Skip to content
2000
image of Mechanistic and Synthetic Advances in Barton–Kellogg Olefination (2021–2025)

Abstract

Over the past few decades, the Barton-Kellogg olefination reaction has emerged as a crucial C–C connective technique utilized in synthesizing overcrowded alkenes. The reaction has good stereoselectivity and has an enduring relevance due to the scope of its integration into complex molecule synthesis and material science applications. This review examines the developments in Barton-Kellogg olefination between 2021 and 2025, highlighting significant advances in mechanistic understanding, reaction conditions, substrate scope, and methodology. Recent developments, including the creation of asymmetric versions, gentler reaction protocols, and innovative catalyst systems, have enhanced the synthetic value of this reaction. Additionally, this review summarizes recent research on computational studies related to the mechanism and kinetics of the response, in relation to the present challenges and possible future paths for synthetic organic chemistry researchers.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786419463251111063034
2026-01-23
2026-01-29
Loading full text...

Full text loading...

References

  1. Tebbe F.N. Parshall G.W. Reddy G.S. J. Am. Chem. Soc. 1978 100 11 3611 3613 10.1021/ja00479a061
    [Google Scholar]
  2. Vedejs E. Marth C.F. J. Am. Chem. Soc. 1990 112 10 3905 3909 10.1021/ja00166a026
    [Google Scholar]
  3. Peterson D.J. J. Org. Chem. 1968 33 2 780 784 10.1021/jo01266a061
    [Google Scholar]
  4. Byrne P.A. Gilheany D.G. ChemInform 2013 44 41 chin.201341252 10.1002/chin.201341252
    [Google Scholar]
  5. Heravi M.M. Zadsirjan V. Daraie M. Ghanbarian M. ChemistrySelect 2020 5 31 9654 9690 10.1002/slct.202002192
    [Google Scholar]
  6. He Y.M. Cheng L. Anal. Sens. 2024 4 4 202300098 10.1002/anse.202300098
    [Google Scholar]
  7. Triana V. Derda R. Org. Biomol. Chem. 2017 15 37 7869 7877 10.1039/C7OB01635B 28880027
    [Google Scholar]
  8. Izod K. McFarlane W. Tyson B.V. Eur. J. Org. Chem. 2004 2004 5 1043 1048 10.1002/ejoc.200300683
    [Google Scholar]
  9. Olefination P.I. Comprehensive Organic Name Reactions and Reagents. John Wiley & Sons 2010 2176 2181 10.1002/9780470638859.conrr491
    [Google Scholar]
  10. Tran T.T. Arkhypchuk A.I. Ott S. Angew. Chem. Int. Ed. 2024 63 50 202411265 10.1002/anie.202411265 39183714
    [Google Scholar]
  11. Janssens J. Berionni G. Robiette R. Eur. J. Org. Chem. 2025 28 17 202500033 10.1002/ejoc.202500033
    [Google Scholar]
  12. Rinu P.X.T. Radhika S. Anilkumar G. ChemistrySelect 2022 7 31 202200760 10.1002/slct.202200760
    [Google Scholar]
  13. Ando K. Watanabe H. Zhu X. J. Org. Chem. 2021 86 9 6969 6973 10.1021/acs.joc.1c00479 33870683
    [Google Scholar]
  14. Ando K. Takama D. Org. Lett. 2020 22 17 6907 6910 10.1021/acs.orglett.0c02440 32820934
    [Google Scholar]
  15. Chrenko D. Pospíšil J. Molecules 2024 29 12 2719 10.3390/molecules29122719 38930785
    [Google Scholar]
  16. Olefination T. Comprehensive Organic Name Reactions and Reagents 2010 2753 2757 10.1002/9780470638859.conrr617
    [Google Scholar]
  17. Yuan J. Lindner K. Frauenrath H. J. Org. Chem. 2006 71 15 5457 5467 10.1021/jo0600510 16839123
    [Google Scholar]
  18. Domżalska-Pieczykolan A.M. Furman B. Synlett 2020 31 7 730 736 10.1055/s‑0039‑1691594
    [Google Scholar]
  19. Niyomchon S. Oppedisano A. Aillard P. Maulide N. Nat. Commun. 2017 8 1 1091 10.1038/s41467‑017‑01036‑y 29061994
    [Google Scholar]
  20. Zheng X. Aoyagi S. Matsuo Y. Org. Lett. 2025 27 30 8321 8325 10.1021/acs.orglett.5c02552 40676772
    [Google Scholar]
  21. Harnik E. Herbstein F.H. Schmidt G.M.J. Nature 1951 168 4265 158 160 10.1038/168158b0
    [Google Scholar]
  22. Bell F. Waring D.H. J. Chem. Soc. 1949 2689 2689 10.1039/jr9490002689
    [Google Scholar]
  23. Barton D.H.R. Willis B.J. J. Chem. Soc. D 1970 19 19 1225 10.1039/c29700001225
    [Google Scholar]
  24. Kellogg R.M. Wassenaar S. Tetrahedron Lett. 1970 11 23 1987 1990 10.1016/S0040‑4039(01)98134‑1
    [Google Scholar]
  25. Zhang T. Yu T. Zhao Y. Wei C. Ma H. Li Y. Zhang H. Dyes Pigments 2020 177 108233 10.1016/j.dyepig.2020.108233
    [Google Scholar]
  26. Dullweber F. Montforts F.P. Synlett 2008 2008 20 3213 3215 10.1055/s‑0028‑1087242
    [Google Scholar]
  27. Sugihara Y. Noda K. Nakayama J. Bull. Chem. Soc. Jpn. 2000 73 10 2351 2356 10.1246/bcsj.73.2351
    [Google Scholar]
  28. Ruangsupapichat N. Pollard M.M. Harutyunyan S.R. Feringa B.L. Nat. Chem. 2011 3 1 53 60 10.1038/nchem.872 21160518
    [Google Scholar]
  29. Geertsema E.M. Meetsma A. Feringa B.L. Angew. Chem. 1999 111 18 2902 2905 10.1002/(SICI)1521‑3757(19990917)111:18<2902:AID‑ANGE2902>3.0.CO;2‑Z
    [Google Scholar]
  30. Chen C.T. Chou Y.C. J. Am. Chem. Soc. 2000 122 32 7662 7672 10.1021/ja993297d
    [Google Scholar]
  31. Tietze L.F. Düfert A. Lotz F. Sölter L. Oum K. Lenzer T. Beck T. Herbst-Irmer R. J. Am. Chem. Soc. 2009 131 49 17879 17884 10.1021/ja906260x 19911798
    [Google Scholar]
  32. Chen W.C. Lee Y.W. Chen C.T. Org. Lett. 2010 12 7 1472 1475 10.1021/ol100117s 20205428
    [Google Scholar]
  33. Liu H. El-Salfiti M. Lautens M. Angew. Chem. Int. Ed. 2012 51 39 9846 9850 10.1002/anie.201204226 22926928
    [Google Scholar]
  34. Bushby R.J. J. Chem. Soc., Perkin Trans. 1 1975 23 23 2513 10.1039/p19750002513
    [Google Scholar]
  35. Fiedler B. Weiß D. Beckert R. Liebigs Annalen 1997 3 613 615 10.1002/jlac.199719970324
    [Google Scholar]
  36. Li X. Chen H. Xuan Q. Mai S. Lan Y. Song Q. Org. Lett. 2021 23 9 3518 3523 10.1021/acs.orglett.1c00930 33904743
    [Google Scholar]
  37. Linden A. Egli D.H. Heimgartner H. Acta Crystallogr. C Struct. Chem. 2025 81 4 238 245 10.1107/S2053229625002074 40084629
    [Google Scholar]
  38. Xiong Y. Ma X.L. Su S. Miao Q. Beilstein J. Org. Chem. 2025 21 1 7 10.3762/bjoc.21.1 39776577
    [Google Scholar]
  39. Conen P. Nickisch R. Meier M.A.R. Commun. Chem. 2023 6 1 255 10.1038/s42004‑023‑01058‑2 37980378
    [Google Scholar]
  40. Song S. Jin J. Choi J.H. Chung W. Nat. Commun. 2022 13 1 4818 10.1038/s41467‑022‑32499‑3 35974103
    [Google Scholar]
  41. Fuchibe K. Matsunobu T. Ichikawa J. J. Fluor. Chem. 2024 275 110273 10.1016/j.jfluchem.2024.110273
    [Google Scholar]
  42. Schmidt T.A. Sparr C. 2021 Available from: https://zenodo.org/records/5266509 10.5281/zenodo.5266508
  43. Querol M. Stoekli-Evans H. Belser P. Org. Lett. 2002 4 7 1067 1070 10.1021/ol017130c 11922784
    [Google Scholar]
  44. Van Mourik T. Bühl M. Gaigeot M. Philos. Trans A Math. Phys. Eng. Sci. 2014 372 2011 20120488 10.1098/rsta.2012.0488 24516181
    [Google Scholar]
  45. Saad F.A. J. Therm. Anal. Calorim. 2017 129 1 425 440 10.1007/s10973‑016‑6017‑2
    [Google Scholar]
  46. Zozulya A. Zyubin A. Samusev I. R. Soc. Open Sci. 2025 12 6 242000 10.1098/rsos.242000 40469658
    [Google Scholar]
  47. Mloston G. Jasiński R. Kula K. Heimgartner H. Eur. J. Org. Chem. 2019 10.1002/ejoc.201901443
    [Google Scholar]
  48. Schmidt T.A. Sparr C. Angew. Chem. Int. Ed. 2021 60 44 23911 23916 10.1002/anie.202109519 34416071
    [Google Scholar]
  49. Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, reactivity, applications. Wiley‐VCH Verlag GmbH & Co 2004 10.1002/352760393X
    [Google Scholar]
  50. Inoue M. Sumii Y. Shibata N. ACS Omega 2020 5 19 10633 10640 10.1021/acsomega.0c00830 32455181
    [Google Scholar]
  51. Fujiwara T. O’Hagan D. J. Fluor. Chem. 2014 167 16 29 10.1016/j.jfluchem.2014.06.014
    [Google Scholar]
  52. Mei H. Remete A.M. Zou Y. Moriwaki H. Fustero S. Kiss L. Soloshonok V.A. Han J. Chin. Chem. Lett. 2020 31 9 2401 2413 10.1016/j.cclet.2020.03.050
    [Google Scholar]
  53. Gao C.F. Zhou Y. Ma H. Zhang Y. Nie J. Zhang F.G. Ma J.A. CCS Chemistry 2022 4 12 3693 3704 10.31635/ccschem.022.202201923
    [Google Scholar]
  54. Berger R. Resnati G. Metrangolo P. Weber E. Hulliger J. ChemInform 2011 42 49 chin.201149232 10.1002/chin.201149232
    [Google Scholar]
  55. Lindsay D.S. Dubey J.P. Kennedy T. J. Vet. Parasitol. 2000 92 2 165 169 10.1016/S0304‑4017(00)00280‑6 10946140
    [Google Scholar]
  56. Gibbons P. Love D. Craig T. Budke C. Vet. Parasitol. 2016 218 1 4 10.1016/j.vetpar.2015.12.020 26872920
    [Google Scholar]
  57. Munavalli S. Rossman D.I. Rohrbaugh D.K. Ferguson C.P. Hsu F.L. Heteroatom Chem. 1992 3 2 189 192 10.1002/hc.520030216
    [Google Scholar]
  58. Sun J. JACS Au 2025 5 2 1039 1050 10.1021/jacsau.4c01270 40017769
    [Google Scholar]
  59. Burns J.M. Clark T. Williams C.M. J. Org. Chem. 2021 86 11 7515 7528 10.1021/acs.joc.1c00506 34015929
    [Google Scholar]
  60. Seif A. Ahmadi T.S. Klein A. New J. Chem. 2022 46 22 10907 10919 10.1039/D2NJ01476A
    [Google Scholar]
  61. Pegoraro C. Guinart A. Masiá Sanchis E. Doellerer D. Stuart M.C.A. Conejos-Sánchez I. Feringa B.L. Vicent M.J. J. Mater. Chem. B Mater. Biol. Med. 2025 13 8 2658 2665 10.1039/D4TB02434F 39932285
    [Google Scholar]
  62. Doellerer D. de Boer J.Y. Feringa B.L. J. Org. Chem. 2025 90 10 3519 3526 10.1021/acs.joc.4c02619 40017168
    [Google Scholar]
  63. Chen S. Jung Y. JACS Au 2021 1 10 1612 1620 10.1021/jacsau.1c00246 34723264
    [Google Scholar]
  64. Finnigan W. Hepworth L.J. Flitsch S.L. Turner N.J. Nat. Catal. 2021 4 2 98 104 10.1038/s41929‑020‑00556‑z 33604511
    [Google Scholar]
  65. Fortunato M.E. Coley C.W. Barnes B.C. Jensen K.F. J. Chem. Inf. Model. 2020 60 7 3398 3407 10.1021/acs.jcim.0c00403 32568548
    [Google Scholar]
  66. Thakkar A. Johansson S. Jorner K. Buttar D. Reymond J.L. Engkvist O. React. Chem. Eng. 2021 6 1 27 51 10.1039/D0RE00340A
    [Google Scholar]
  67. Klucznik T. Mikulak-Klucznik B. McCormack M.P. Lima H. Szymkuć S. Bhowmick M. Molga K. Zhou Y. Rickershauser L. Gajewska E.P. Toutchkine A. Dittwald P. Startek M.P. Kirkovits G.J. Roszak R. Adamski A. Sieredzińska B. Mrksich M. Trice S.L.J. Grzybowski B.A. Chem 2018 4 3 522 532 10.1016/j.chempr.2018.02.002
    [Google Scholar]
  68. Cheng G.J. Zhang X. Chung L.W. Xu L. Wu Y.D. J. Am. Chem. Soc. 2015 137 5 1706 1725 10.1021/ja5112749 25568962
    [Google Scholar]
  69. Chen S. An S. Babazade R. Jung Y. Nat. Commun. 2024 15 1 2250 10.1038/s41467‑024‑46364‑y 38480709
    [Google Scholar]
  70. Nugmanov R. Dyubankova N. Gedich A. Wegner J.K. J. Chem. Inf. Model. 2022 62 14 3307 3315 10.1021/acs.jcim.2c00344 35792579
    [Google Scholar]
  71. Gao H. Struble T.J. Coley C.W. Wang Y. Green W.H. Jensen K.F. ACS Cent. Sci. 2018 4 11 1465 1476 10.1021/acscentsci.8b00357 30555898
    [Google Scholar]
  72. Maser M.R. Cui A.Y. Ryou S. DeLano T.J. Yue Y. Reisman S.E. J. Chem. Inf. Model. 2021 61 1 156 166 10.1021/acs.jcim.0c01234 33417449
    [Google Scholar]
  73. Vaucher A.C. Schwaller P. Geluykens J. Nair V.H. Iuliano A. Laino T. Nat. Commun. 2021 12 1 2573 10.1038/s41467‑021‑22951‑1 33958589
    [Google Scholar]
  74. Kwon Y. Kim S. Choi Y.S. Kang S. J. Chem. Inf. Model. 2022 62 23 5952 5960 10.1021/acs.jcim.2c01085 36413480
    [Google Scholar]
  75. Wang X. Hsieh C.Y. Yin X. Wang J. Li Y. Deng Y. Jiang D. Wu Z. Du H. Chen H. Li Y. Liu H. Wang Y. Luo P. Hou T. Yao X. Research 2023 6 0231 10.34133/research.0231 37849643
    [Google Scholar]
  76. Chen L.Y. Li Y.P. J. Cheminform. 2024 16 1 11 10.1186/s13321‑024‑00805‑4 38268009
    [Google Scholar]
  77. Qian Y. Li Z. Tu Z. Coley C.W. Barzilay R. Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing Singapore, December, 2023 12731 12745 10.18653/v1/2023.emnlp‑main.784
    [Google Scholar]
/content/journals/loc/10.2174/0115701786419463251111063034
Loading
/content/journals/loc/10.2174/0115701786419463251111063034
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test