Skip to content
2000
image of Efficient One-Pot Synthesis of 4-(((8-Hydroxyquinolin-7-yl) (phenyl)methyl)amino)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one Derivatives Using TiO2 Nanoparticles as a Catalyst

Abstract

A series of 4-(((8-hydroxyquinolin-7-yl)(phenyl)methyl)amino)-1,5-dimethyl-2-phenyl-1,2-dihydro-3-pyrazol-3-one derivatives were synthesized a one-pot, three-component reaction. The reaction employed benzaldehyde derivatives , 4-aminoantipyrine , and 8-hydroxyquinoline , using titanium dioxide nanoparticles (TiO NPs) as a catalyst. The TiO NPs, synthesized through a sol–gel method, efficiently catalyzed the transformation under mild conditions, delivering high yields in just 9 minutes at room temperature. Optimization revealed that 0.010 g of catalyst in methanol was optimal, with protic solvents outperforming aprotic and non-polar ones. The reaction progress was monitored using thin-layer chromatography (TLC), and the final products were isolated recrystallization. A systematic study of reaction parameters confirmed TiO NPs as an efficient, reusable, and environmentally friendly catalyst for multicomponent organic synthesis.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786406873250730182802
2025-08-07
2025-09-27
Loading full text...

Full text loading...

References

  1. Sol-Magdaleno M. Aguilar-Aguilar J.I. Beltrán-Naturi E. Valencia-Ordóñez L.D. Díaz-González A. Trejo-Flores P. Camas-Flores C.A. Palacios-Pola G. Ali-Sahito Z. González-Moscoso M. Discover Soil 2025 2 1 26 10.1007/s44378‑025‑00054‑3
    [Google Scholar]
  2. Shen X. Hong G. Wang L. Org. Biomol. Chem. 2025 23 9 2059 2078 10.1039/D4OB01822B 39887261
    [Google Scholar]
  3. Younus H.A. Al-Rashida M. Hameed A. Uroos M. Salar U. Rana S. Khan K.M. Expert Opin. Ther. Pat. 2021 31 3 267 289 10.1080/13543776.2021.1858797 33275061
    [Google Scholar]
  4. Mustafa G. Zia-ur-Rehman, M.; Sumrra, S.H. J. Mol. Struct. 2022 1262 133044 10.1016/j.molstruc.2022.133044
    [Google Scholar]
  5. Kasare M.S. Dhavan P.P. Shaikh A.H.I. Jadhav B.L. Pawar S.D. J. Mol. Recognit. 2022 35 9 e2976 10.1002/jmr.2976 35569113
    [Google Scholar]
  6. Adithya Krishnan M. Saranyaparvathi S. Raksha C. Vrinda B. Girish C.G. Kulkarni N.V. Kharisov B.I. Russ. J. Coord. Chem. 2022 48 11 696 724 10.1134/S1070328422110082
    [Google Scholar]
  7. Ren H. Dhanaraj P. Enoch I.V.M.V. Paulraj M.S. M, I. Med. Chem. 2022 18 1 26 35 10.2174/1573406416666201106105303 33155926
    [Google Scholar]
  8. Nguyen L.H.T. Tran K.D.H. Le T.M.T. Nguyen V.P. Vu G.B.N. Tran P.H. Ung T.D.T. Pham A.T.T. Tran N.Q. Le Minh T. Doan T.L.H. Mater. Chem. Phys. 2024 319 129346 10.1016/j.matchemphys.2024.129346
    [Google Scholar]
  9. Rbaa M. Haida S. Tuzun B. hichar, A.; Hassane, A.E.; Kribii, A.; Lakhrissi, Y.; Hadda, T.B.; Zarrouk, A.; Lakhrissi, B.; Berdimurodov, E. J. Mol. Struct. 2022 1258 132688 10.1016/j.molstruc.2022.132688
    [Google Scholar]
  10. Zhang Y. Yang J. Meng T. Qin Y. Li T. Fu J. Yin J. Eur. J. Med. Chem. 2021 212 113153 10.1016/j.ejmech.2021.113153 33453603
    [Google Scholar]
  11. Wang D. Li S.J. Cao W. Wang Z. Ma Y. ACS Omega 2022 7 21 18017 18026 10.1021/acsomega.2c01414 35664592
    [Google Scholar]
  12. Rouifi Z. Rbaa M. Errahmany N. Seghiri R. Warad I. Oudda H. Lakhrissi B. Berdimurodov E. Aliev N. Zarrouk A. J. Dispers. Sci. Technol. 2024 1 14 10.1080/01932691.2024.2380035
    [Google Scholar]
  13. Mohanram I. Meshram J. ISRN Org. Chem. 2014 2014 1 1 7 10.1155/2014/639392 24955256
    [Google Scholar]
  14. Osman A.I. Ayati A. Krivoshapkin P. Tanhaei B. Farghali M. Yap P.S. Abdelhaleem A. Coord. Chem. Rev. 2024 514 215900 10.1016/j.ccr.2024.215900
    [Google Scholar]
  15. Ghobadi M. Kargar Razi M. Javahershenas R. Kazemi M. Synth. Commun. 2021 51 5 647 669 10.1080/00397911.2020.1819328
    [Google Scholar]
  16. Rajaram P. Jeice A.R. Jayakumar K. Surf. Interfaces 2023 39 102912 10.1016/j.surfin.2023.102912
    [Google Scholar]
  17. Nazeri M.T. Nasiriani T. Farhid H. Javanbakht S. Bahri F. Shadi M. Shaabani A. 202210 25 8115 8134 10.1021/acssuschemeng.2c01030
  18. Imoisili P.E. Jen T.C. Safaei B. Nanotechnol. Rev. 2021 10 1 126 136 10.1515/ntrev‑2021‑0016
    [Google Scholar]
  19. Kostova I. Molecules 2024 29 4 824 10.3390/molecules29040824 38398576
    [Google Scholar]
  20. Rahaman S.K. Chatterjee T. Alam S.M. Synthesis of Metal-Organic Frameworks via Water.-Based Routes. Elsevier 2024 51 72 10.1016/B978‑0‑323‑95939‑1.00009‑5
    [Google Scholar]
/content/journals/loc/10.2174/0115701786406873250730182802
Loading
/content/journals/loc/10.2174/0115701786406873250730182802
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test