Skip to content
2000
Volume 16, Issue 4
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

Phages are widely distributed in locations populated by bacterial hosts. Phage proteins can be divided into two main categories, that is, virion and non-virion proteins with different functions. In practice, people mainly use phage virion proteins to clarify the lysis mechanism of bacterial cells and develop new antibacterial drugs. Accurate identification of phage virion proteins is therefore essential to understanding the phage lysis mechanism. Although some computational methods have been focused on identifying virion proteins, the result is not satisfying which gives more room for improvement. In this study, a new sequence-based method was proposed to identify phage virion proteins using g-gap tripeptide composition. In this approach, the protein features were firstly extracted from the ggap tripeptide composition. Subsequently, we obtained an optimal feature subset by performing incremental feature selection (IFS) with information gain. Finally, the support vector machine (SVM) was used as the classifier to discriminate virion proteins from non-virion proteins. In 10-fold crossvalidation test, our proposed method achieved an accuracy of 97.40% with AUC of 0.9958, which outperforms state-of-the-art methods. The result reveals that our proposed method could be a promising method in the work of phage virion proteins identification.

Loading

Article metrics loading...

/content/journals/loc/10.2174/1570178615666180910112813
2019-04-01
2025-09-23
Loading full text...

Full text loading...

/content/journals/loc/10.2174/1570178615666180910112813
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test