    [Google Scholar]
  76. AlamA. HosenM.A. IslamM. FerdousJ. FujiiY. OzekiY. KawsarS.M.A. Synthesis, antibacterial and cytotoxicity assessment of modified uridine molecules.Curr. Adv. Chem. Biochem2021611412910.9734/bpi/cacb/v6/8670D
    [Google Scholar]
  77. KawsarS.M.A. HosenM.A. ChowdhuryT.S. RanaK.M. FujiiY. OzekiY. Thermochemical, PASS, molecular docking, drug-likeness and in silico ADMET prediction of cytidine derivatives against HIV-1 reverse transcriptase.Revista de Chimie202172315917810.37358/RC.21.3.8446
    [Google Scholar]
  78. ShamsuddinT. HosenM. AlamM. EmranT. KawsarS. Uridine derivatives: Antifungal, PASS outcomes, ADME/T, drug-likeliness, molecular docking and binding energy calculations.Med. Sci. (Turkey)20211041373138610.5455/medscience.2021.05.175
    [Google Scholar]
  79. KawsarS.M.A. HossainM.A. SahaS. AbdallahE.M. BhatA.R. AhmedS. JamalisJ. OzekiY. Nucleoside-based drug target with general antimicrobial screening and specific computational studies against SARS-CoV-2 main protease.ChemistrySelect2024915e20230477410.1002/slct.202304774
    [Google Scholar]
  80. M A KawsarS. HosenM.A AhmadS. El BakriY. LaaroussiH. Ben Hadda, T.; Almalki, F.A.; Ozeki, Y.; Goumri-Said, S. Potential SARS-CoV-2 RdRp inhibitors of cytidine derivatives: Molecular docking, molecular dynamic simulations, ADMET, and POM analyses for the identification of pharmacophore sites.PLoS One20221711e027325610.1371/journal.pone.0273256 36441684
    [Google Scholar]
  81. LiA.P. Screening for human ADME/Tox drug properties in drug discovery.Drug Discov. Today20016735736610.1016/S1359‑6446(01)01712‑3 11267922
    [Google Scholar]
  82. AmidonG.L. LennernäsH. ShahV.P. CrisonJ.R. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability.Pharm. Res.199512341342010.1023/A:1016212804288 7617530
    [Google Scholar]
/content/journals/mc/10.2174/0115734064339243241027024304
Loading
/content/journals/mc/10.2174/0115734064339243241027024304
Loading

Data & Media loading...

Supplements

Supplementary material for this article can be found online.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test