Skip to content
2000
image of Tröger’s Base Derivative-catalyzed Ugi-Smiles Reaction Involving Aliphatic Aldehydes

Abstract

Ugi-Smiles reactions play an important role in the field of organic synthesis and pharmaceutical chemistry. However, due to their low reactivity, less electrophilic aliphatic aldehydes have never been used as substrates. To expand the range of substrates for the reaction, a bis(-(pyridin-2-ylmethyl)aminomethyl substituted Tröger's base derivative was used to promote the Ugi-Smiles reaction involving aliphatic aldehydes. With the facilitation of the catalyst, the reaction of isocyanides, malononitrile, aldehydes, and low-reactive, unfunctionalized 1-benzo[]imidazole-2-thiols proceeded smoothly to afford thioimidazolidinones in high yields under mild conditions. Both experimental and theoretical calculations showed that the catalyst's high catalytic activity may be due to its appropriate cavity size and alkalinity, as well as its multiple catalytic active sites.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786415168251005160724
2025-10-21
2025-12-10
Loading full text...

Full text loading...

References

  1. Rocha R.O. Rodrigues M.O. Neto B.A.D. ACS Omega 2020 5 2 972 979 10.1021/acsomega.9b03684 31984252
    [Google Scholar]
  2. Madej A. Paprocki D. Koszelewski D. Żądło-Dobrowolska A. Brzozowska A. Walde P. Ostaszewski R. RSC Advances 2017 7 53 33344 33354 10.1039/C7RA03376A
    [Google Scholar]
  3. Ramos L.M. Rodrigues M.O. Neto B.A.D. Org. Biomol. Chem. 2019 17 31 7260 7269 10.1039/C9OB01088B 31192346
    [Google Scholar]
  4. Bay S. Makhloufi G. Janiak C. Müller T.J.J. Beilstein J. Org. Chem. 2014 10 1 1006 1016 10.3762/bjoc.10.100 24991251
    [Google Scholar]
  5. Zhang J. Yu P. Li S.Y. Sun H. Xiang S.H. Wang J.J. Houk K.N. Tan B. Science 2018 361 6407 eaas8707 10.1126/science.aas8707 30213886
    [Google Scholar]
  6. Richey B. Mason K.M. Meyers M.S. Luesse S.B. Tetrahedron Lett. 2016 57 4 492 494 10.1016/j.tetlet.2015.12.068
    [Google Scholar]
  7. El Kaïm L. Grimaud L. Mol. Divers. 2010 14 4 855 867 10.1007/s11030‑009‑9175‑3 19582586
    [Google Scholar]
  8. Mason K.M. Meyers M.S. Fox A.M. Luesse S.B. Beilstein J. Org. Chem. 2016 12 2032 2037 10.3762/bjoc.12.191 27829908
    [Google Scholar]
  9. Thessing A. Ayres R. Jones J. Bauer H. Zangi M. Luesse S.B. Results Chem. 2022 4 100416 10.1016/j.rechem.2022.100416
    [Google Scholar]
  10. Hao J. Lv Y. Tian S. Ma C. Cui W. Yue H. Wei W. Yi D. Chin. Chem. Lett. 2024 35 9 109513 10.1016/j.cclet.2024.109513
    [Google Scholar]
  11. El Kaïm L. Grimaud L. Eur. J. Org. Chem. 2014 2014 35 7749 7762 10.1002/ejoc.201402783
    [Google Scholar]
  12. Wang Y. Ge W. Fang Y. Ren X. Cao S. Liu G. Li M. Xu J. Wan Y. Han X. Wu H. Res. Chem. Intermed. 2017 43 2 631 640 10.1007/s11164‑016‑2642‑4 36808803
    [Google Scholar]
  13. Yuan R. Li M. Ren X. Chen W. Zhou H. Wan Y. Zhang P. Wu H. Res. Chem. Intermed. 2020 46 4 2275 2287 10.1007/s11164‑020‑04091‑1
    [Google Scholar]
  14. Yuan R. Cui H. Chen W. Ren X. Zhou H. Xu H. Sun Y. Liang Y. Wan Y. Liu J. Wu H. Youji Huaxue 2020 40 4 1017 1027 10.6023/cjoc201909026
    [Google Scholar]
  15. Vasco A.V. Méndez Y. Porzel A. Balbach J. Wessjohann L.A. Rivera D.G. Bioconjug. Chem. 2019 30 1 253 259 10.1021/acs.bioconjchem.8b00906 30575393
    [Google Scholar]
  16. Ramírez-Ornelas D.E. Sola-Llano R. Bañuelos J. López Arbeloa I. Martínez-Álvarez J.A. Mora-Montes H.M. Franco B. Peña-Cabrera E. ACS Omega 2018 3 7 7783 7797 10.1021/acsomega.8b00753 30087923
    [Google Scholar]
  17. Puthumana S.S.E. Damodaran B. ChemistrySelect 2018 3 11 2951 2957 10.1002/slct.201702989
    [Google Scholar]
  18. García-González M.C. Aguilar-Granda A. Zamudio-Medina A. Miranda L.D. Rodríguez-Molina B. J. Org. Chem. 2018 83 5 2570 2581 10.1021/acs.joc.7b02858 29457731
    [Google Scholar]
  19. Esteves C.I.C. Raposo M.M.M. Costa S.P.G. Amino Acids 2017 49 5 921 930 10.1007/s00726‑017‑2392‑7 28197734
    [Google Scholar]
  20. Lu Y.H. Mu S.Y. Jiang J. Zhou M.H. Wu C. Ji H.T. He W.M. ChemSusChem 2023 16 19 e202300523 10.1002/cssc.202300523 37728196
    [Google Scholar]
  21. Chen Y.M. Li X. Xu Z.G. Chem. Rec. 2025 25 7 e202500002 10.1002/tcr.202500002 40116592
    [Google Scholar]
  22. Ziarani G.M. Ebrahimi D. Mohajer F. Varma R.S. Iravani S. ChemistrySelect 2023 8 29 e202302152 10.1002/slct.202302152
    [Google Scholar]
  23. Ge L. Wang H. Liu Y. Feng X. J. Am. Chem. Soc. 2024 146 19 13347 13355 10.1021/jacs.4c02012 38710023
    [Google Scholar]
  24. Zhu X. Xu X.P. Sun C. Wang H.Y. Zhao K. Ji S.J. J. Comb. Chem. 2010 12 6 822 828 10.1021/cc100014g 20804131
    [Google Scholar]
  25. Chéron N. Ramozzi R. El Kaïm L. Grimaud L. Fleurat-Lessard P. J. Phys. Chem. A 2013 117 33 8035 8042 10.1021/jp4052227 23885962
    [Google Scholar]
/content/journals/loc/10.2174/0115701786415168251005160724
Loading
/content/journals/loc/10.2174/0115701786415168251005160724
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test