Skip to content
2000
Volume 15, Issue 10
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

The Hendrickson reagent (triphenylphosphonium anhydride trifluoromethanesulfonate), prepared from the reaction of triphenylphosphine oxide (Ph3PO) and triflic anhydride (Tf2O) (2:1 stoichiometry), promotes dehydrations and various coupling reactions. The reagent has been used to transform oximes to nitriles and to prepare esters, amides and many other functional groups through the intermediacy of an alkoxyphosphonium salt. The reagent proved useful in heterocycle synthesis of thiazolines, imidazolines, quinoline precursors, isoquinolines, β-carbolines, phenanthridines, 11Hindolo[ 3,2-c]quinolines, quinoline-lactones, furoquinolinones, and indolizino[1,2-b]quinolin-9(11H)- ones. Moreover, the reagent has been key to the successful total synthesis of several natural products. Aryl propargyl alcohols with a terminal α-acetylenic group undergo rapid conversion to the corresponding α,β-unsaturated aldehydes at room temperature in dichloromethane in the presence of one equivalent of triphenylphosphonium anhydride trifluoromethanesulfonate. The reaction involved adding freshly distilled Tf2O (1.0 mmol) to a solution of Ph3PO (2.0 mmol) in CH2Cl2 (10 mL) at 0 oC under N2 atmosphere. After stirring for 10 min, the propargyl alcohol (1.0 mmol) was added as a CH2Cl2 solution (2 mL), followed by the addition of water and Et3N (2.0 mmol) and further stirring at room temperature for 1h. Subsequent workup with 5% NaHCO3 (20 mL) and purification afforded α,β- unsaturated aldehydes. Eighteen aryl propargyl alcohol substrates with a terminal α-acetylenic group were transformed in good to excellent yields (71-85%) to enals. The methodology proved successful with secondary and tertiary alcohols with stereoselectivity favouring exclusively the E isomer. All the synthesized compounds are known and were characterized (1H, 13C, and M.P) and compared to literature values. The method offers several advantages such as exclusive stereoselectivity, short reaction time, good yield, mild reaction conditions, and simple operational procedure.

Loading

Article metrics loading...

/content/journals/loc/10.2174/1570178615666180329154246
2018-10-01
2025-09-15
Loading full text...

Full text loading...

/content/journals/loc/10.2174/1570178615666180329154246
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test